

3.3 V Zero Delay Buffer

Features

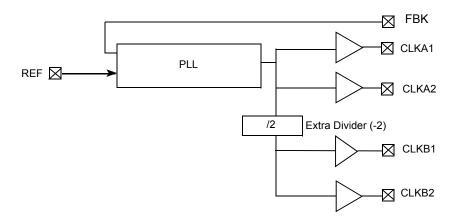
- Zero input-output propagation delay, adjustable by capacitive load on FBK input
- Multiple configurations
- Multiple low-skew outputs
- 10 MHz to 133 MHz operating range
- 90 ps typical peak cycle-to-cycle jitter at 15 pF, 66 MHz
- Space-saving 8-pin 150-mil small outline integrated circuit (SOIC) package
- 3.3 V operation
- Industrial temperature available

Functional Description

The CY2304 is a 3.3 V zero delay buffer designed to distribute high-speed clocks in PC, workstation, datacom, telecom, and other high performance applications.

The part has an on-chip phase-locked loop (PLL) that locks to an input clock presented on the REF pin. The PLL feedback is required to be driven into the FBK pin, and can be obtained from one of the outputs. The input-to-output skew is guaranteed to be less than 250 ps, and output-to-output skew is guaranteed to be less than 200 ps.

The CY2304 has two banks of two outputs each.


The CY2304 PLL enters a power down state when there are no rising edges on the REF input. In this mode, all outputs are three-stated and the PLL is turned off, resulting in less than 25 μA of current draw.

Multiple CY2304 devices can accept the same input clock and distribute it in a system. In this case, the skew between the outputs of two devices is guaranteed to be less than 500 ps.

The CY2304 is available in two different configurations, as shown in Table 1. The CY2304–1 is the base part, where the output frequencies equal the reference if there is no counter in the feedback path.

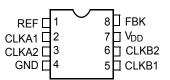
The CY2304–2 allows the user to obtain Ref and 1/2x or 2x frequencies on each output bank. The exact configuration and output frequencies depends on which output drives the feedback pin.

Logic Block Diagram

Table 1. Available Configurations

Device	FBK from	Bank A Frequency	Bank B Frequency
CY2304-1	Bank A or B	Reference	Reference
CY2304-2	Bank A	Reference	Reference/2
CY2304-2	Bank B	2 × Reference	Reference

Contents


Pin Configurations	3
Pin Definitions	
Zero Delay and Skew Control	
Maximum Ratings	5
Operating Conditions	5
Electrical Characteristics	
Switching Characteristics	6
Operating Conditions	7
Electrical Characteristics	7
Switching Characteristics	
Switching Waveforms	
Ordering Information	
Ordering Code Definitions	
Package Diagram	

Acronyms	13
Document Conventions	
Units of Measure	13
Appendix: Silicon Errata for	
the Zero Delay Clock Buffers, CY2304	14
Part Numbers Affected	14
CY2304 Errata Summary	14
CY2303 Qualification Status of fixed silicon	14
Document History Page	16
Sales, Solutions, and Legal Information	17
Worldwide Sales and Design Support	17
Products	
PSoC Solutions	17

Pin Configurations

Figure 1. 8-pin SOIC pinout

Pin Definitions

8-pin SOIC

Pin	Signal	Description
1	REF ^[1]	Input reference frequency, 5 V tolerant input
2	CLKA1 ^[2]	Clock output, Bank A
3	CLKA2 ^[2]	Clock output, Bank A
4	GND	Ground
5	CLKB1 ^[2]	Clock output, Bank B
6	CLKB2 ^[2]	Clock output, Bank B
7	V _{DD}	3.3 V supply
8	FBK	PLL feedback input

Zero Delay and Skew Control

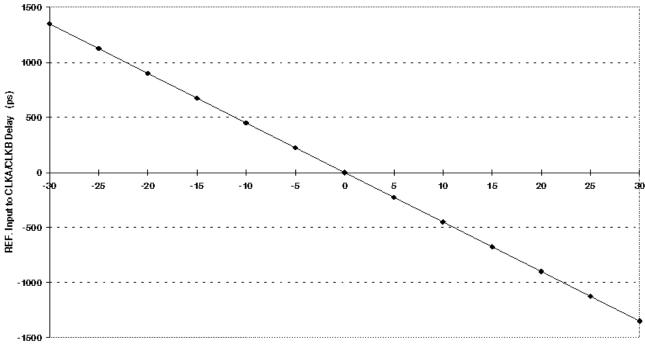


Figure 2. REF. Input to CLKA/CLKB Delay vs. Difference in Loading Between FBK Pin and CLKA/CLKB Pins

Output Load Difference: FBK Load - CLKA/CLKB Load (pF)

To close the feedback loop of the CY2304, the FBK pin can be driven from any of the four available output pins. The output driving the FBK pin is driving a total load of 7 pF, with any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the input-output delay. This is shown in Figure 2.

For applications requiring zero input-output delay, all outputs including the one providing feedback must be equally loaded. If input-output delay adjustments are required, use the graph shown in Figure 2 to calculate loading differences between the feedback output and remaining outputs.

For zero output-output skew, be sure to load outputs equally. For further information on using CY2304, refer to the application note AN1234 "CY2308: Zero Delay Buffer".

Maximum Ratings

Supply voltage to ground potential –0.5 V to +7.0 V
DC input voltage (except Ref) –0.5 V to V_{DD} + 0.5 V
DC input voltage REF –0.5 V to 7 V

Storage temperature	–65 °C to +150 °C
Junction temperature	150 °C
Static discharge voltage	
(per MIL-STD-883, Method 3015)	> 2000 V

Operating Conditions

For CY2304SXC Commercial Temperature Devices

Parameter	Description		Max	Unit
V _{DD}	Supply voltage	3.0	3.6	V
T _A	Operating temperature (ambient temperature)	0	70	°C
CL	Load capacitance (below 100 MHz)	_	30	pF
	Load capacitance (from 100 MHz to 133 MHz)	_	15	pF
C _{IN}	Input capacitance [3]	_	7	pF
t _{PU}	Power-up time for all $V_{\text{DD}}\text{s}$ to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	ms

Electrical Characteristics

For CY2304SXC Commercial Temperature Devices

Parameter	Description	Test Conditions	Min	Max	Unit
V _{IL}	Input LOW voltage		-	0.8	V
V _{IH}	Input HIGH voltage		2.0	-	V
IIL	Input LOW current	V _{IN} = 0 V	_	50.0	μA
IIH	Input HIGH current	V _{IN} = V _{DD}	_	100.0	μA
V _{OL}	Output LOW voltage [4]	I _{OL} = 8 mA (-1, -2)	_	0.4	V
V _{OH}	Output HIGH voltage [4]	I _{OH} = -8 mA (-1, -2)	2.4	-	V
I _{DD} (PD mode)	Power-down supply current	REF = 0 MHz	-	12.0	μΑ
I _{DD}	Supply current	Unloaded outputs, 100 MHz REF, Select inputs at V_{DD} or GND	-	45.0	mA
		Unloaded outputs, 66 MHz REF (-1, -2)	-	32.0	mA
		Unloaded outputs, 33 MHz REF (-1, -2)	-	18.0	mA

Notes

Applies to both REF clock and FBK.
Parameter is guaranteed by design and characterization. Not 100% tested in production.

Switching Characteristics

For CY2304SXC Commercial Temperature Devices

Parameter ^[5]	Name	Test Conditions	Min	Тур	Max	Unit
t ₁	Output frequency	30 pF load, all devices	10	-	100	MHz
t ₁	Output frequency	15 pF load, -1, -2 devices	10	-	133.3	MHz
t _{DC}	Duty cycle ^[6] = $t_2 \div t_1$ (-1, -2)	Measured at 1.4 V, F _{OUT} = 66.66 MHz, 30-pF load	40.0	50.0	60.0	%
t _{DC}	Duty cycle ^[6] = $t_2 \div t_1$ (-2)	Measured at 1.4 V, F _{OUT} = 83.0 MHz, 15-pF load	40.0	50.0	60.0	%
t _{DC}	Duty cycle ^[6] = $t_2 \div t_1$ (-1, -2)	Measured at 1.4 V, F _{OUT} < 50 MHz, 15-pF load	45.0	50.0	55.0	%
t ₃	Rise time ^[6] (-1, -2)	Measured between 0.8 V and 2.0 V, 30-pF load	-	-	2.20	ns
t ₃	Rise time ^[6] (-1, -2)	Measured between 0.8 V and 2.0 V, 15-pF load	-	-	1.50	ns
t ₄	Fall time ^[6] (-1, -2)	Measured between 0.8 V and 2.0 V, 30-pF load	-	-	2.20	ns
t ₄	Fall time ^[6] (-1, -2)	Measured between 0.8 V and 2.0 V, 15 pF load	-	-	1.50	ns
t ₅	Output-to-output skew on same Bank (-1, -2) ^[6]	All outputs equally loaded	-	-	200	ps
	Output bank A to output bank B skew (-1)	All outputs equally loaded	-	-	200	ps
	Output bank A to output bank B skew (-2)	All outputs equally loaded	-	-	400	ps
t ₆	Skew, REF rising edge to FBK rising edge ^[6]	Measured at V _{DD} /2	-	0	±250	ps
t ₇	Device-to-device skew [6]	Measured at $V_{DD}/2$ on the FBK pins of devices	-	0	500	ps
tj	Cycle-to-cycle jitter ^[6] (-1)	Measured at 66.67 MHz, loaded outputs, 15-pF load	-	90	175	ps
		Measured at 66.67 MHz, loaded outputs, 30-pF load	-	-	200	ps
		Measured at 133.3 MHz, loaded outputs, 15-pF load	-	-	100	ps
tj	Cycle-to-cycle jitter ^[6] (-2)	Measured at 66.67 MHz, loaded outputs 30-pF load	-	-	400	ps
		Measured at 66.67 MHz, loaded outputs 15-pF load	-	-	375	ps
t _{LOCK}	PLL lock time ^[6]	Stable power supply, valid clocks presented on REF and FBK pins	_	-	1.0	ms

Notes

^{5.} All parameters are specified with loaded output.6. Parameter is guaranteed by design and characterization. Not 100% tested in production.

Operating Conditions

For CY2304SXI Industrial Temperature Devices

Parameter	Description	Min	Max	Unit
V _{DD}	Supply voltage	3.0	3.6	V
T _A	Operating temperature (ambient temperature)	-40	85	°C
CL	Load capacitance (below 100 MHz)	-	30	pF
	Load capacitance (from 100 MHz to 133 MHz)	-	15	pF
C _{IN}	Input capacitance	-	7	pF

Electrical Characteristics

For CY2304SXI Industrial Temperature Devices

Parameter	Description	Test Conditions	Min	Мах	Unit
V _{IL}	Input LOW voltage		_	0.8	V
V _{IH}	Input HIGH voltage		2.0	-	V
IIL	Input LOW current	V _{IN} = 0 V	-	50.0	μA
I _{IH}	Input HIGH current	$V_{IN} = V_{DD}$	-	100.0	μA
V _{OL}	Output LOW voltage [7]	I _{OL} = 8 mA (-1, -2)	_	0.4	V
V _{OH}	Output HIGH voltage [7]	I _{OH} = –8 mA (-1, -2)	2.4	_	V
I _{DD} (PD mode)	Power-down supply current	REF = 0 MHz	_	25.0	μA
I _{DD}	Supply current	Unloaded outputs, 100 MHz, Select inputs at V_{DD} or GND	_	45.0	mA
		Unloaded outputs, 66 MHz REF (-1, -2)	_	35.0	mA
		Unloaded outputs, 33 MHz REF (-1, -2)	_	20.0	mA

Switching Characteristics

for CY2304SXI Industrial Temperature Devices

Parameter [8]	Name	Test Conditions	Min	Тур	Max	Unit
t ₁	Output frequency	30-pF load, All devices	10	_	100	MHz
t ₁	Output frequency	15-pF load, All devices	10	-	133.3	MHz
t _{DC}	Duty cycle ^[9] = $t_2 \div t_1$ (-1, -2)	Measured at 1.4 V, F _{OUT} = 66.66 MHz, 30-pF load	40.0	50.0	60.0	%
t _{DC}	Duty cycle ^[9] = $t_2 \div t_1$ (-2)	Measured at 1.4 V, F _{OUT} = 83.0 MHz, 15-pF load	40.0	50.0	60.0	%
t _{DC}	Duty cycle ^[9] = $t_2 \div t_1$ (-1, -2)	Measured at 1.4 V, F _{OUT} < 50 MHz, 15-pF load	45.0	50.0	55.0	%
t ₃	Rise time ^[9] (-1, -2)	Measured between 0.8 V and 2.0 V, 30-pF load	-	-	2.50	ns
t ₃	Rise time ^[9] (-1, -2)	Measured between 0.8 V and 2.0 V, 15-pF load	-	-	1.50	ns
t ₄	Fall time ^[9] (-1, -2)	Measured between 0.8 V and 2.0 V, 30-pF load	-	-	2.50	ns
t ₄	Fall time ^[9] (-1, -2)	Measured between 0.8 V and 2.0 V, 15-pF load	-	-	1.50	ns
t ₅	Output-to-output skew on same bank (-1, -2) ^[9]	All outputs equally loaded	-	-	200	ps
	Output bank A to output bank B skew (-1)	All outputs equally loaded	-	-	200	ps
	Output bank A to output bank B skew (-2)	All outputs equally loaded	-	-	400	ps
t ₆	Skew, REF rising edge to FBK rising edge ^[9]	Measured at V _{DD} /2	-	0	±250	ps
t ₇	Device-to-device skew ^[9]	Measured at $V_{DD}/2$ on the FBK pins of devices	-	0	500	ps
tj	Cycle-to-cycle jitter ^[9] (-1)	Measured at 66.67 MHz, loaded outputs, 15-pF load	-	-	180	ps
		Measured at 66.67 MHz, loaded outputs, 30-pF load	-	-	200	ps
		Measured at 133.3 MHz, loaded outputs, 15-pF load	-	-	100	ps
tj	Cycle-to-cycle jitter ^[9] (-2)	Measured at 66.67 MHz, loaded outputs, 30-pF load	-	-	400	ps
		Measured at 66.67 MHz, loaded outputs, 15-pF load	-	-	380	ps
t _{LOCK}	PLL lock time ^[9]	Stable power supply, valid clocks presented on REF and FBK pins	-	-	1.0	ms

Notes

All parameters are specified with loaded output.
Parameter is guaranteed by design and characterization. Not 100% tested in production.

Switching Waveforms

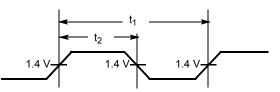


Figure 4. All Outputs Rise/Fall Time

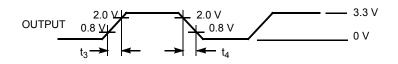


Figure 5. Output-Output Skew

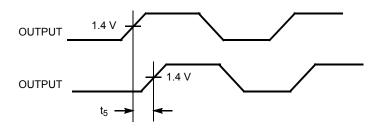


Figure 6. Input-Output Skew

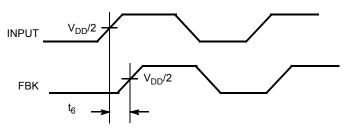


Figure 7. Device-Device Skew

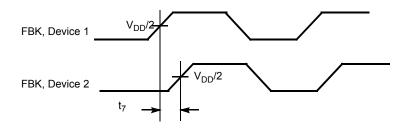
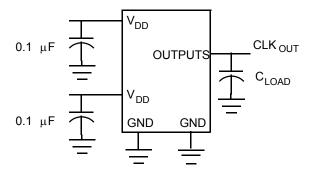
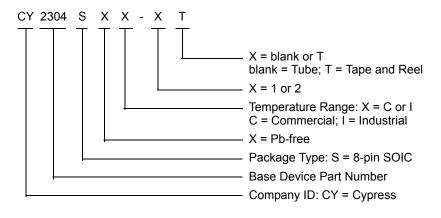
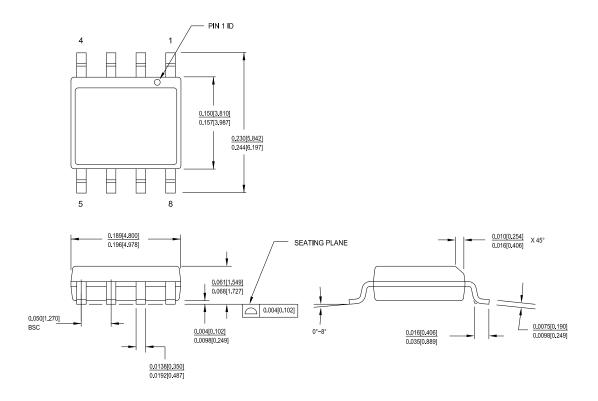



Figure 8. Test Circuit # 1


Test circuit for all parameters

Ordering Information

Ordering Code Package Type		Operating Range
Pb-free		
CY2304SXC-1	8-pin SOIC (150 Mils)	Commercial
CY2304SXC-1T	8-pin SOIC (150 Mils) – Tape and Reel	Commercial
CY2304SXI-1	8-pin SOIC (150 Mils)	Industrial
CY2304SXI-1T	8-pin SOIC (150 Mils) – Tape and Reel	Industrial
CY2304SXC-2	8-pin SOIC (150 Mils)	Commercial
CY2304SXC-2T	8-pin SOIC (150 Mils) – Tape and Reel	Commercial
CY2304SXI-2	8-pin SOIC (150 Mils)	Industrial
CY2304SXI-2T	8-pin SOIC (150 Mils) – Tape and Reel	Industrial


Ordering Code Definitions

Package Diagram

Figure 9. 8-pin SOIC (150 Mils) S0815/SZ815/SW815 Package Outline, 51-85066

51-85066 *F

Acronyms

Acronym	Description	
PLL	Phase Locked Loop	
SOIC	Small Outline Integrated Circuit	

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
MHz	megahertz	
μA	microampere	
mA	milliampere	
ms	millisecond	
ns	nanosecond	
pF	picofarad	
ps	picosecond	
V	volt	

Appendix: Silicon Errata for the Zero Delay Clock Buffers, CY2304

This section describes the errors, workaround solution and silicon design fixes for Cypress zero delay clock buffers belonging to the families CY2304. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Table 2. Part Numbers Affected

Part Number	Device Variants
CY2304SXC-1	All Variants
CY2304SXC-1T	All Variants
CY2304SXC-2	All Variants
CY2304SXC-2T	All Variants
CY2304SXI-1	All Variants
CY2304SXI-1T	All Variants
CY2304SXI-2	All Variants
CY2304SXI-2T	All Variants

CY2304 Errata Summary

Items	Part Number	Fix Status
Start up lock time issue [CY2304]	All	Silicon fixed. New silicon available from WW 10 of 2013

CY2303 Qualification Status of fixed silicon

Product Status: In production Qualification report last updated on 11/27/2012 http://www.cypress.com/?rID=72595

1. Start up lock time issue

Problem Definition

Output of CY2304 fails to locks within 1 ms upon power up (as per datasheet spec)

Parameters Affected

PLL lock time

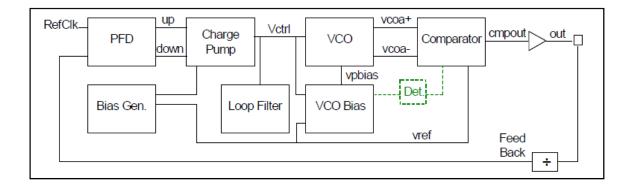
Trigger Condition(s)

Start up

Scope of Impact

It can impact the performance of system and its throughput

Workaround


Apply reference input (RefClk) before power up (V_{DD}). If RefClk is applied after power up, noise gets coupled on the output and propagates back to the PLL causing it to take higher time to acquire lock. If reference input is present during power up, noise will not propagate to the PLL and device will start up normally without problems.

Fix Status

This issue is due to design marginality. Two minor design modifications have been made to address this problem.

- a. Addition of VCO bias detector block as shown in the following figure keeps comparator power down till VCO bias is present and thereby eliminating the propagation of noise to feedback.
- b. Bias generator enhancement for successful initialization.

CY2304

Document History Page

Rev.	ECN	Orig. of Change	Submission Date	Description of Change
**	110512	SZV	12/11/01	Change from Spec number: 38-01010 to 38-07247
*A	112294	CKN	03/04/02	On Pin Configuration Diagram (p.1), swapped CLKA2 and CLKA1
*В	113934	CKN	05/01/02	Added Operating Conditions for CY2304SI-X Industrial Temperature Devices p. 4
*C	121851	RBI	12/14/02	Power up requirements added to Operating Conditions Information
*D	308436	RGL	01/26/05	Added Lead-free Devices
*E	2542331	AESA	09/18/08	Updated template. Added Note "Not recommended for new designs." Removed part number CY2304SI-2 and CY2304SI-2T. Changed Lead-Free to Pb-Free. Changed IDD (PD mode) from 12.0 to 25.0 μ A. Deleted Duty Cycle parameters for F _{OUT} < 50.0 MHz for commercial and indus trial devices.
*F	2673353	KVM / PYRS	03/13/09	Reverted IDD (PD mode) and Duty Cycle parameters back to the values in revision *D: Changed IDD (PD mode) from 25 to 12 μ A for commercial devices. Added Duty Cycle parameters for F _{OUT} < 50.0 MHz for commercial and industrial devices.
*G	2906571	KVM	04/07/10	Removed parts CY2304SC-1, CY2304SC-1T,CY2304SC-2,CY2304SC-2T,CY2304SI-1,CY2304SI-1T from the ordering information table. Updated Package Diagram.
*H	3072674	BASH	10/27/2010	Corrected part number in all table titles (pages 3 to 5) from CY2304SC-X and CY2304SI-X to CY2304SXC and CY2304SXI. Removed "except t_8 " from Figure 7
*	3162681	BASH	02/04/2011	Updated in new template.
*J	3204827	CXQ	03/24/2011	Added duty cycle spec for 83.0 MHz output condition.
*K	4018186	CINM	06/10/2013	Updated Package Diagram: spec 51-85066 – Changed revision from *D to *F.
				Added Appendix: Silicon Errata for the Zero Delay Clock Buffers, CY2304.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2001-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-07247 Rev. *K

Revised June 10, 2013

All products and company names mentioned in this document may be the trademarks of their respective holders.