

3チャンネル・デジタル・ アイソレータ

ADuM1300/ADuM1301

特長

低消費電力動作

5V動作:

0 ~2Mbpsでチャンネル当たり最大1.2mA 10Mbpsでチャンネル当たり最大3.5mA 90Mbpsでチャンネル当たり最大32mA 3V動作:

0~2Mbpsでチャンネル当たり最大0.8mA 10Mbpsでチャンネル当たり最大2.2mA 90Mbpsでチャンネル当たり最大20mA

双方向通信

3V/5Vレベル変換 高温動作:105℃

高速データレート: DC~100Mbps (NRZ)

高精度なタイミング特性: パルス幅歪み:最大2ns

チャンネル間マッチング:最大2ns 高コモン・モード過渡耐圧:25kV/ μ s以上

出力イネーブル機能

ワイドの16ピンSOICパッケージ、鉛フリー製品あり

安全性規格認定

UL認定:2500V rms、1分間のUL 1577規格に準拠 CSA component acceptance notice #5Aに準拠 VDE適合性認定

DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01

DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000

V_{IORM}=560Vピーク

アプリケーション

汎用のマルチチャンネル・アイソレーション SPI®インターフェース/データ・コンバータのアイソレーション RS-232/422/485トランシーバ 工業用フィールド・バスのアイソレーション

概要

ADuM130xは、アナログ・デバイセズのiCoupler®技術に基づく3 チャンネルのデジタル・アイソレータです。ADuM130xは高速 CMOS技術とモノリシック・トランス技術の組み合わせにより、フォトカプラ・デバイスなどの置換品より格段に優れた性能特性を提供します。

iCouplerデバイスはLEDとフォトダイオードを使用しないので、一般にフォトカプラに起因する設計の難しさを回避できます。一般的なフォトカプラにとっては、不確かな電流交換比や非直線的な伝達関数、温度や寿命の影響などが問題でしたが、iCouplerのシンプルなデジタル・インターフェースや安定した性能特性によって、こうした問題点は解消されています。これらのiCoupler製品では、外付けドライバやその他のディスクリート部品は不要です。さらに、iCouplerデバイスは信号データレートが同程度の場合、フォトカプラの消費電力の1/10~1/6で動作します。

ADuM130xアイソレータ・ファミリーは、独立した3つのアイソレーション・チャンネルをさまざまなチャンネル構成とデータレートで提供します(「オーダー・ガイド」参照)。ADuM130xの両モデルは、両側とも2.7~5.5Vの電源電圧で動作するため、低電圧システムと互換性を持ち、さらに絶縁バリアをまたぐ電圧変換機能も可能にします。さらに、ADuM130xはパルス幅歪みが小さく(CRWグレードで2ns未満)、かつチャンネル間マッチングが優れています(CRWグレードで2ns未満)。ADuM130xアイソレータは、他のフォトカプラとは異なり、入力ロジックに遷移がない場合およびパワーアップ/パワーダウン時に、DCを正確に維持する特許取得済みのリフレッシュ機能を持っています。

機能ブロック図

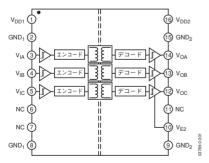


図1. ADuM1300の機能ブロック図

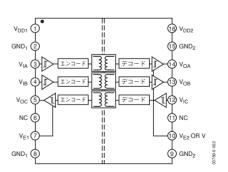


図2. ADuM1301の機能ブロック図

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって生じる第三者の特許や権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。本紙記載の商標および登録商標は、各社の所有に属します。

©2004 Analog Devices, Inc. All rights reserved.

REV.B

本 社/東京都港区海岸1-16-1 電話03(5402)8200 〒105-6891 ニューピア竹芝サウスタワービル

大阪営業所/大阪府大阪市淀川区宮原3-5-36 電話06(6350)6868(代) 〒532-0003 新大阪MTビル2号

目次

仕様3
電気的特性-5V動作時 ·····3
電気的特性—3V動作時 ······5
電気的特性—5V/3V動作時または3V/5V動作時7
パッケージ特性・・・・・・10
適用規格10
絶縁および安全性関連の仕様10
DIN EN 60747-5-2 (VDE 0884 Part 2)絶縁特性
推奨動作条件
##美動作来作
杷刈取人定恰 12 ESDに関する注意 12
ピン配置および機能の説明13
改訂履歴
5/04-Data Sheet Changed from Rev.A to Rev.B.
Changes to the Format·····Universal
Changes to the Format Universal Changes to the Features 1
Changes to the Features 1 Changes to Table 7 and Table 8 14
Changes to the Features 1 Changes to Table 7 and Table 8 14 Changes to Table 9 15
Changes to the Features

代表的な性能特性	14
アプリケーション情報	16
PCボードのレイアウト	16
伝搬遅延に関係するパラメータ	16
DC精度と磁界耐性	16
消費電力	17
外形寸法	18
オーダー・ガイド	18

仕様

電気的特性—5V動作時¹

4.5V \leq V_{DDI} \leq 5.5V、4.5V \leq V_{DD2} \leq 5.5V。特に指定のない限り、全推奨動作範囲に対してすべてのMin/Max仕様が適用されます。すべてのTyp値はT_A=25℃、V_{DDI}=V_{DD2}=5Vでの値です。

表1

衣!						
パラメータ	記号	Min	Тур	Max	単位	テスト条件
DC仕様						
チャンネル当たりの入力電源電流、静止時	$I_{DDI(Q)}$		0.50	0.53	mA	
チャンネル当たりの出力電源電流、静止時	$I_{DDO(Q)}$		0.19	0.21	mA	
ADuM1300の3チャンネル合計の電源電流2						
DC \sim 2Mbps						
V _{DDI} 電源電流	$I_{DD1(Q)}$		1.6	2.5	mA	DC~1MHzのロジック信号周波数
$ m V_{DD2}$ 電源電流	$I_{DD2(Q)}$		0.7	1.0	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)						
V _{DD1} 電源電流	$I_{DD1(10)}$		6.5	8.1	mA	5MHzのロジック信号周波数
$V_{ exttt{DD2}}$ 電源電流	$I_{DD2(10)}$		1.9	2.5	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)						
$\mathbf{V}_{ exttt{DDI}}$ 電源電流	$I_{DD1(100)}$		57	77	mA	50MHzのロジック信号周波数
$ m V_{ m DD2}$ 電源電流	$I_{DD2(100)}$		16	18	mA	50MHzのロジック信号周波数
ADuM1301の3チャンネル合計の電源電流 ²						
DC~2Mbps						
$V_{ ext{DDI}}$ 電源電流	$I_{DD1(Q)}$		1.3	2.1	mA	DC~1MHzのロジック信号周波数
$V_{ exttt{DD2}}$ 電源電流	$I_{DD2(Q)}$		1.0	1.4	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)						
$V_{ ext{DDI}}$ 電源電流	$I_{DD1(10)}$		5.0	6.2	mA	5MHzのロジック信号周波数
V_{DD2} 電源電流	$I_{DD2(10)}$		3.4	4.2	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)						
$V_{ ext{DDI}}$ 電源電流	$I_{DD1(100)}$		43	57	mA	50MHzのロジック信号周波数
V_{DD2} 電源電流	$I_{DD2(100)}$		29	37	mA	50MHzのロジック信号周波数
すべてのモデルに対して						
入力電流	I _{IA} , I _{IB} , I _{IC} ,	-10	+0.01	+10	μ A	$0 \leq V_{IA}, V_{IB}, V_{IC} \leq V_{DD1}$
	I _{E1} , I _{E2}					または V_{DD2} 、 $0 \le V_{E1}$
						$V_{E2} \leq V_{DD1} \ddagger t \forall V_{DD2}$
ロジック・ハイレベル入力の閾値	V _{IH} , V _{EH}	2.0			V	
ロジック・ローレベル入力の閾値	V _{IL} , V _{EL}			0.8	V	
ロジック・ハイレベル出力電圧	V _{OAH} , V _{OBH} ,	$V_{DD1}, V_{DD2}=0.1$			V	$I_{Ox} = -20 \mu A$, $V_{Ix} = V_{IxH}$
	V _{OCH}	V_{DD1} , V_{DD2} -0.4	4.8		V	$I_{Ox} = -4mA$, $V_{Ix} = V_{IxH}$
ロジック・ローレベル出力電圧	Voal, Vobl,		0.0	0.1	V	$I_{Ox}=20 \mu A$, $V_{Ix}=V_{IxL}$
	V _{OCL}		0.04	0.1	V	$I_{Ox}=400 \mu A, V_{Ix}=V_{IxL}$
			0.2	0.4	V	$I_{Ox}=4mA$, $V_{Ix}=V_{IxL}$
 スイッチング仕様						
ADuM130xARW						
最小パルス幅 ³	PW			1000	ns	C _L =15pF、CMOS信号レベル
最大データレート4	1 **	1		1000	Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t t	50	65	100	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	t _{PHL} , t _{PLH}	30	0.5	40	ns	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6				50	ns	$C_L=15pF$ 、CMOS信号レベル
チャンネル間マッチング7	t _{PSK}			50		C _L =15pF、CMOS信号レベル
ADuM130xBRW	t _{PSKCD/OD}			50	ns	CL - 19hi / CMO3 H 2 V //
ADUMITSOXBKW 最小パルス幅 ³	PW			100	ns	C _L =15pF、CMOS信号レベル
最大データレート4	1 44	10		100	Mbps	$C_L=15pF$ 、CMOS信号レベル $C_L=15pF$ 、CMOS信号レベル
伝搬遅延5	tnu t	20	32	50		C _L =15pF、CMOS信号レベル C _L =15pF、CMOS信号レベル
「MM程型 パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	t _{PHL} , t _{PLH}	20	34	3	ns ns	C _L =15pF、CMOS信号レベル C _L =15pF、CMOS信号レベル
/ 'ハケノハ 中田ユヒック、 LPLH-LPHL	1 1111			3	113	CL - 19hr CMO3 H 4 h 10h

パラメータ	記号	Min	Тур	Max	単位	テスト条件
 温度による変化			5		ps/℃	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			15	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t _{PSKCD}			3	ns	C _L =15pF、CMOS信号レベル
チャンネル間7						-
チャンネル間マッチング、反対方 向チャンネル間 ⁷	t_{PSKOD}			6	ns	C _L =15pF、CMOS信号レベル
ADuM130xCRW						
最小パルス幅3	PW		6.7	10	ns	C _L =15pF、CMOS信号レベル
最大データレート4		90	150		Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	18	27	32	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD		0.5	2	ns	C _L =15pF、CMOS信号レベル
温度による変化			3		ps/℃	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			10	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t _{PSKCD}			2	ns	C _L =15pF、CMOS信号レベル
チャンネル間7						
チャンネル間マッチング、反対方	t _{PSKOD}			5	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7						
すべてのモデルに対して						
出力ディスエーブル伝搬遅延	t _{PHZ} , t _{PLH}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ/ローレベルから						
ハイ・インピーダンスへ)						
出力イネーブル伝搬遅延	t _{PZH} , t _{PZL}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ・インピーダンスから						
ハイ/ローレベルへ)						
出力立上がり/立下がり時間	t_R/t_F		2.5		ns	C _L =15pF、CMOS信号レベル
(10~90%値)						
ロジック・ハイレベル出力でのコ	CM _H	25	35		kV/μs	$V_{Ix} = V_{DD1} = V_{DD2}, V_{CM} = 1000V$
モン・モード過渡耐圧8						過渡電圧振幅=800V
ロジック・ローレベル出力でのコ	CM _L	25	35		kV/μs	$V_{Ix} = 0V, V_{CM} = 1000V$
モン・モード過渡耐圧8						過渡電圧振幅=800V
リフレッシュ・レート	f _r		1.2		Mbps	
チャンネル当たりの入力ダイナ	$I_{DDI(D)}$		0.19		mA/Mbps	
ミック電源電流9						
チャンネル当たりの出力ダイナ	$I_{DDO(D)}$		0.05		mA/Mbps	
ミック電源電流9						

注

¹ すべての電圧はそれぞれのグラウンドを基準とします。

² 電源電流値は、同一データレートで動作する全3チャンネルに対する値です。出力電源電流値は、出力負荷なしの場合です。所定のデータレートで動作する個々のチャンネル動作に対応する電源電流は、20ページの「消費電力」の説明に従って計算することができます。無負荷および有負荷状態に対するデータレートの関数としてのチャンネル当たりの電源電流については、図6~8を参照してください。ADuM1300/ADuM1301チャンネル構成に対するデータレートの関数としてのI_{DD1}とI_{DD2}の合計電源電流については、図9~12を参照してください。

³ 最小パルス幅は、規定のパルス幅歪みが保証される最短のパルス幅です。

⁴ 最大データレートは、規定のパルス幅歪みが保証される最高速のデータレートです。

⁵ 伝搬遅延 t_{PRL} は、 V_{tr} 信号の立下がりエッジの50%レベルから V_{Ox} 信号の立下がりエッジの50%レベルまでを測定した値です。伝搬遅延 t_{PLH} は、 V_{tr} 信号の立上がりエッジの50%レベルから V_{Ox} 信号の立上がりエッジの50%レベルならを測定した値です。

⁶ teskは、trutまたはtrutにおけるワースト・ケースの差であり、推奨動作条件下で同一の動作温度、電源電圧、出力負荷で動作する複数のユニット間で測定されます。

⁷ 同方向チャンネル間マッチングは、絶縁バリアの同じ側に入力を持つ2つのチャンネル間の伝搬遅延の差の絶対値を表します。反対方向チャンネル間マッチングは、絶縁バリアの反対側に入力を持つ2 つのチャンネル間の伝搬遅延の差の絶対値を表します。

⁸ CM_H は、 $V_0 > 0.8V_{DD}$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。 CM_L は $V_0 < 0.8V$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。コモン・モード電圧スルーレートは、コモン・モード電圧の立上がりと立下がりの両エッジに適用されます。過渡電圧振幅は、コモン・モードを超える範囲を表します。

⁹ ダイナミック電源電流は、信号データレートをIMbps増やすのに必要な電源電流の増分を表します。無負荷および有負荷状態に対するチャンネル当たりの電源電流については、図6~8を参照してください。所与のデータレートに対するチャンネル当たりの電源電流の計算については、20ページの「消費電力」を参照してください。

電気的特性—3V動作時¹

 $2.7V \le V_{DD1} \le 3.6V$ 、 $2.7V \le V_{DD2} \le 3.6V$ 。特に指定のない限り、全推奨動作範囲に対してすべてのMin/Max仕様が適用されます。すべてのTyp値は $T_A = 25$ $^{\circ}$ 、 $V_{DD1} = V_{DD2} = 3.0V$ での値です。

表2

パラメータ	記号	Min	Тур	Max	単位	テスト条件
DC仕様						
チャンネル当たりの入力電源電流、静止時	$I_{DDI(Q)}$		0.26	0.31	mA	
チャンネル当たりの出力電源電流、静止時	$I_{DDO(Q)}$		0.11	0.14	mA	
ADuM1300の3チャンネル合計の電源電流2						
DC~2Mbps						
V _{DDI} 電源電流	$I_{DD1(Q)}$		0.9	1.7	mA	DC~1MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(Q)}$		0.4	0.7	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)	-DD2(Q)					
V _{DDI} 電源電流	I _{DD1(10)}		3.4	4.9	mA	5MHzのロジック信号周波数
V _{DD2} 電源電流	I _{DD2(10)}		1.1	1.6	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)	*DD2(10)			110		STATES TO STATES OF THE STATES
V _{DDI} 電源電流	$I_{DD1(100)}$		31	48	mA	50MHzのロジック信号周波数
V _{DD2} 電源電流	I _{DD2(100)}		8	13	mA	50MHzのロジック信号周波数
ADuM1301の3チャンネル合計の電源電流 ²	*DD2(100)		O	15	11111	Solving of the State of the Sta
DC~2Mbps						
V _{DDI} 電源電流	$I_{\mathrm{DD1(Q)}}$		0.7	1.4	mA	DC~1MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(Q)}$		0.6	0.9	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)	*DD2(Q)		0.0	0.7	1117.	De Hviller o o o o il Gold o o o o o o o o o o o o o o o o o o
V _{DDI} 電源電流	$I_{DD1(10)}$		2.6	3.7	mA	5MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(10)}$		1.8	2.5	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)	1DD2(10)		1.0	2.3	IIIA	JMHZVカロン ケノ 旧 牙/同伙妖
V _{DDI} 電源電流	_		24	26	A	50MHzのロジック信号周波数
V _{DD} 电你电流 V _{DD} 電源電流	I _{DD1(100)}		24 16	36 23	mA	50MHzのロジック信号周波数
VDD2电你电机 すべてのモデルに対して	$I_{DD2(100)}$		10	23	mA	30MHZのロクック信号同仮数
入力電流			+0.01	+10		
人刀电机	I _{IA} , I _{IB} , I _{IC} ,	-10	⊤0.01	⊤10	μ A	$0 \leq V_{IA}, V_{IB}, V_{IC} \leq V_{DD1}$
	I _{E1} , I _{E2}					$\sharp \mathcal{L} U_{DD2}, \ 0 \leq V_{E1}$
ロジック・ハイレベル入力の閾値	37 37	1.6			37	$V_{E2} \leq V_{DD1} \ddagger t t V_{DD2}$
ロジック・ハイレベル人力の閾値ロジック・ローレベル入力の閾値	V _{IH} , V _{EH}	1.6		0.4	V	
ロジック・ローレベル人力の閾値ロジック・ハイレベル出力電圧	V _{IL} , V _{EL}	77 77 01	2.0	0.4	V	I - 20 A W -W
ロンック・ハイレベル出力電圧	V _{OAH} , V _{OBH} ,	$V_{DD1}, V_{DD2} = 0.1$			V	$I_{\text{Ox}} = -20 \mu\text{A}, V_{\text{Ix}} = V_{\text{IxH}}$
ロジック・ローレベル出力電圧	V _{OCH}	V_{DD1} , $V_{DD2}=0.4$		0.1	V	$I_{Ox} = -4mA$, $V_{Ix} = V_{IxH}$
ロンック・ローレベル出力電圧	V _{OAL} , V _{OBL} ,		0.0	0.1	V	$I_{\text{Ox}} = 20 \mu \text{ A}, V_{\text{Ix}} = V_{\text{IxL}}$
	V _{OCL}		0.04	0.1	V	I_{Ox} =400 μ A, V_{Ix} = V_{IxL}
			0.2	0.4	V	$I_{Ox}=4mA$, $V_{Ix}=V_{IxL}$
 スイッチング仕様						
ADuM130xARW	DW			1000		C =15 F CMOSE Blood
最小パルス幅 ³	PW	1		1000	ns	C _L =15pF、CMOS信号レベル
最大データレート4		1	7.5	100	Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	50	75	100	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD			40	ns	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			50	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング7	t _{PSKCD/OD}			50	ns	C _L =15pF、CMOS信号レベル
ADuM130xBRW	DIV			100		G 15 F G 100 F F L AND
最小パルス幅3	PW	10		100	ns	C _L =15pF、CMOS信号レベル
最大データレート4		10	20		Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	20	38	50	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD		_	3	ns	C _L =15pF、CMOS信号レベル
温度による変化			5		ps/℃	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			26	ns	C _L =15pF、CMOS信号レベル

パラメータ	記号	Min	Тур	Max	単位	テスト条件
チャンネル間マッチング、同方向	t _{PSKCD}			3	ns	C _L =15pF、CMOS信号レベル
チャンネル間7						
チャンネル間マッチング、反対方	t _{PSKOD}			6	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7						
ADuM130xCRW						
最小パルス幅3	PW		6.7	10	ns	C _L =15pF、CMOS信号レベル
最大データレート4		90	150		Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	20	34	45	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD		0.5	2	ns	C _L =15pF、CMOS信号レベル
温度による変化			3		ps/℃	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			16	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t _{PSKCD}			2	ns	C _L =15pF、CMOS信号レベル
チャンネル間7						
チャンネル間マッチング、反対方	t _{PSKOD}			5	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7						
すべてのモデルに対して						
出力ディスエーブル伝搬遅延	t _{PHZ} , t _{PLH}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ/ローレベルから						
ハイ・インピーダンスへ)						
出力イネーブル伝搬遅延	t _{PZH} , t _{PZL}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ・インピーダンスから						
ハイ/ローレベルへ)						
出力立上がり/立下がり時間	t _R /t _F		3		ns	C _L =15pF、CMOS信号レベル
(10~90%値)						-
ロジック・ハイレベル出力でのコ	CM _H	25	35		kV/μs	$V_{Ix} = V_{DD1} = V_{DD2}, V_{CM} = 1000V$
モン・モード過渡耐圧8					,	過渡電圧振幅=800V
ロジック・ローレベル出力でのコ	CM _L	25	35		kV/μs	$V_{Ix} = 0V, V_{CM} = 1000V$
モン・モード過渡耐圧8					''	過渡電圧振幅=800V
リフレッシュ・レート	f _r		1.1		Mbps	
チャンネル当たりの入力ダイナ	$I_{DDI(D)}$		0.10		mA/Mbps	
ミック電源電流9					, ,,	
チャンネル当たりの出力ダイナ	$I_{DDO(D)}$		0.03		mA/Mbps	
ミック電源電流9	220(0)					

注

- 1 すべての電圧はそれぞれのグラウンドを基準とします。
- 2 電源電流値は、同一データレートで動作する全3チャンネルに対する値です。出力電源電流値は、出力負荷なしの場合です。所定のデータレートで動作する個々のチャンネル動作に対応する電源電流は、20ページの「消費電力」の説明に従って計算することができます。無負荷および有負荷状態に対するデータレートの関数としてのチャンネル当たりの電源電流については、図6~8を参照してください。ADuM1300/ADuM1301チャンネル構成に対するデータレートの関数としてのIpp.とIppの合計電源電流については、図9~12を参照してください。
- 3 最小パルス幅は、規定のパルス幅歪みが保証される最短のパルス幅です。
- 4 最大データレートは、規定のパルス幅歪みが保証される最高速のデータレートです。
- 5 伝搬運延trunは、V₁₆信号の立下がりエッジの50%レベルからV₀₆信号の立下がりエッジの50%レベルまでを測定した値です。伝搬遅延trunは、V₁₆信号の立上がりエッジの50%レベルからV₀₆信号の立上がりエッジの50%レベルならV₀₆信号の立上がりエッジの50%レベルまでを測定した値です。
- $6~t_{PSK}$ は、 t_{PLL} または t_{PLL} におけるワースト・ケースの差であり、推奨動作条件下で同一の動作温度、電源電圧、出力負荷で動作する複数のユニット間で測定されます。
- 7 同方向チャンネル間マッチングは、絶縁バリアの同じ側に入力を持つ2つのチャンネル間の伝搬遅延の差の絶対値を表します。反対方向チャンネル間マッチングは、絶縁バリアの反対側に入力を持つ2 つのチャンネル間の伝搬遅延の差の絶対値を表します。
- 8 CM_H は、 $V_0 > 0.8V_{DD}$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。 CM_L は $V_0 < 0.8V$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。コモン・モード電圧スルーレートは、コモン・モード電圧の立上がりと立下がりの両エッジに適用されます。過渡電圧振幅は、コモン・モードを超える範囲を表します。
- 9 ダイナミック電源電流は、信号データレートを1Mbps増やすのに必要な電源電流の増分を表します。無負荷および有負荷状態に対するチャンネル当たりの電源電流については、図6~8を参照してください。所与のデータレートに対するチャンネル当たりの電源電流の計算については、20ページの「消費電力」を参照してください。

6

電気的特性-5V/3V動作時または3V/5V動作時1

5V/3V動作: $4.5V \le V_{DD1} \le 5.5V$ 、 $2.7V \le V_{DD2} \le 3.6V$ 。3V/5V動作: $2.7V \le V_{DD1} \le 3.6V$ 、 $4.5V \le V_{DD2} \le 5.5V$ 。特に指定のない限り、全推奨動作範囲に対してすべてのMin/Max仕様が適用されます。すべてのTyp値は $T_A = 25$ C、 $V_{DD1} = 3.0V$ 、 $V_{DD2} = 5V$ 、または $V_{DD1} = 5V$ 、 $V_{DD2} = 3.0V$ での値です。

表3

パラメータ	記号	Min	Тур	Max	単位	テスト条件
DC仕様						
チャンネル当たりの入力電源電流、静止時	$I_{DDI(Q)}$					
5V/3V動作時			0.50	0.53	mA	
3V/5V動作時			0.26	0.31	mA	
チャンネル当たりの出力電源電流、静止時	$I_{DDO(Q)}$					
5V/3V動作時			0.11	0.14	mA	
3V/5V動作時			0.19	0.21	mA	
ADuM1300の3チャンネル合計の電源電流 ²						
DC~2Mbps						
$ m V_{DDI}$ 電源電流	$I_{DD1(Q)}$					
5V/3V動作時			1.6	2.5	mA	DC~1MHzのロジック信号周波数
3V/5V動作時			0.9	1.7	mA	DC~1MHzのロジック信号周波数
$ m V_{DD2}$ 電源電流	$I_{DD2(Q)}$					
5V/3V動作時			0.4	0.7	mA	DC~1MHzのロジック信号周波数
3V/5V動作時			0.7	1.0	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)						
$\mathbf{V}_{ ext{DDI}}$ 電源電流	$I_{DD1(10)}$					
5V/3V動作時			6.5	8.1	mA	5MHzのロジック信号周波数
3V/5V動作時			3.4	4.9	mA	5MHzのロジック信号周波数
$V_{ ext{DD2}}$ 電源電流	$I_{DD2(10)}$					
5V/3V動作時			1.1	1.6	mA	5MHzのロジック信号周波数
3V/5V動作時			1.9	2.5	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)						
V_{DDI} 電源電流	$I_{DD1(100)}$					
5V/3V動作時			57	77	mA	50MHzのロジック信号周波数
3V/5V動作時			31	48	mA	50MHzのロジック信号周波数
V_{DD2} 電源電流	$I_{DD2(100)}$					
5V/3V動作時			8	13	mA	50MHzのロジック信号周波数
3V/5V動作時			16	18	mA	50MHzのロジック信号周波数
ADuM1301の3チャンネル合計の電源電流 ²						
DC~2Mbps						
$V_{ exttt{DDI}}$ 電源電流	$I_{DD1(Q)}$					
5V/3V動作時			1.3	2.1	mA	DC~1MHzのロジック信号周波数
3V/5V動作時			0.7	1.4	mA	DC~1MHzのロジック信号周波数
$ m V_{DD2}$ 電源電流	$I_{DD2(Q)}$					
5V/3V動作時			0.6	0.9	mA	DC~1MHzのロジック信号周波数
3V/5V動作時			1.0	1.4	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)						
V _{DDI} 電源電流	$I_{DD1(10)}$					
5V/3V動作時			5.0	6.2	mA	5MHzのロジック信号周波数
3V/5V動作時			2.6	3.7	mA	5MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(10)}$					
5V/3V動作時			1.8	2.5	mA	5MHzのロジック信号周波数
3V/5V動作時			3.4	4.2	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)						
V _{DDI} 電源電流	$I_{DD1(100)}$		4-			
5V/3V動作時			43	57	mA	50MHzのロジック信号周波数

パラメータ	記号	Min	Тур	Max	単位	テスト条件
3V/5V動作時			24	36	mA	50MHzのロジック信号周波数
V_{DD2} 電源電流	$I_{DD2(100)}$					
5V/3V動作時	(,		16	23	mA	50MHzのロジック信号周波数
3V/5V動作時			29	37	mA	50MHzのロジック信号周波数
すべてのモデルに対して					1	Solving Solvin
入力電流	I _{IA} , I _{IB} , I _{IC} ,	-10	+0.01	+10	μΑ	$0 \leq V_{IA}, V_{IB}, V_{IC} \leq V_{DDI}$
	I _{E1} , I _{E2}	10	1 0.01	110	μΑ	$\begin{array}{ll} \text{$0 \le V_{IA}, \ V_{IB}, \ V_{IC} = V_{DDI}$} \\ \text{$\xi \gtrsim V_{DD1}, \ 0 \le V_{EI}$} \\ \text{$V_{E2} \le V_{DD1} \sharp \ \xi \ \xi V_{DD2}$} \end{array}$
ロジック・ハイレベル入力の閾値	V_{IH} , V_{EH}					
5V/3V動作時		2.0			V	
3V/5V動作時		1.6			V	
ロジック・ローレベル入力の閾値	V_{IL} , V_{EL}					
5V/3V動作時				0.8	V	
3V/5V動作時				0.4	V	
ロジック・ハイレベル出力電圧	VOAH, VOBH,	$V_{DD1}, V_{DD2} = 0.1$	$V_{\rm DD1}/V_{\rm DD2}$		V	$I_{Ox} = -20 \mu \text{ A}$
	V_{OCH}					$V_{Ix} = V_{IxH}$
		$V_{DD1}, V_{DD2} - 0.4$	$V_{DD1}/V_{DD2} = 0.2$	2	V	$I_{Ox} = -4mA$, $V_{Ix} = V_{IxH}$
ロジック・ローレベル出力電圧	VOALS VOBLS		0.0	0.1	V	$I_{\text{Ox}} = 20 \mu \text{ A}$
	V _{OCL}					$V_{Ix} = V_{IxL}$
	· OCL		0.04	0.1	V	$I_{\text{Ox}} = 400 \mu \text{A}, V_{\text{Ix}} = V_{\text{IxL}}$
			0.2	0.4	V	$I_{Ox} = 4mA$, $V_{Ix} = V_{IxL}$
 スイッチング仕様			0.2	0.4	V	10x - 4mA, V _{IX} - V _{IXL}
ADuM130xARW						
ADulvi 130xAK W 最小パルス幅 ³	DW			1000		C =15=E CMOS信号LICTL
	PW			1000	ns	C _L =15pF、CMOS信号レベル
最大データレート4		1			Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t_{PHL} , t_{PLH}	50	70	100	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} - t _{PHL} 5	PWD			40	ns	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t_{PSK}			50	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチングフ	$t_{PSKCD/OD}$			50	ns	C _L =15pF、CMOS信号レベル
ADuM130xBRW						
最小パルス幅³	PW			100	ns	C _L =15pF,CMOS信号レベル
最大データレート4		10			Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t_{PHL} , t_{PLH}	15	35	50	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD			3	ns	C _L =15pF、CMOS信号レベル
温度による変化			5		ps/℃	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t_{PSK}			6	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t _{PSKCD}			3	ns	C _L =15pF、CMOS信号レベル
チャンネル間 ⁷	Tones					
チャンネル間マッチング、反対方	t _{PSKOD}			22	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7	4 SKOD				110	CE 10pt (Chicola)
ADuM130xCRW						
最小パルス幅 ³	PW		6.7	10	ns	C _L =15pF、CMOS信号レベル
最大データレート4	1 11	90	150	10	Mbps	C _L =15pF、CMOS信号レベル C _L =15pF、CMOS信号レベル
伝搬遅延5	t t	20	30	40	1	C _L =15pF、CMOS信号レベル C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} ーt _{PHL} ⁵	t_{PHL} , t_{PLH} PWD	20	0.5	2	ns	$C_L=15pF$ 、CMOS信号レベル $C_L=15pF$ 、CMOS信号レベル
	FWD			2	ns	
温度による変化			3		ps/°C	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t_{PSK}			14	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t_{PSKCD}			2	ns	C _L =15pF、CMOS信号レベル
チャンネル間7						
チャンネル間マッチング、反対方	t_{PSKOD}			5	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7						
すべてのモデルに対して						
出力ディスエーブル伝搬遅延	t_{PHZ} , t_{PLH}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ/ローレベルから						
ハイ・インピーダンスへ)						
出力イネーブル伝搬遅延	t _{PZH} , t _{PZL}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ・インピーダンスから						1
ハイ/ローレベルへ)						
カイ/ローレベルへ) 出力立上がり/立下がり時間	$t_{ m R}/t_{ m f}$					C _L =15pF、CMOS信号レベル

8

パラメータ	記号	Min	Тур	Max	単位	テスト条件
5V/3V動作時			3.0		ns	
3V/5V動作時			2.5		ns	
ロジック・ハイレベル出力でのコ モン・モード過渡耐圧8	CM _H	25	35		kV/μs	V _{Ix} =V _{DD1} =V _{DD2} 、V _{CM} =1000V 過渡電圧振幅=800V
ロジック・ローレベル出力でのコ モン・モード過渡耐圧 ⁸	CM _L	25	35		kV/μs	V _{Ix} =0V、V _{CM} =1000V 過渡電圧振幅=800V
リフレッシュ・レート	f _r					
5V/3V動作時			1.2		Mbps	
3V/5V動作時			1.1		Mbps	
チャンネル当たりの入力ダイナ ミック電源電流 ⁹	$I_{DDI(D)}$					
5V/3V動作時			0.19		mA/Mbps	
3V/5V動作時			0.10		mA/Mbps	
チャンネル当たりの出力ダイナ	$I_{DDI(D)}$					
ミック電源電流9						
5V/3V動作時			0.03		mA/Mbps	
3V/5V動作時			0.05		mA/Mbps	

注

- 1 すべての電圧はそれぞれのグラウンドを基準とします。
- 2 電源電流値は、同一データレートで動作する全3チャンネルに対する値です。出力電源電流値は、出力負荷なしの場合です。所定のデータレートで動作する個々のチャンネル動作に対応する電源電流は、20ページの「消費電力」の説明に従って計算することができます。無負荷および有負荷状態に対するデータレートの関数としてのチャンネル当たりの電源電流については、図6~8を参照してください。ADuM1300/ADuM1301チャンネル構成に対するデータレートの関数としてのI_{DD1}とI_{DD2}の合計電源電流については、図9~12を参照してください。
- 3 最小パルス幅は、規定のパルス幅歪みが保証される最短のパルス幅です。
- 4 最大データレートは、規定のパルス幅歪みが保証される最高速のデータレートです。
- 5 伝搬遅延 t_{PRL} は、 V_{L} 信号の立下がりエッジの50%レベルから V_{Ox} 信号の立下がりエッジの50%レベルまでを測定した値です。伝搬遅延 t_{PLH} は、 V_{L} 信号の立上がりエッジの50%レベルから V_{Ox} 信号の立上がりエッジの50%レベルならを測定した値です。
- 6 teskは、trutまたはtrutにおけるワースト・ケースの差であり、推奨動作条件下で同一の動作温度、電源電圧、出力負荷で動作する複数のユニット間で測定されます。
- 7 同方向チャンネル間マッチングは、絶縁バリアの同じ側に入力を持つ2つのチャンネル間の伝搬遅延の差の絶対値を表します。反対方向チャンネル間マッチングは、絶縁バリアの反対側に入力を持つ2 つのチャンネル間の伝搬遅延の差の絶対値を表します。
- 8 $CM_{\rm H}$ は、 $V_{\rm O} > 0.8V_{\rm DD2}$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。 $CM_{\rm L}$ は $V_{\rm O} < 0.8V$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。コモン・モード電圧スルーレートは、コモン・モード電圧の立上がりと立下がりの両エッジに適用されます。過渡電圧振幅は、コモン・モードを超える範囲を表します。
- 9 ダイナミック電源電流は、信号データレートを1Mbps増やすのに必要な電源電流の増分を表します。無負荷および有負荷状態に対するチャンネル当たりの電源電流については、図6~8を参照してください。所与のデータレートに対するチャンネル当たりの電源電流の計算については、20ページの「消費電力」を参照してください。

パッケージ特性

夷4

パラメータ	記号	Min	Тур	Max	単位	テスト条件
抵抗(入力-出力)1	R _{I-O}		1012		Ω	
容量(入力-出力)」	C _{I-O}		1.7		pF	f=1MHz
入力容量2	C _I		4.0		pF	
ICジャンクション-ケース間熱抵抗、サイド1	θ _{JCI}		33		°C/W	パッケージ下側の中央に熱電対 を配置
ICジャンクション-ケース間熱抵抗、サイド2	θ JCO		28		°C/W	

注

2 入力容量は任意の入力データ・ピンとグラウンド間で測定。

適用規格

ADuM130xは表5に示す機関から認定取得済みです。

表5

UL	CSA	VDE
1577部品認定プログラムによる認定」	「CSA Component Acceptance Notice #5A」 による認定	DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01による認定 ²
2500V rms絶縁電圧での二重絶縁	400V rmsの最大動作電圧による CSA 60950-1-03およびIEC 60950-1に	560Vピークによる基本絶縁
	準拠した強化絶縁	DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01、 DIN EN 60950 (VDE 0805): 2001-12に準拠。 560Vピーク、EN 60950: 2000強化絶縁
File E214100	File 205078	File 2471900-4880-0001

注

絶縁および安全性関連の仕様

表6

パラメータ	記号	値	単位	条件
定格絶縁電圧		2500	Vrms	1分間継続
最小外部空間距離(クリアランス)	L(I01)	最小8.40	mm	入力ピンから出力ピンまでの空間最短距離を
最小外部沿面距離 (クリページ)	L(I02)	最小8.10	mm	測定 入力ピンから出力ピンまでのボディ表面に 沿う最短パスを測定
最小内部空間距離(内部クリアランス)		最小0.017	mm	絶縁体を通過する絶縁距離
耐トラッキング性 (トラッキング指数)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
絶縁グループ		IIIa		材料グループ(DIN VDE 0110、1/89、Table 1)

¹ UL 1577に従い、ADuM130xの各モデルに3000V ms以上の絶縁テスト電圧を1秒間加えたテストで保証されています (リーク電流検出の規定値=5 μ A)。

² DIN EN 60747-5-2に従い、ADuM130xの各モデルに1050Vピーク以上の絶縁テスト電圧を1秒間加えたテストで保証されています(部分放電の検出規定値=5pC)。「*」マーク付のブランドは、DIN EN 60747-5-2認定品を表します。

DIN EN 60747-5-2 (VDE 0884 Part 2)絶縁特性

表フ

説明	記号	特性	単位
DIN VDE 0110による絶縁分類			
定格メイン電圧≦150V rmsの場合		I-IV	
定格メイン電圧≦300V rmsの場合		I-III	
定格メイン電圧≦400V rmsの場合		I-II	
環境による分類		40/105/21	
汚染度(DINVDE 0110、Table I)		2	
最大動作絶縁電圧	V _{IORM}	560	Vピーク
入力-出力間テスト電圧、メソッドb1	V_{PR}	1050	Vピーク
V _{IORM} ×1.875=V _{PR} 、100%の出荷テスト、			
t _m =1秒、部分放電<5pC			
入力-出力間テスト電圧、メソッドa	V_{PR}		
環境テスト・サブグループ1の後			
$V_{IORM} \times 1.6 = V_{PR}$ 、 $t_m = 60$ 秒、部分放電<5pC		896	Vピーク
入力および/または安全性テスト・サブグループ2/3の後		672	Vピーク
V _{IORM} ×1.2=V _{PR} 、t _m =60秒、部分放電<5pC			
最大許容過電圧(過渡過電圧、t _{TR} =10秒)	V_{TR}	4000	Vピーク
安全性限界值			
(故障時に許容できる最大値、図3の温度ディレーティング・カーブも参照)			
ケース温度	T_{S}	150	$^{\circ}$ C
サイド1 (ピン1~8) 電流	I_{S1}	265	mA
サイド2 (ピン9~16) 電流	I_{S2}	335	mA
T_s 、 V_{IO} =500 V での絶縁抵抗	R _S	>109	Ω

このアイソレータは、安全性限界値データ以内での基本絶縁用です。安全性データは、保護回路を使って遵守してください。

パッケージ表面の「*」マークは、560Vピーク動作電圧に対してDIN EN 60747-5-2認定済みであることを表示します。

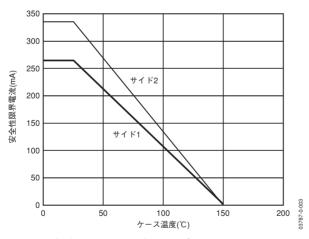


図3. 温度ディレーティング・カーブ、DIN EN 60747-5-2に よるケース温度に対する安全性限界電流の依存性

推奨動作条件

表8

パラメータ	記号	Min	Max	単位
動作温度	T _A	-40	+105	$^{\circ}$
電源電圧」	V_{DD1} , V_{DD2}	2.7	5.5	V
入力信号の立上がり			1.0	ms
および立下がり時間				

注

¹ すべての電圧はそれぞれのグラウンドを基準とします。外部磁界耐性については、16ページの「DC精度と磁界耐性」を参照してください。

絶対最大定格

表9

パラメータ	記号	Min	Max	単位
保存温度	T_{ST}	-65	+150	\mathbb{C}
動作時周囲温度	T _A	-40	+105	\mathbb{C}
電源電圧」	$V_{\rm DD1}$, $V_{\rm DD2}$	-0.5	+7.0	V
入力電圧1、2	VIAN VIBN VICN VEIN VE2	-0.5	$V_{DDI} + 0.5$	V
出力電圧1、2	Voas Vobs Voc	-0.5	$V_{DDO} + 0.5$	V
ピンの平均出力電流3				
サイド1 (ピン1~8)	I_{O1}	-23	+23	mA
サイド2(ピン9~16)	I_{O2}	-30	+30	mA
コモン・モード過渡電圧4		-100	+100	kV/μs

注

- 1 すべての電圧はそれぞれのグラウンドを基準とします。
- 2 V_{DDI} と V_{DDO} はそれぞれ、各チャンネルの入力側と出力側の電源電圧を表します。「PCボードのレイアウト」を参照してください。
- 3 種々の温度に対する最大定格電流値は図3を参照してください。
- 4 絶縁パリアを超えるコモン・モード過渡電圧を表します。絶対最大定格を超えるコモン・モード過渡電圧を加えると、ラッチアップまたは恒久的損傷が生じることがあります。

上記の絶対最大定格を超えるストレスを加えると、デバイスに恒久的な損傷を与えることがあります。この規定はストレス定格の規定のみを指定するものであり、この仕様の動作セクションに記載する規定値以上でのデバイス動作を定めたものではありません。長時間デバイスを絶対最大定格状態に置くと、デバイスの信頼性に影響を与えることがあります。特に指定のない限り、周囲温度は25℃です。

注意

ESD (静電放電) の影響を受けやすいデバイスです。人体や試験機器には4,000Vもの高圧の静電気が容易に蓄積され、検知されないまま放電されることがあります。本製品は当社独自のESD保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、回復不能の損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。

表10. 真理値表(正論理)

V _{IX} 入力¹	V _{EX} 入力 ²	V _{DDI} 状態 ¹	V _{DDO} 状態 ¹	Vox出力 ¹	注
Н	HまたはNC	電源オン	電源オン	Н	
L X	HまたはNC L	電源オン電源オン	電源オン電源オン	L Z	
X X	HまたはNC	電源オフ 電源オフ	電源オン電源オン	H Z	出力はV _{DDI} 電源回復から1μs以内に入力状態に戻ります。
X	X	電源オン	電源オフ	不定	V _{EX} 状態がHまたはNCの場合、出力はV _{DDO} 電源回復から 1μs以内に入力状態に戻ります。V _{EX} 状態がLの場合、出力
					は V_{DDO} 電源回復から $8ns$ 以内にハイ・インピーダンス状態に戻ります。

注

12

¹ V_{IX} と V_{OX} はそれぞれ、チャンネル(A、B、C)の入力信号と出力信号を表します。 V_{EX} は、 V_{OX} 出力と同じ側の出力イネーブル信号を表します。 V_{DDI} と V_{DDOI} と V_{DDOI} はそれぞれ、各チャンネルの入力側と出力側の電源電圧を表します。

² ノイズの多い環境では、 V_{ex} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。

ピン配置および機能の説明

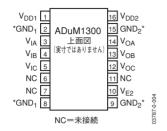


図4. ADuM1300のピン配置

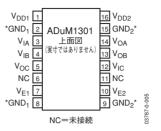


図5. ADuM1301のピン配置

*ビン2と8は内部で接続されています。両ピンはGND₁に接続することを推奨します。ピン9と15は内部で接続されています。両ピンはGND₂に接続することを推奨します。出力を常にイネーブルしておく場合には、ADuM1300の出力イネーブル (ピン10) を開放状態にしておくことができます。出力を常にイネーブルしておく場合には、ADuM1301の出力イネーブル (ピン7と10) を開放状態にしておくことができます。ノイズの多い環境では、ピン7 (ADuM1301の場合) とピン10 (両モデル) を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。

表11. ADuM1300ピン機能の説明

2 X 1 1.	ADUIVI	1300とプ俄形の武明
ピン番号	記号	機能
1	V_{DD1}	アイソレータのサイド1の電源電圧、2.7~
		5.5V _o
2	GND_1	グラウンド1。アイソレータのサイド1のグラ
		ウンド基準。
3	V_{IA}	ロジック入力A
4	V_{IB}	ロジック入力B
5	V_{IC}	ロジック入力C
6	NC	未接続
7	NC	未接続
8	GND_1	グラウンド1。アイソレータのサイド1のグラ
		ウンド基準。
9	GND_2	グラウンド2。アイソレータのサイド2のグラ
		ウンド基準。
10	V_{E2}	出力イネーブル2。アクティブ・ハイレベルの
		ロジック入力。V _{E2} がハイレベルまたは開放の
		とき、Voa、Vob、Vocの各出力がイネーブル
		\mid になります。 V_{E2} がローレベルのとき、 V_{OA} 、
		V _{OB} 、V _{OC} の各出力がディスエーブルになりま
		す。ノイズの多い環境では、V _{E2} を外部のロジ
		ック・ハイレベルまたはローレベルに接続す
		ることを推奨します。
11	NC	未接続
12	V_{OC}	ロジック出力C
13	V_{OB}	ロジック出力B
14	V_{OA}	ロジック出力A
15	GND_2	グラウンド2。アイソレータのサイド2のグラ
		ウンド基準。
16	V_{DD2}	アイソレータのサイド2の電源電圧、2.7~
		5.5V _o

表12. ADuM1301ピン機能の説明

ビン番号 機能 1 VDDI アイソレータのサイド1の電源電圧、2.7~5.5V。 2 GND1 グラウンド1。アイソレータのサイド1のグラウンド基準 3 VIA ロジック入力A 4 VIB ロジック入力B 5 VOC 未接続 7 VEI 出力イネーブル1。アクティブ・ハイレベルのロジック入力。VEIがハイレベルまたは開放のとき、Vocがディスエーブルになります。ノイズの多い環境では、VEIを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。クラウンド基準。クロジック・ハイレベルまたはローレベルに接続することを推奨します。クンド基準。 9 GND2 グラウンド2。アイソレータのサイド1のグラウンド基準。クロジック入力。VEIがハイレベルまたは開放のとき、VOAとVOBの各出力がイネーブルになります。VEIがローレベルのとき、VOAとVOBの各出力がディスエーブルになります。ノイズの多い環境では、VEIを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。未接続 11 NC 未接続 12 VIC ロジック入力C 13 VOB ロジック出力B 14 VOA グラウンド2。アイソレータのサイド2のグラウンド基準。	22 1 2.	ADUIVI	
2 GND ₁ グラウンド1。アイソレータのサイド1のグラウンド基準 3 V _{IA} ロジック入力A 4 V _{IB} ロジック入力B 5 V _{OC} ロジック入力B 6 NC 未接続 7 V _{EI} 出力イネーブル1。アクティブ・ハイレベルのロジック入力。V _{EI} がハイレベルまたは開放のとき、V _{OC} がディスエーブルになります。V _{FI} がローレベルのとき、V _{OC} がディスエーブルになります。フイズの多い環境では、V _{EI} を外部のロジック・ハイレベルに接続することを推奨します。 8 GND ₁ グラウンド1。アイソレータのサイド2のグラウンド基準。 9 GND ₂ グラウンド2。アイソレータのサイド2のグラウンド基準。 10 V _{E2} 出力イネーブル2。アクティブ・ハイレベルのロジック入力。V _{E2} がローレベルのとき、V _{OA} とV _{OB} の各出力がイネーブルになります。V _{E2} がローレベルのとき、V _{OA} とV _{OB} の各出力がディスエーブルになります。ノイズの多い環境では、V _{E2} を外部のロジック・ハイレベルまではローレベルに接続することを推奨します。未接続 11 NC 未接続 12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND ₂ グラウンド2。アイソレータのサイド2のグラ	ピン番号	記号	機能
2 GND ₁ グラウンド1。アイソレータのサイド1のグラウンド基準 3 V _{IA} ロジック入力A 4 V _{IB} ロジック入力B 5 V _{OC} ロジック出力C 6 NC 未接続 7 V _{EI} 出力イネーブル1。アクティブ・ハイレベルのロジック入力。V _{EI} がハイレベルまたは開放のとき、Vocがディスエーブルになります。ノイズの多い環境では、V _{EI} を外部のロジック・ハイレベルに接続することを推奨します。 8 GND ₁ グラウンド1。アイソレータのサイド2のグラウンド基準。 9 GND ₂ グラウンド2。アイソレータのサイド2のグラウンド基準。 10 V _{E2} 出力イネーブル2。アクティブ・ハイレベルのとき、V _{OA} とV _{OB} の各出力がイネーブルになります。ノイズルのとき、V _{OA} とV _{OB} の各出力がイネーブルになります。ノイズルンスルとV _{OB} の各出力がディスエーブルになります。ノイズの多い環境では、V _{E2} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND ₂ グラウンド2。アイソレータのサイド2のグラ	1	V_{DD1}	アイソレータのサイド1の電源電圧、2.7~
3 VIA ロジック入力A 4 VIB ロジック入力B 5 Voc ロジック出力C 6 NC 未接続 7 VEI 出力イネーブル1。アクティブ・ハイレベルのロジック入力。VEIがハイレベルまたは開放のとき、Voc出力がイネーブルになります。VEIがローレベルのとき、Vocがディスエーブルになります。ノイズの多い環境では、VEIを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 8 GND1 グラウンド1。アイソレータのサイド1のグラウンド基準。 9 GND2 グラウンド2。アイソレータのサイド2のグラウンド基準。 10 VE2 出力イネーブル2。アクティブ・ハイレベルのロジックスカのVE2がハイレベルまたは開放のとき、VOAとVOBの各出力がイネーブルになります。VVAとVOBの各出力がディスエーブルになります。ノイズの多い環境では、VE2を外部のロジック・ハイレベルを対象ではローレベルに接続することを推奨します。 11 NC 未接続 12 VIC ロジック入力C 13 VOB ロジック出力B 14 VOA ロジック出力A 15 GND2 グラウンド2。アイソレータのサイド2のグラ			5.5V _o
3 VIA ロジック入力A 4 VIB ロジック入力B 5 Voc ロジック出力C 6 NC 未接続 7 VEI 出力イネーブル1。アクティブ・ハイレベルのロジック入力。VEIがハイレベルまたは開放のとき、Voc出力がイネーブルになります。VEIがローレベルになります。ノイズの多い環境では、VEIを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 8 GND1 グラウンド1。アイソレータのサイド1のグラウンド基準。 9 GND2 グラウンド2。アイソレータのサイド2のグラウンド基準。 10 VE2 出力イネーブル2。アクティブ・ハイレベルのロジック入力。VE2がハイレベルまたは開放のとき、VOAとVOBの各出力がイネーブルになります。VVADとVOBの各出力がディスエーブルになります。ノイズの多い環境では、VE2を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 VIC ロジック入力C 13 VOB ロジック出力B 14 VOA ロジック出力A 15 GND2 グラウンド2。アイソレータのサイド2のグラ	2	GND_1	
4 V _{IB} ロジック入力B 5 V _{OC} ロジック出力C 6 NC 未接続 7 V _{EI} 出力イネーブル1。アクティブ・ハイレベルのロジック入力。V _{EI} がハイレベルまたは開放のとき、V _{OC} 出力がイネーブルになります。V _{EI} がローレベルのとき、V _{OC} がディスエーブルになります。ノイズの多い環境では、V _{EI} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 8 GND1 グラウンド1。アイソレータのサイド1のグラウンド基準。 9 GND2 グラウンド2。アイソレータのサイド2のグラウンド基準。 10 V _{E2} 出力イネーブル2。アクティブ・ハイレベルのロジック入力。V _{E2} がハイレベルまたは開放のとき、V _{OA} とV _{OB} の各出力がイネーブルになります。V _{CA} とV _{OB} の各出力がイネーブルになります。V _{CA} とV _{OB} の各出力がディスエーブルになります。ノイズの多い環境では、V _{E2} を外部のロジック・ハイイベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND2 グラウンド2。アイソレータのサイド2のグラ			
5 Voc NC ロジック出力C 未接続 7 VeI 出力イネーブル1。アクティブ・ハイレベルのロジック入力。VeIがハイレベルまたは開放のとき、Voc出力がイネーブルになります。VeIがローレベルのとき、Vocがディスエーブルになります。ノイズの多い環境では、VeIを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 8 GND1 グラウンド1。アイソレータのサイド1のグラウンド基準。 9 GND2 グラウンド2。アイソレータのサイド2のグラウンド基準。 10 Ve2 出力イネーブル2。アクティブ・ハイレベルのロジック入力。Ve2がハイレベルまたは開放のとき、VoAとVoBの各出力がイネーブルになります。ノイズの多い環境では、Ve2を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 Vic ロジック入力C 13 VoB ロジック出力B 14 VoA グラウンド2。アイソレータのサイド2のグラ			
6 NC 未接続 7 VEI 出力イネーブル1。アクティブ・ハイレベルのロジック入力。VEIがハイレベルまたは開放のとき、Voc出力がイネーブルになります。VEIがローレベルのとき、Vocがディスエーブルになります。ノイズの多い環境では、VEIを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 8 GND1 グラウンド1。アイソレータのサイド1のグラウンド基準。 9 GND2 グラウンド2。アイソレータのサイド2のグラウンド基準。 10 VE2 出力イネーブル2。アクティブ・ハイレベルのロジック入力。VE2がハイレベルまたは開放のとき、VOAとVOBの各出力がイネーブルになります。アイズの多い環境では、VE2を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 VIC ロジック入力C 13 VOB ロジック出力B 14 VOA グラウンド2。アイソレータのサイド2のグラ			
 Vei 出力イネーブル1。アクティブ・ハイレベルのロジック入力。Veiがハイレベルまたは開放のとき、Voc出力がイネーブルになります。Veiがローレベルのとき、Vocがディスエーブルになります。ノイズの多い環境では、Veiを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 GND1 グラウンド1。アイソレータのサイド1のグラウンド基準。 GND2 グラウンド2。アイソレータのサイド2のグラウンド基準。出力イネーブル2。アクティブ・ハイレベルのロジック入力。Veiがハイレベルまたは開放のとき、VoaとVoBの各出力がイネーブルになります。Veiがローレベルのとき、VoaとVoBの各出力がディスエーブルになります。ノイズの多い環境では、Veiを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。未接続ロジック入力Cロジック入力Cロジック出力BUのB NC 未接続ロージック入力Cロジック出力BUのD2 グラウンド2。アイソレータのサイド2のグラ 			
ロジック入力。V _{EI} がハイレベルまたは開放のとき、Voc出力がイネーブルになります。V _{EI} がローレベルのとき、Vocがディスエーブルになります。ノイズの多い環境では、V _{EI} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。			
とき、Voc出力がイネーブルになります。Veiがローレベルのとき、Vocがディスエーブルになります。ノイズの多い環境では、Veiを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 8 GND1 グラウンド1。アイソレータのサイド1のグラウンド基準。 9 GND2 グラウンド2。アイソレータのサイド2のグラウンド基準。出力イネーブル2。アクティブ・ハイレベルのロジック入力。Vezがハイレベルまたは開放のとき、VoaとVoBの各出力がイネーブルになります。Vezがローレベルのとき、VoaとVoBの各出力がディスエーブルになります。ノイズの多い環境では、Vezを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 Vic ロジック入力C 13 Voa GND2 グラウンド2。アイソレータのサイド2のグラ	7	V_{El}	
がローレベルのとき、Vocがディスエーブルになります。ノイズの多い環境では、VEIを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。			
なります。ノイズの多い環境では、V _{EI} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。			とさ、Voc出力かイネーブルになります。Vel
8 GND ₁ のロジック・ハイレベルまたはローレベルに接続することを推奨します。 9 GND ₂ グラウンド1。アイソレータのサイド1のグラウンド基準。 10 V _{E2} 出力イネーブル2。アクティブ・ハイレベルのロジック入力。V _{E2} がハイレベルまたは開放のとき、V _{OA} とV _{OB} の各出力がイネーブルになります。V _{E2} がローレベルのとき、V _{OA} とV _{OB} の各出力がディスエーブルになります。ノイズの多い環境では、V _{E2} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 V _{IC} ロジック入力C ロジック出力B ロジック出力A GND ₂ グラウンド2。アイソレータのサイド2のグラ			
接続することを推奨します。			
8 GND ₁ グラウンド1。アイソレータのサイド1のグラウンド基準。 9 GND ₂ グラウンド2。アイソレータのサイド2のグラウンド基準。 10 V _{E2} 出力イネーブル2。アクティブ・ハイレベルのロジック入力。V _{E2} がハイレベルまたは開放のとき、V _{OA} とV _{OB} の各出力がイネーブルになります。V _{E2} がローレベルのとき、V _{OA} とV _{OB} の各出力がディスエーブルになります。ノイズの多い環境では、V _{E2} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 V _{IC} ロジック入力C ロジック出力B ロジック出力A GND ₂ グラウンド2。アイソレータのサイド2のグラ			, , , , , , , , , , , , , , , , , , , ,
9 GND ₂ ヴラウンド2。アイソレータのサイド2のグラウンド基準。 10 V _{E2} 出力イネーブル2。アクティブ・ハイレベルのロジック入力。V _{E2} がハイレベルまたは開放のとき、V _{OA} とV _{OB} の各出力がイネーブルになります。V _{E2} がローレベルのとき、V _{OA} とV _{OB} の各出力がディスエーブルになります。ノイズの多い環境では、V _{E2} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 V _{IC} ロジック入力C ロジック出力B ロジック出力A GND ₂ グラウンド2。アイソレータのサイド2のグラ	8	GND.	
9 GND2 グラウンド2。アイソレータのサイド2のグラウンド基準。 10 VE2 出力イネーブル2。アクティブ・ハイレベルのロジック入力。VE2がハイレベルまたは開放のとき、VOAとVOBの各出力がイネーブルになります。VE2がローレベルのとき、VOAとVOBの各出力がディスエーブルになります。ノイズの多い環境では、VE2を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 VIC ロジック入力C 13 VOB ロジック出力B 14 VOA ロジック出力A 15 GND2 グラウンド2。アイソレータのサイド2のグラ	O	GIVDI	
10 VE2 ウンド基準。 出力イネーブル2。アクティブ・ハイレベルのロジック入力。VE2がハイレベルまたは開放のとき、VOAとVOBの各出力がイネーブルになります。VE2がローレベルのとき、VOAとVOBの各出力がディスエーブルになります。ノイズの多い環境では、VE2を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 VIC ロジック入力C 13 VOB ロジック出力B 14 VOA ロジック出力A 15 GND2 グラウンド2。アイソレータのサイド2のグラ	9	GND ₂	
ロジック入力。V _{E2} がハイレベルまたは開放のとき、V _{OA} とV _{OB} の各出力がイネーブルになります。V _{E2} がローレベルのとき、V _{OA} とV _{OB} の各出力がディスエーブルになります。ノイズの多い環境では、V _{E2} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 V _{IC} ロジック入力C ロジック出力B ロジック出力B ロジック出力A GND ₂ グラウンド2。アイソレータのサイド2のグラ			ウンド基準。
とき、VoAとVOBの各出力がイネーブルになります。VE2がローレベルのとき、VoAとVOBの各出力がディスエーブルになります。ノイズの多い環境では、VE2を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 VIC ロジック入力C 13 VOB ロジック出力B 14 VOA ロジック出力A 15 GND2 グラウンド2。アイソレータのサイド2のグラ	10	V_{E2}	出力イネーブル2。アクティブ・ハイレベルの
ます。V _{E2} がローレベルのとき、V _{OA} とV _{OB} の各 出力がディスエーブルになります。ノイズの 多い環境では、V _{E2} を外部のロジック・ハイレ ベルまたはローレベルに接続することを推奨 します。 11 NC 未接続 12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND ₂ グラウンド2。アイソレータのサイド2のグラ			ロジック入力。V _{E2} がハイレベルまたは開放の
出力がディスエーブルになります。ノイズの 多い環境では、V _E を外部のロジック・ハイレ ベルまたはローレベルに接続することを推奨 します。 11 NC 未接続 12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND ₂ グラウンド2。アイソレータのサイド2のグラ			
多い環境では、V _{E2} を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。 11 NC 未接続 12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND ₂ グラウンド2。アイソレータのサイド2のグラ			
ベルまたはローレベルに接続することを推奨 します。 11 NC 未接続 12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND ₂ グラウンド2。アイソレータのサイド2のグラ			* ** * * * * * * * * * * * * * * * *
します。 11 NC 未接続 12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND ₂ グラウンド2。アイソレータのサイド2のグラ			2 1122 1 122 - 2 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
11 NC 未接続 12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND2 グラウンド2。アイソレータのサイド2のグラ			
12 V _{IC} ロジック入力C 13 V _{OB} ロジック出力B 14 V _{OA} ロジック出力A 15 GND ₂ グラウンド2。アイソレータのサイド2のグラ	11	NC	
13VOBロジック出力B14VOAロジック出力A15GND2グラウンド2。アイソレータのサイド2のグラ			
14V _{OA} ロジック出力A15GND2グラウンド2。アイソレータのサイド2のグラ			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 $ GND_2 $ $\not O$ $ O$ $\not O$ $ O$			
/ · · · - · · · · · · · · · · · · · · · 	15	51102	
16 V _{DD2} アイソレータのサイド2の電源電圧、2.7~	16	V_{DD2}	
5.5V _o			5.5V ₀

代表的な性能特性

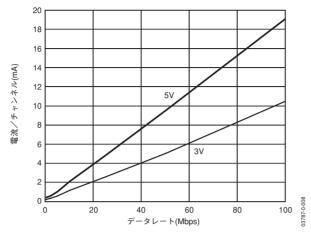


図6. 5Vおよび3V動作でのデータレート対 代表的なチャンネル当たりの入力電源電流

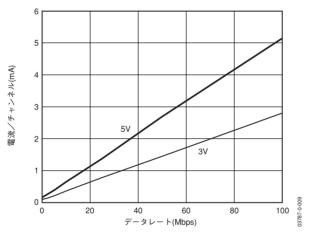


図7. 5Vおよび3V動作でのデータレート対 代表的なチャンネル当たりの出力電源電流(出力無負荷)

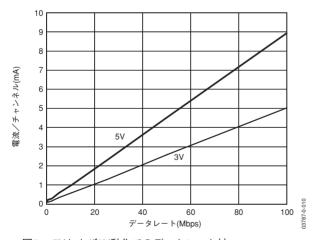


図8. 5Vおよび3V動作でのデータレート対 代表的なチャンネル当たりの出力電源電流(出力負荷15pF)

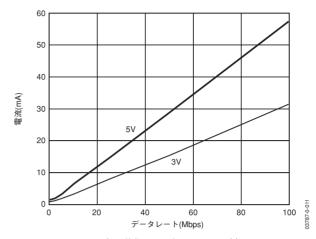


図9. 5Vおよび3V動作でのデータレート対 代表的なADuM1300 V_{DD1}電源電流

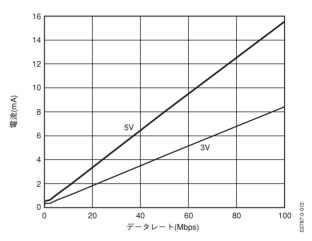


図10. 5Vおよび3V動作でのデータレート対 代表的なADuM1300 VDD1電源電流

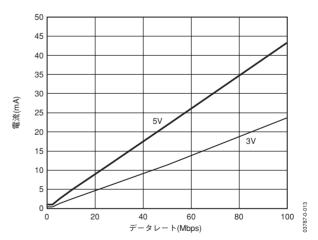


図11. 5Vおよび3V動作でのデータレート対 代表的なADuM1301 V_{DD1}電源電流

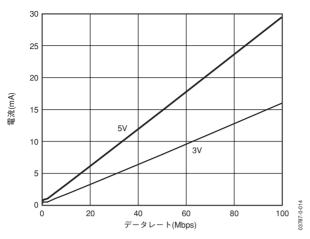


図12. 5Vおよび3V動作でのデータレート対 代表的なADuM1301 V_{DD2}電源電流

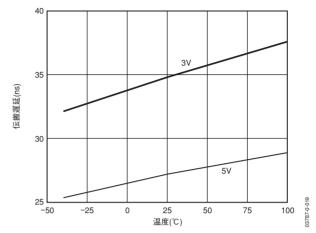


図13. 伝搬遅延の温度特性(Cグレード)

アプリケーション情報

PCボードのレイアウト

ADuM130xデジタル・アイソレータには、ロジック・インターフェース用の外付けインターフェース回路は不要です。入力電源ピンと出力電源ピンにはバイパス・コンデンサを接続することを強く推奨します(図14)。バイパス・コンデンサは V_{DDI} ではピン1と2の間に、 V_{DD2} ではピン15と16の間に接続するのが便利です。コンデンサの値は、 $0.01 \sim 0.1 \, \mu$ Fにします。コンデンサの両端と入力電源ピンとの間の合計リード長は20mmを超えないようにします。各パッケージ側のグラウンド対がパッケージのすぐ近くで接続されていない限り、ピン1と8の間およびピン9と16の間でバイパスしてください。

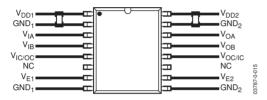


図14. PCボードの推奨レイアウト

高いコモン・モード過渡電圧が発生するアプリケーションでは、 絶縁バリアを越えるようなボード上での結合が起こらないように 注意する必要があります。さらに、いかなる結合も部品側のすべ てのピンで等しくなるようにボード・レイアウトを設計する必要 があります。この注意を怠ると、ピン間で発生する電位差がデバ イスの絶対最大定格を超えてしまい、ラッチアップまたは恒久的 な損傷が発生することがあります。

伝搬遅延に関係するパラメータ

伝搬遅延時間は、ロジック信号が部品を通過するのに要する時間を表すパラメータです。ロジック・ローレベル出力への伝搬遅延は、ロジック・ハイレベルへの伝搬遅延と異なることがあります。

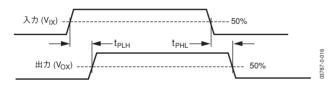


図15. 伝搬遅延のパラメータ

パルス幅歪みはこれら2つの伝搬遅延値の間の最大の差をいい、 入力信号のタイミングが部品の出力信号で再現される精度を表し ます。

チャンネル間マッチングは、1個のADuM130x製品内にある複数 チャンネル間の伝搬遅延差の最大値を表します。

伝搬遅延スキューは、同じ条件で動作する複数のADuM130x製品間での伝搬遅延差の最大値を表します。

DC精度と磁界耐性

アイソレータの入力における信号の遷移(ハイレベル/ローレベル時)により、狭いパルス(約1ns)がトランス経由でデコーダに送信されます。デコーダはハイレベルでもローレベルでも安定しており、したがって、パルスによるセットまたはリセットで入力ロジックの遷移を表します。入力に 2μ s以上ロジック遷移がない場合、出力のDC精度を確保するため、正しい入力状態を表す周期的なリフレッシュ・パルスのセットが送出されます。デコーダが約5 μ s間以上この内部パルスを受信しないと、入力側が電源オフまたは非動作状態にあるとみなされ、ウォッチドッグ・タイマ回路によりアイソレータの出力が強制的にデフォルト状態(表10参照)となります。

ADuM130xは、外部磁界に対して極めて強い耐性を持っています。 ADuM130xの磁界耐性の限界は、トランスの受信側コイルに発生 する誘導電圧が十分大きくなり、デコーダを誤セットまたはリセットさせる状態が発生する条件で決まります。この状態が発生する条件を、以下の解析により求めます。ADuM130xは3V動作が最も感度の高い動作モードなので、この条件を調べます。

トランス出力でのパルスは、1.0V以上の振幅になります。デコーダは約0.5Vの検出閾値を持つため、誘導電圧に対しては0.5Vの余裕を持っています。受信側コイルでの誘導電圧は、次式で求めら

 $V = (-dB/dt) \sum \prod r_n^2; n = 1, 2, ..., N$

ここで、

 $\beta =$ 磁束密度(ガウス) N = 受信側コイルの巻き数 $r_n =$ 受信側コイル巻き数n = 目の半径(cm)

ADuM130x受信側コイルの形状と、誘導電圧がデコーダにおける 0.5V余裕の最大50%であるという条件を前提にすると、最大許容 磁界は図16のように計算されます。

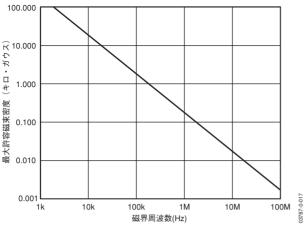


図16. 最大許容外部磁束密度

たとえば、磁界周波数=1MHzで、最大許容磁界=0.2キロ・ガウスの場合、受信側コイルでの誘導電圧は0.25Vになります。これは検出閾値の約50%にあたり、出力遷移の誤動作はありません。同様に、仮にこのような条件が送信パルス内に存在して(さらに最悪ケースの極性であって)、受信パルスが1.0V以上から0.75Vへ減少されても、デコーダの検出閾値0.5Vよりも余裕を持っています。

前述の磁東密度値は、所与の距離だけADuM130xトランスから離れた特定の電流値に対応します。図17に、周波数の関数としての許容電流値を、所与の距離に対して示します。図から読み取れるように、ADuM130xの耐性は極めて高く、影響を受けるのは、高周波でかつこのICに近接して流れる極めて大きな電流の場合に限られます。前述の1MHzの例では、部品動作に影響を与えるには、0.5kAの電流をADuM130xから5mmの距離まで近づける必要があります。

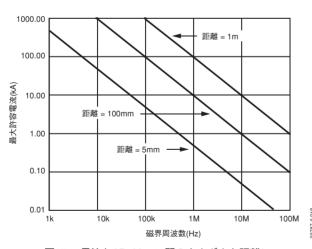


図17. 電流とADuM130x間のさまざまな距離に 対する最大許容電流

強い磁界に高周波が重なると、PCボードのパターンで形成されるループに十分大きな誤差電圧が誘導されて、後段回路の閾値がトリガされてしまうことに注意が必要です。パターンのレイアウトでは、これを防止するように注意する必要があります。

消費電力

ADuM130xアイソレータ内のあるチャンネルの電源電流は、電源電圧、チャンネルのデータレート、チャンネルの出力負荷の関数です。

各入力チャンネルに対して、電源電流は次式で求められます。

$$I_{DDI} = I_{DDI(Q)}$$
 $f \le 0.5 f_r$
 $I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(Q)}$ $f > 0.5 f_r$

各出力チャンネルに対して、電源電流は次式で求められます。

$$I_{DDO} = I_{DDO(Q)}$$
 $f \le 0.5f_r$
 $I_{DDO} = (p_{DDO(D)} + (0.5 \times 10^{-3}) \times C_t V_{DDO}) \times (2f - f_t) + I_{DDO(Q)}$

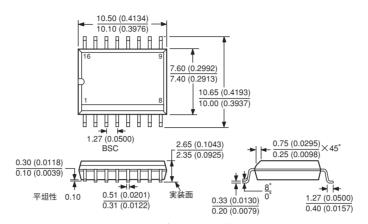
 $f > 0.5 f_r$

ここで、

 $I_{DDI(D)}$ と $I_{DDO(D)}$ はそれぞれ、チャンネル当たりの入力および出力ダイナミック電源電流です(mA/Mbps)。

CL=出力負荷容量(pF)

V_{DDO}=出力電源電圧(V)


f=入力ロジック信号周波数 (MHz、入力データレートの1/2、NRZシグナリング)

 f_r =入力ステージ・リフレッシュ・レート(Mbps)

 $I_{DDI(Q)}$ と $I_{DDO(Q)}$ はそれぞれ、指定された入力および出力静止電源電流です(mA)。

 I_{DD1} と I_{DD2} の合計電源電流を計算するために、 I_{DD1} と I_{DD2} に対応するチャンネルの入力と出力の電源電流を計算して合計します。図6と7に、無負荷状態の出力に対して、データレートの関数としてのチャンネル当たりの電源電流を示します。図8に、15pF負荷の出力に対して、データレートの関数としてのチャンネル当たりの電源電流を示します。図9~12に、ADuM1300/ADuM1301のチャンネル構成に対して、データレートの関数としての電源電流 I_{DD1} と I_{DD2} の合計を示します。

外形寸法

JEDEC規格MS-013AAに準拠 括狐内のインチ寸法はミリメートル値の概数であり、参考用に表示しています。 設計には使用しないでください。

図18. 16ピン標準SOP[SOIC]―ワイド(RW-16) 寸法単位:mm (インチ)

オーダー・ガイド

製品モデル	入力数 V _{DD1} 側	入力数 V _{DD2} 側	最大データ・ レート (Mbps)	最大伝搬 遅延、5V (ns)	最大パルス 幅歪み (ns)	温度範囲 (°C)	パッケージ・ オプション¹
ADuM1300ARW ²	3	0	1	100	40	-40~105℃	RW-16
ADuM1300BRW ²	3	0	10	50	3	-40~105℃	RW-16
ADuM1300CRW ²	3	0	90	32	2	-40~105℃	RW-16
ADuM1300ARWZ ^{2,3}	3	0	1	100	40	-40~105℃	RW-16
ADuM1300BRWZ ^{2,3}	3	0	10	50	3	-40~105℃	RW-16
ADuM1300CRWZ ^{2,3}	3	0	90	32	2	-40~105℃	RW-16
ADuM1301ARW ²	2	1	1	100	40	-40~105℃	RW-16
ADuM1301BRW ²	2	1	10	50	3	-40~105℃	RW-16
ADuM1301CRW ²	2	1	90	32	2	-40~105℃	RW-16
ADuM1301ARWZ ^{2,3}	2	1	1	100	40	-40~105℃	RW-16
ADuM1301BRWZ ^{2,3}	2	1	10	50	3	-40~105℃	RW-16
ADuM1301CRWZ ^{2,3}	2	1	90	32	2	-40~105℃	RW-16

¹ RW-16=16ピン・ワイドのSOIC

^{2 [}テープ&リール] も提供しています。製品モデルの末尾に「-RL」が付いている場合、直径13インチ (1000個入り) の [テープ&リール」をオプションとして提供しています。

³ Z=鉛フリー製品

TDS07/2004/PDF

ADuM1300/ADuM1301