

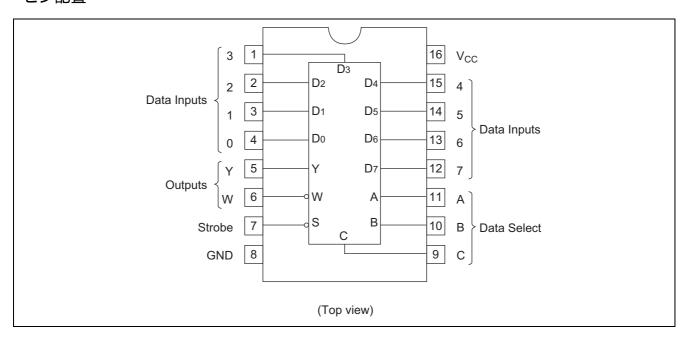
HD74LS251

1 of 8 Data Selector / Multiplexer (with strobe and three-state outputs)

RJJ03D0612-0200 Rev.2.00 2005.06.24

HD74LS251 は,8つのデータより1つを選択するためのバイナリにデコードしたデータセレクタ/マルチプレクサでストローブにより3ステート出力にすることができます。ストロープ入力を"L"レベルにすることにより,この回路はイネーブルになります。3ステート出力は出力を共通バスラインに接続することができます。ストロープ入力が"H"のとき,両方の出力はハイインピーダンスとなり,バスラインには関係なくなります。

このデータセレクタはデータセレクト部のアドレスバッファ回路がどのパスを通っても入力からの遅延時間が一定となるように設計されています。したがってストローブ入力が"L"においてセレクト入力が切り替えられたときに出力に現れるスパイクノイズが最小になるように構成されています。


特長

• 発注型名

発注型名	パッケージ名称	パッケージコード (旧パッケージコード)	パッケージ略称	テーピング略称 (数量)
HD74LS251P	DILP-16 pin	PRDP0016AE-B (DP-16FV)	Р	_
HD74LS251FPEL	SOP-16 pin (JEITA)	PRSP0016DH-B (FP-16DAV)	FP	EL (2,000 個/リール)

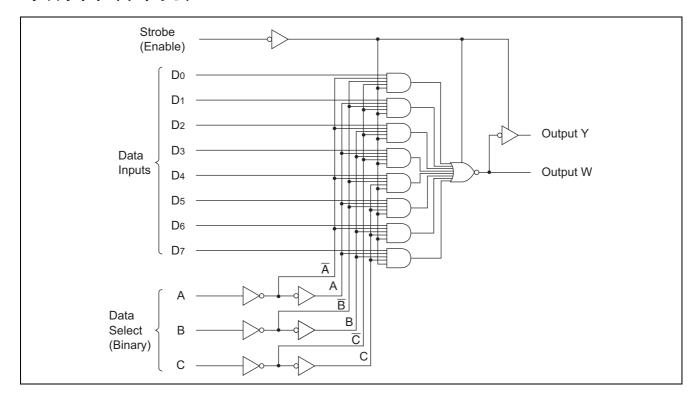
【注】 上記パッケージ品の有無につきましては,担当営業までご確認ください。

ピン配置

機能表

	λ	出力			
	Select		Strobe	V	10/
С	В	Α	S	ī	W
Х	Х	X	Н	Z	Z
L	L	L	L	D_0	\overline{D}_0
L	L	Н	L	D_1	\overline{D}_1
L	Н	L	L	D_2	\overline{D}_2
L	Н	Н	L	D ₃	\overline{D}_3
Н	L	L	L	D_4	\overline{D}_{4}
Н	L	Н	L	D_5	\overline{D}_{5}
Н	Н	L	L	D ₆	\overline{D}_{6}
Н	Н	Н	L	D_7	\overline{D}_{7}

【注】 H: high レベル


L: low レベル

X: "H", "L"いずれでもよい

Z: ハイインピーダンス (off)

D₀ ~ D₇: 関係する D 入力のレベル

ブロックダイアグラム

絶対最大定格

項目	記号	定格值	単位	
電源電圧	V _{CC} ^注	7	V	
入力電圧	V_{IN}	7	V	
出力電圧 (off 状態)	V _{O (off)}	5.5	V	
動作温度	Topr	− 20 ~ + 75	°C	
許容損失	P _T	400	mW	
保存温度範囲	Tstg	−65 ~ +150	°C	

[【]注】 電圧値は特に指定しない限り GND 端子に対して定義します。

推奨動作条件

項目	記号	Min.	Тур.	Max.	単位
電源電圧	Vcc	4.75	5.00	5.25	V
出力電流	I _{OH}	_		-2.6	mA
山川电池	I _{OL}	_	_	8	mA
動作温度	Topr	-20	25	75	°C

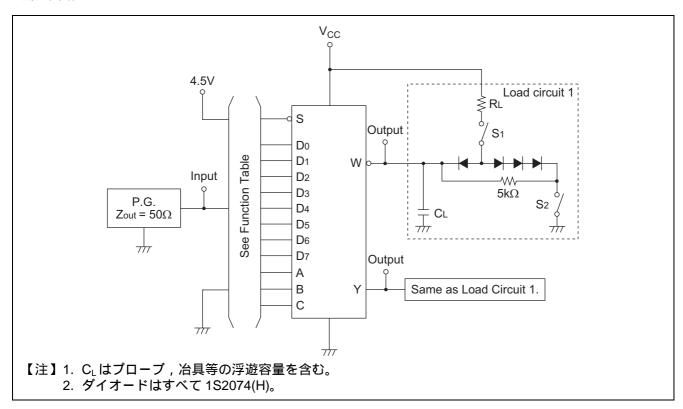
電気的特性

 $(Ta = -20 \sim +75^{\circ}C)$

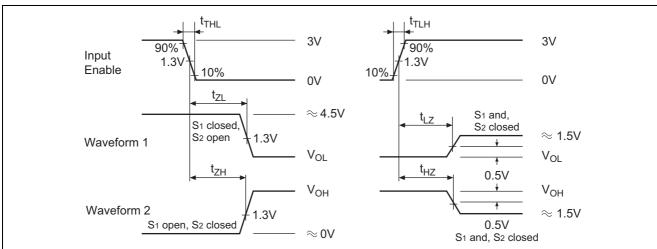
項目	記号	min.	typ.*1	max.	単位	測定条件	
入力電圧	V_{IH}	2.0	_	_	V		
八刀电压	V_{IL}	_	_	0.8	V		
出力電圧	V_{OH}	2.4	l	ı	V	$V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V}, V_{IL} = 0.8 \text{ V},$ $I_{OH} = -2.6 \text{ mA}$	
山刀电圧	V_{OL}	_	_	0.4	V	$I_{OL} = 4 \text{ mA}$ $V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V},$	
	VOL			0.5	\/	$I_{OL} = 8 \text{ mA}$ $V_{IL} = 0.8 \text{ V}$	
	I _{IH}	_	_	20	μΑ	$V_{CC} = 5.25 \text{ V}, V_I = 2.7 \text{ V}$	
入力電流	I _{IL}			-0.4	mA	$V_{CC} = 5.25 \text{ V}, V_I = 0.4 \text{ V}$	
	I _I	1	1	0.1	mA	$V_{CC} = 5.25 \text{ V}, V_I = 7 \text{ V}$	
出力電流	l _{OZ}	1	1	20	^	$V_0 = 2.7 \text{ V}$ $V_{CC} = 5.25 \text{ V}, V_{IH} = 2 \text{ V}$	
山刀电洲		1	1	-20	μΑ	$V_{\rm O} = 0.4 \text{ V}$ $V_{\rm CC} = 5.23 \text{ V}, \text{ VIH} = 2 \text{ V}$	
出力短絡電流	Ios	-30	_	-130	mA	V _{CC} = 5.25 V	
電源電流*2	Icc		6.1	10	A	測定条件 A	
			7.1	12	mA	測定条件 B V _{cc} = 5.25 V	
入力クランプ電圧	V_{IK}	_	_	-1.5	V	$V_{CC} = 4.75 \text{ V}, I_{IN} = -18 \text{ mA}$	

[【]注】 *1 V_{CC} = 5 V, Ta = 25°C

^{*2} Icc は全出力を開放し,全データおよびセレクト入力に 4.5 V を印加して下記条件により測定する。 測定条件 A: ストローブを GND 測定条件 B: ストローブに 4.5 V を印加

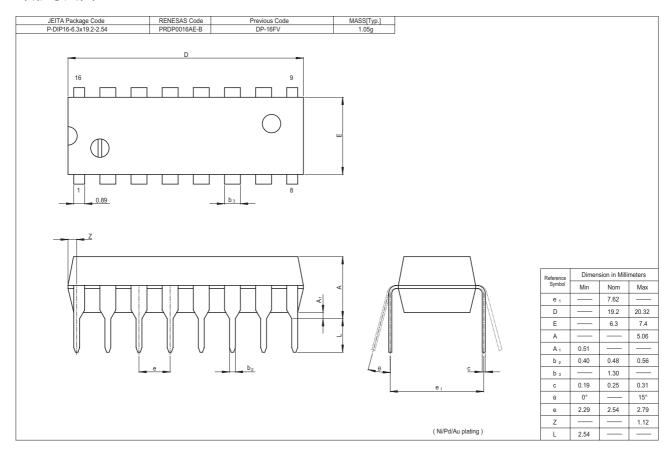

スイッチング特性

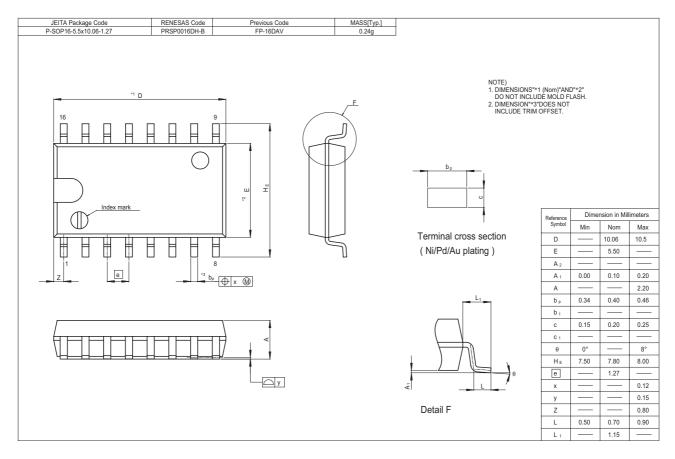
 $(V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C})$


項目	記号	入力	出力	min.	typ.	max.	単位	測定条件
	t _{PLH}	A, B, C	Υ		29	45		
	t _{PHL}	(4 レベル)	ı	1	28	45		
	t _{PLH}	A, B, C	W	1	20	33		
」 伝搬遅延時間	t _{PHL}	(3 レベル)	レベル) **		21	33	20	
以及连延时间	t _{PLH}	Data	Y	1	17	28	ns	
	t _{PHL}	Data	Data Y		18	28		$C_L = 15 \text{ pF},$
	t _{PLH}	Data	W	1	10	15		$R_L = 2 k\Omega$
	t _{PHL}			-	9	15		
	t_{ZH}	Strobe	obe Y	1	30	45	ns	
 出力イネーブル時間	t_{ZL}	Strobe		1	26	40		
	t_{ZH}	Strobe	W	1	17	27		
	t_{ZL}			1	24	40		
	t _{HZ}	Ctrobo	Υ	_	30	45		
 出力ディスエーブル時間	t_{LZ}	Strobe	1		15	25	ns	$C_L = 5 pF$,
	t _{HZ}	Strobe	W		37	55	115	$R_L = 2 k\Omega$
	t_{LZ}	Strope	VV	_	15	25		

スイッチング特性測定方法

測定回路




波形

- 【注】1. 入力波形: t_{TLH} 15 ns, t_{THL} 6 ns, PRR = 1 MHz, duty cycle = 50%
 - 2. 出力波形 1 は出力コントロールによってディスエーブルされた場合を除いて"L"であるような内部条件による出力。
 - 3. 出力波形 2 は出力コントロールによってディスエーブルされた場合を除いて"H"であるような内部条件による出力。
 - 4. t_{PHL}, t_{PLH}の波形は HD74LS151 を参照。
 - 5. t_{PHL} , t_{PLH} 測定の場合は, S_1 , S_2 を閉じる。

外形寸法図

安全設計に関するお願い

- ス主政制に関するが願い。 1.弊社は品質,信頼性の向上に努めておりますが,半導体製品は故障が発生したり,誤動作する場合があります。弊社の半導体製品の故障又は誤動作によって結果として,人身事故 火災事故,社会的損害などを生じさせないような安全性を考慮した冗長設計,延焼対策設計,誤動作防止設計などの安全設計に十分ご留意ください。
- 本資料ご利用に際しての留意事項 1. 本資料は、お客様が用途に応じた適切なルネサス テクノロジ製品をご購入いただくための参考資料であり、本資料中に記載の技術情報についてルネサス テクノロジが所有する知 的財産権その他の権利の実施、使用を許諾するものではありません。 2. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例の使用に起因する損害、第三者所有の権利に対する侵害に関し、ルネサス テクノロジは責任を負
- 2. 本資料に記載の製品 アータ、図、衣、フログノム、アルコケムない他が用回路例の使用に起める債害、第三名前有の権利に対する咬害に関し、ルイケス アグノロジは責任を見いません。
 3. 本資料に記載の製品 アータ、図、表、プログラム、アルゴリズムその他全ての情報は本資料発行時点のものであり、ルネサス テクノロジは、予告なしに、本資料に記載した製品または仕様を変更することがあります。ルネサス テクノロジ半導体製品のご購入に当たりましては、事前にルネサス テクノロジ、ルネサス販売または特約店へ最新の情報をご確認頂きますとともに、ルネサス テクノロジホームページ(http://www.renesas.com)などを通じて公開される情報に常にご注意ください。
 4. 本資料に記載した情報は、正確を期すため、慎重に制作したものですが万一本資料の記述誤りに起因する損害がお客様に生じた場合には、ルネサス テクノロジはその責任を負いませな。

- せん。
 5. 本資料に記載の製品データ、図、表に示す技術的な内容、プログラム及びアルゴリズムを流用する場合は、技術内容、プログラム、アルゴリズム単位で評価するだけでなく、システム全体で十分に評価し、お客様の責任において適用可否を判断してください。ルネサステクノロジは、適用可否に対する責任は負いません。
 6. 本資料に記載された製品は、人命にかかわるような状況の下で使用される機器あるいはシステムに用いられることを目的として設計、製造されたものではありません。本資料に記載の製品を運輸、移動体用、医療用、航空宇宙用、原子力制御用、海底中継用機器あるいはシステムなど、特殊用途へのご利用をご検討の際には、ルネサステクノロジ、ルネサス販売または特約16へご照会ください。
 7. 本答料の影響、複製については、文書によるルネサステクノロジの事前の承諾が必要です。
- があるたばられる。 ア・本資料の転載、複製については、文書によるルネサス テクノロジの事前の承諾が必要です。 8. 本資料に関し詳細についてのお問い合わせ、その他お気付きの点がございましたらルネサス テクノロジ、ルネサス販売または特約店までご照会ください。

営業お問合せ窓口 株式会社ルネサス販売

http://www.renesas.com

本京西東い茨新松中関北広鳥-	東 わ 城潟本部西陸島取出 京 き	支 支支支支支支支支	社社社社店店店社社社社店店	〒100-0004 〒212-0058 〒190-0023 〒980-0013 〒970-8026 〒312-0034 〒950-0087 〒390-0815 〒460-0008 〒541-0044 〒920-0031 〒730-0036 〒680-0822	千代田区大手町2-6-2 (日本ビル) 川崎市幸区鹿島田890-12 (新川崎三井ビル) 立川市柴崎町2-2-23 (第二高島ビル2F) 仙台市青葉区花京院1-1-20 (花京院スクエア13F) いわき市平小太郎町4-9 (平小太郎ビル) ひたちなか市堀口832-2 (日立システムプラザ勝田1F) 新潟市東大通1-4-2 (新潟三井物産ビル3F) 松本市深志1-2-11 (昭和ビル7F) 名古屋市中区栄4-2-29 (名古屋広小路プレイス) 大阪市中央区伏見町4-1-1 (明治安田生命大阪御堂筋ビル) 金沢市広岡3-1-1 (金沢パークビル8F) 広島市中区袋町5-25 (広島袋町ビルディング8F) 鳥取市今町2-251 (日本生命鳥取駅前ビル)	(03) 5201-5350 (044) 549-1662 (042) 524-8701 (022) 221-1351 (0246) 22-3222 (029) 271-9411 (025) 241-4361 (0263) 33-6622 (052) 249-3330 (06) 6233-9500 (076) 233-5980 (082) 244-2570 (0857) 21-1915
九	州	支	社	〒812-0011	馬取印ラ메2-231 (日本生の馬取駅削にル) 福岡市博多区博多駅前2-17-1 (ヒロカネビル本館5F)	(092) 481-7695

■技術的なお問合せおよび資料のご請求は下記へどうぞ。

総合お問合せ窓口: コンタクトセンタ E-Mail: csc@renesas.com