Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey. At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

We look forward to your feedback.

To learn more about **onsemi**, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ereasnable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Action Employer. This literature is subject to all applicatione claimed as not for resale in any manner. Other names and brands may be claimed as the property of others.

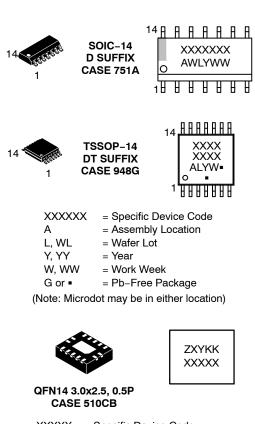
onsemi

MARKING DIAGRAMS

Low Voltage Hex Buffer with Open Drain Outputs

74LCX07

General Description


The LCX07 contains six buffers. The inputs tolerate voltages up to 5.5 V allowing the interface of 5 V systems to 3 V systems.

The outputs of the LCX07 are open drain and can be connected to other open drain outputsto implement active HIGH wire AND or active LOW wire OR functions.

The 74LCX07 is fabricated with advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5 V Tolerant Inputs
- 1.65 V 5.5 V V_{CC} Specifications Provided
- 2.9 ns t_{PD} Max. (V_{CC} = 3.3 V), 10 μ A I_{CC} Max.
- Power Down High Impedance Inputs and Outputs
- ± 24 mA Output Drive (V_{CC} = 3.0 V)
- Implements Proprietary Noise/EMI Reduction Circuitry
- Latch-up Performance Exceeds JEDEC 78 Conditions
- ESD performance:
 - ◆ Human Body Model >2000 V
- Available on SOIC, TSSOP and Leadless QFN Packages
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

XXXXX	= Specific Device Code
Z	= Assembly Plant Code
XY	= Date Code
KK	= Lot Run Traceability Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

74LCX07

CONNECTION DIAGRAMS

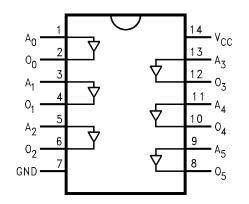


Figure 1. Pin Assignments for SOIC and TSSOP

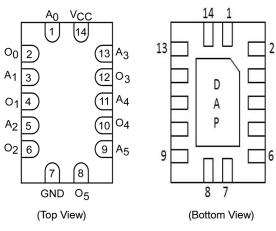


Figure 2. Pad Assignments for DQFN

LOGIC SYMBOL

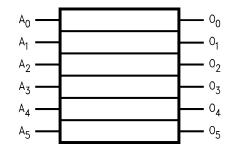


Figure 3. IEEE/IEC

PIN DESCRIPTION

Pin Names	Description
A _n	Inputs
O _n	Outputs
DAP	No Connect

NOTE: DAP (Die Attach Pad)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
VI	DC Input Voltage (Note 1)		–0.5 to +6.5	V
V _O	DC Output Voltage (Note 1)	Active-Mode (High or Low State) Tri-State Mode Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current	V _I < GND	-50	mA
I _{OK}	DC Output Diode Current	V _O < GND	-50	mA
Ι _Ο	DC Output Source/Sink Current		±50	mA
$I_{CC} \text{ or } I_{GND}$	DC Supply Current per Supply Pin or Ground F	Pin	±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 sec	S	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 1)	SOIC-14 QFN14 TSSOP-14	116 130 150	°C/W
P _D	Power Dissipation in Still Air at 125°C	SOIC-14 QFN14 TSSOP-14	1077 962 833	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 N/A	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Io absolute maximum rating must be observed.
 Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	I	Parameter			Max	Unit
V _{CC}	Supply Voltage	Operating Data Retention Only	1.65 1.5	3.3 3.3	5.5 5.5	V
VI	Digital Input Voltage		0	-	5.5	V
V _O	Output Voltage	Active Mode (High or Low State) Tri-State Mode Power Down Mode (V _{CC} = 0 V)	0 0 0	- - -	V _{CC} 5.5 5.5	V
T _A	Operating Free-Air Temperature		-40	-	+125	°C
t _r , t _f	Input Rise or Fall Rate	$\label{eq:VCC} \begin{array}{l} V_{CC} = 1.65 \; V \; to \; 1.95 \; V \\ V_{CC} = 2.3 \; V \; to \; 2.7 \; V \\ V_{IN} \; from \; 0.8 \; V \; to \; 2.0 \; V, \; V_{CC} = 3.0 \; V \\ V_{CC} = 4.5 \; V \; to \; 5.5 \; V \end{array}$	0 0 0 0	- - -	20 20 10 5	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		T _A = -40°C to +125°C		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage		1.65 – 1.95	$0.65 \times V_{CC}$	-	$0.65 \times V_{CC}$	-	V
			2.3 – 2.7	1.7	-	1.7	-	
			3.0 - 3.6	2.0	-	2.0	-	
			4.5 – 5.5	$0.70 \times V_{CC}$	-	$0.70 \times V_{CC}$	-	
V _{IL}	LOW Level Input Voltage		1.65 – 1.95	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
			2.3 – 2.7	-	0.7	-	0.7	
			3.0 - 3.6	-	0.8	-	0.8	
			4.5 – 5.5	-	$0.30 \times V_{CC}$	-	$0.30 \times V_{CC}$	
V _{OL}	Low-Level Output Voltage	$V_I = V_{IH} \text{ or } V_{IL}$						V
		I _{OL} = 100 μA	1.65 – 5.5	-	0.1	-	0.1	
		I _{OL} = 4 mA	1.65	-	0.24	-	0.24	
		I _{OL} = 8 mA	2.3	-	0.3	_	0.3	
		I _{OL} = 12 mA	2.7	-	0.4	-	0.4	
		I _{OL} = 16 mA	3.0	-	0.4	-	0.4	
		I _{OL} = 24 mA	3.0	-	0.55	_	0.55	
		I _{OL} = 32 mA	4.5	-	0.6	-	0.6	
I _I	Input Leakage Current	V _I = 0 to 5.5 V	1.65 – 5.5	-	±5.0	-	±5.0	μA
I _{OZ}	Off-State Leakage Current	V _O = 5.5 V	1.65 – 5.5	-	10	-	10	μA
I _{OFF}	Power Off Leakage Current	V _I = 5.5 V or V _O = 5.5 V	0	-	10	-	10	μΑ
I _{CC}	Quiescent Supply Current	$V_{I} = 5.5 \text{ V or GND}$	5.5	-	10	-	10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6 V$	2.3 – 3.6	-	500	-	500	μΑ
			4.5 – 5.5	-	1	-	1	mA

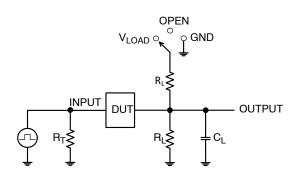
DC ELECTRICAL CHARACTERISTICS

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

74LCX07

AC ELECTRICAL CHARACTERISTICS

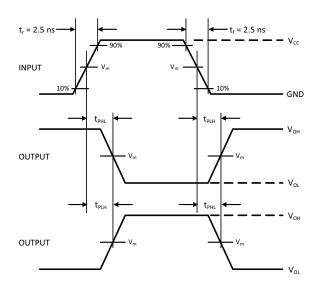
				T _A = -40°0	C to +85°C	$T_A = -40^{\circ}C$	to +125°C					
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Max	Min	Мах	Unit				
t _{PZL} , t _{PLZ}	Propagation Delay, Input to	See Figures 4	1.65 –1.95	-	6.5	-	6.5	ns				
	Output	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.8	-	3.8							
			2.7	-	3.7	-	3.7					
									3.0 – 3.6	-	3.0	-
			4.5 – 5.5	-	2.7	-	2.7					
t _{OSHL} , t _{OSLH}	Output to Output Skew		1.65 – 1.95	-	-	-	-	ns				
			2.3 – 2.7	-	-	-	-					
							2.7	-	-	-	-	
			3.0 – 3.6	-	1.0	-	1.0					
			4.5 – 5.5	-	-	-	-					

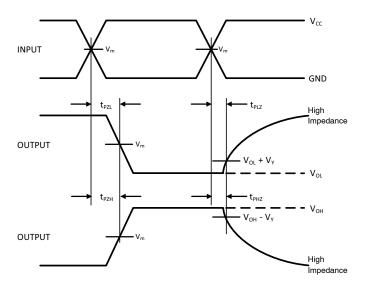

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DYNAMIC SWITCHING CHARACTERISTICS

				T _A = 25°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Typical	Unit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	3.3	C_{L} = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V	0.9	V
		2.5	C_{L} = 30 pF, V_{IH} = 2.5 V, V_{IL} = 0 V	0.7	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	3.3	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	-0.8	V
		2.5	$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$	-0.6	

CAPACITANCE


Symbol	Parameter	Conditions	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = Open, V_I = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC},f = 10 MHz	25	pF



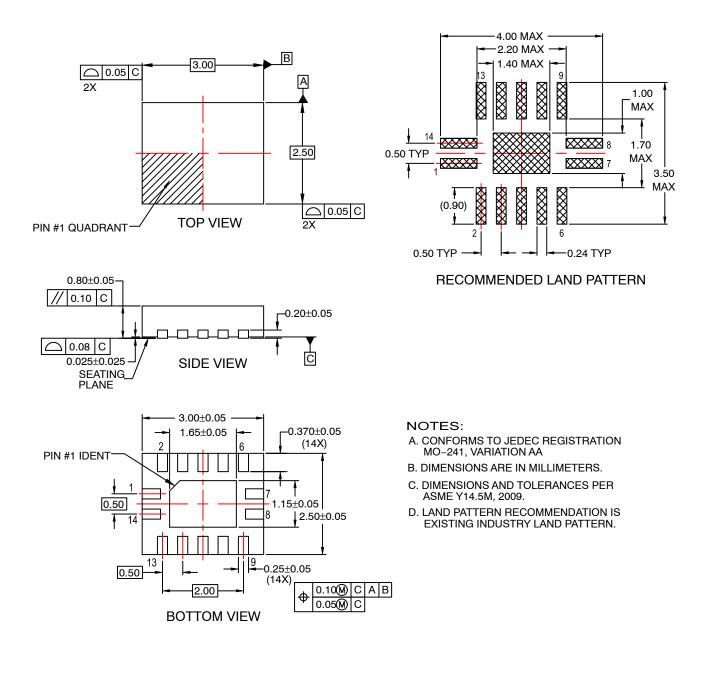
Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	V _{LOAD}
t _{PHZ} / t _{PZH}	GND

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 Ω) f = 1 Mhz, t_W = 500 ns

V _{CC} , V	R_{L}, Ω	C _L , pF	V _{LOAD}	V _m , V	V _Y , V
1.65 to 1.95	500	30	$2 \times V_{CC}$	V _{CC} /2	0.15
2.3 to 2.7	500	30	$2 \times V_{CC}$	V _{CC} /2	0.15
2.7	500	50	6 V	1.5	0.3
3.0 to 3.6	500	50	6 V	1.5	0.3
4.5 to 5.5	500	50	$2 \times V_{CC}$	V _{CC} /2	0.3

Figure 5. Switching Waveforms

ORDERING INFORMATION

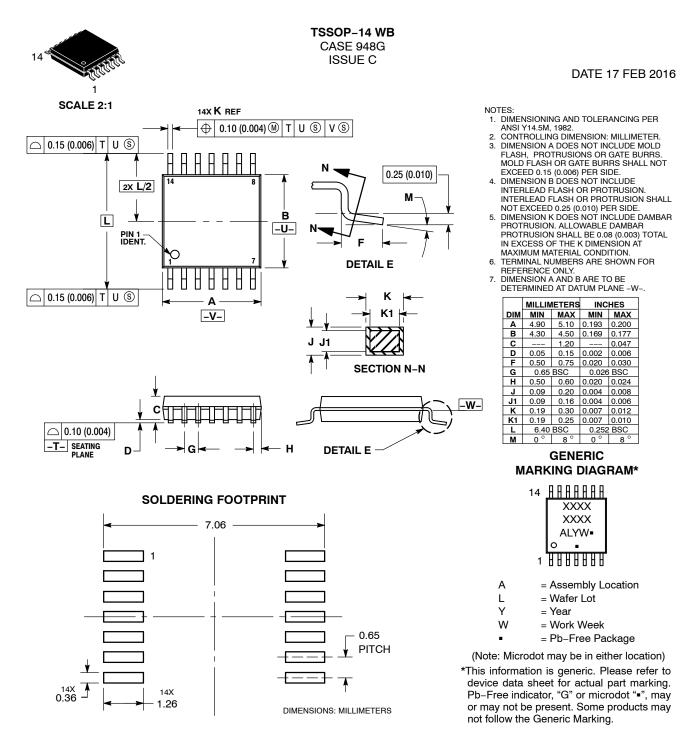

Device	Marking	Package	Shipping [†]
74LCX07MTCX	LCX	TSSOP-14	2500 / Tape & Reel
	07		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN14 3.0x2.5, 0.5P CASE 510CB ISSUE O

DATE 31 AUG 2016

 DOCUMENT NUMBER:
 98AON13643G
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.


 DESCRIPTION:
 QFN14 3.0X2.5, 0.5P
 PAGE 1 OF 1

 ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any products nor circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1			
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular						

purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>