特徴

小型軽量でAMZタイプに比べ特に高さが低く高密度実装に適しております。高さに制限のある機種に最適です。

特徴	
使用温度範囲	-40~+85°C (+105°C)
定格電圧	50V. d. c
静電容量範囲	0. 00047~0. 10 μ F 0. 00047~0. 00082 μ F (E-12) 0. 0010~0. 10 μ F (E-12)
静電容量許容差	±5%(J)、±10%(K)
誘電正接	0.008以下 (at 1kHz)
絶 縁 抵 抗	30,000MΩ以上
高温負荷	85°C 70V.d.c 1000hr印加 ΔC/C %%以内 tanδ 0.011以下 IR 950MΩ以上
耐湿負荷	40°C 90~95%RH 50V.d.c 500hr印加 Δ C/C 5%以内 tan δ 0.012以下 IR 9000MΩ以上

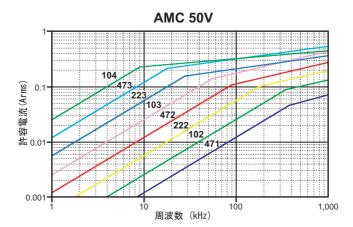
()温度は電圧軽減による使用可能範囲です。

	ストレートリード	シングルフォーミング				
※ 1	0000	0050	1050			
光光	Max Max T T T T T T T T T T T T T T T T T T T	\$\frac{13.0\text{Max}}{5.0\text{\$\pmu}}\$\$ \$\frac{1}{5}.0\text{\$\pmu}\$\$ \$\frac{1}{5}.0\text{\$\pmu}\$ \$\frac{1}{5}.0\text{\$\pmu}\$\$ \$\frac{1}{5}.0\text{\$\pmu}\$ \$\frac{1}{5}.0\text{\$\pmu}\$\$ \$\frac{1}{5}.0\text{\$\pmu}\$} \$\fra	2. OMax 15. 0±0. 5 ±0. 5			
Cap範囲	AMC 50V. d. c (P=5) 471~333 AMC 50V. d. c 471~104	AMC 50V.d.c 393∼104	AMC 50V. d. c 471~363			

テーピング仕様のリードピッチ寸法(F)はテーピング寸法表をご参照ください

1 リード形状寸法〔製品呼称の に適用ください〕

寸法(mm)


容量 Cap(μF)			AMC	50V.d	c 仕様	コード"0000"			AMC	50V.d	c 仕様	₹コード"0139"	
記号		W	Н	Т	Р	F	φd	W	Н	Т	Р	F	φd
471	0.00047	5.2	5.0	3.0	3.5	5.0	0.45	7.0	5.0	3.0	5.0	5.0	0.45
561	0.00056	5.0	5.0	2.7	3.5	5.0	0.45	7.0	5.0	3.0	5.0	5.0	0.45
681	0.00068	5.0	5.0	2.5	3.5	5.0	0.45	7.0	5.0	3.0	5.0	5.0	0.45
821	0.00082	5.0	5.0	2.5	3.5	5.0	0.45	7.0	5.0	3.0	5.0	5.0	0.45
102	0.0010	5.0	5.0	2.5	3.5	5.0	0.45	7.0	5.0	3.0	5.0	5.0	0.45
122	0.0012	5.0	5.0	2.5	3.5	5.0	0.45	7.0	5.0	2.8	5.0	5.0	0.45
152	0.0015	5.0	5.0	2.5	3.5	5.0	0.45	7.0	5.0	2.8	5.0	5.0	0.45
182	0.0018	5.0	5.0	2.5	3.5	5.0	0.45	7.0	5.0	2.8	5.0	5.0	0.45
222	0.0022	5.2	5.0	2.5	3.5	5.0	0.45	7.3	5.0	2.8	5.0	5.0	0.45
272	0.0027	5.2	5.0	2.5	3.5	5.0	0.45	7.3	5.0	2.8	5.0	5.0	0.45
332	0.0033	5.0	5.0	2.5	3.5	5.0	0.45	7.3	5.0	3.0	5.0	5.0	0.45
392	0.0039	5.0	5.0	2.7	3.5	5.0	0.45	7.3	5.0	3.0	5.0	5.0	0.45
472	0.0047	5.0	5.0	2.7	3.5	5.0	0.45	7.3	5.0	3.0	5.0	5.0	0.45
562	0.0056	5.0	5.0	2.7	3.5	5.0	0.45	7.3	5.0	3.0	5.0	5.0	0.45
682	0.0068	5.2	5.0	2.7	3.5	5.0	0.45	7.3	5.0	3.0	5.0	5.0	0.45
822	0.0082	5.2	5.0	2.7	3.5	5.0	0.45	7.3	5.0	3.0	5.0	5.0	0.45
103	0.010	5.2	5.0	2.7	3.5	5.0	0.45	7.3	5.0	3.0	5.0	5.0	0.45
123	0.012	5.5	5.0	3.0	3.5	5.0	0.45	7.3	5.0	3.0	5.0	5.0	0.45
153	0.015	5.8	5.0	3.2	3.5	5.0	0.45	7.5	5.0	3.3	5.0	5.0	0.45
183	0.018	6.0	5.5	3.5	3.5	5.0	0.45	7.5	5.3	3.3	5.0	5.0	0.45
223	0.022	6.2	5.5	3.8	3.5	5.0	0.45	7.5	5.3	3.3	5.0	5.0	0.45
273	0.027	6.2	6.0	3.8	3.5	5.0	0.45	7.5	5.3	3.3	5.0	5.0	0.45
333	0.033	6.7	6.0	4.0	3.5	5.0	0.45	7.5	5.3	3.8	5.0	5.0	0.45
393	0.039	7.5	6.0	4.0	5.0	5.0	0.45						
473	0.047	8.0	6.0	4.3	5.0	5.0	0.45						
563	0.056	7.2	7.0	4.2	5.0	5.0	0.45						
683	0.068	7.5	7.0	4.3	5.0	5.0	0.45						
823	0.082	8.2	7.0	4.8	5.0	5.0	0.45						
104	0.10	8.5	7.0	5.0	5.0	5.0	0.45						

カタログ掲載製品の仕様、材質、その他記載内容について予告なく変更する場合がありますので、予めご了承下さい。 ご使用にあたっては、使用上の注意事項をご確認の上、技術仕様書などをお求め願い、仕様書の範囲内でのご使用をお願いします。

ポリエステル・フィルム・コンデンサ

Type AMC

周波数に対する許容電流特性

