
GU (General Use) Type 2-Channel (Form A Form B) Type

PhotoMOS RELAYS

UL File No.: E43149 CSA File No.: LR26550

FEATURES

1. Approx. 1/2 the space compared with the mounting of a set of 1 Form A and 1 Form B PhotoMOS relays

 $\boldsymbol{\mathsf{mm}} \text{ inch}$

- A set of 1 Form A and 1 Form B type
- 2. Applicable for 1 Form A 1 Form B use as well as two independent 1 Form A and 1 Form B use
- 3. Low thermal electromotive force (Approx. 1 µV)

0

- 4. Eliminates the need for a counter electromotive force protection diode in the drive circuits on the input side
- 5. Controls load currents up to 0.13 A with an input current of 5 mA with load voltage of 400 V
- 6. High speed switching: operate time of 300 µs typical.
- 7. Eliminates the need for a power supply to drive the power MOSFET
- 8. Extremely low closed-circuit offset voltages to enable control of small analog signals without distortion (Typical 100 pA at 400 V)
- 9. Stable on resistance

TYPICAL APPLICATIONS

- High-speed inspection machines
- Telephone equipment
- Computer

TYPES

	Output	Output rating*			Part No.			
	Lord	Load	Through hole terminal	Su	Irface-mount termi	nal	Packing quant	ity
	Load voltage	current			Tape and ree	l packing style		
	. enage	ounoni	Tube pac	king style	Picked from the 1/2/3-pin side	Picked from the 4/5/6-pin side	Tube	Tape and reel
AC/DC type	400 V	100 mA	AQW614	AQW614A	AQW614AX	AQW614AZ	1 tube contains 40 pcs. 1 batch contains 400 pcs.	1,000 pcs.

* Indicate the peak AC and DC values.

Note: For space reasons, the package type indicator "X" and "Z" are omitted from the seal.

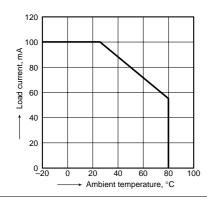
RATING


1. Absolute maximum ratings (Ambient temperature: 25°C 77°F)

	Item		Symbol	AQW614(A)	Remarks
LED for		ward current	lF	50 mA	
lanut	LED rev	erse voltage	VR	3 V	
Input	Peak for	ward current	I _{FP}	1 A	f = 100 Hz,Duty factor = 0.1 %
	Power d	lissipation	Pin	75 mW	
	Load vo	Itage	VL	400 V	
Output	Continue	Continuous load current		0.1 A	Peak AC, DC IL = Max. 0.13 A (when used for 1 Form A or 1 Form B)
	Peak loa	ad current	I _{peak}	0.3 A	100 ms (1shot), V _L = DC
	Power d	Power dissipation		800 mW	
Tot	Total power dissipation		PT	850 mW	
I/O isolation voltage		Viso	1,500 V AC	Between input and output/between contact sets	
- Opera		Operating	T _{opr}	-20°C to +80°C -4°F to +176°F	Non-condensing at low temperatures
remperat	ture limits	Storage	T _{stg}	-40°C to +100°C -40°F to +212°F	

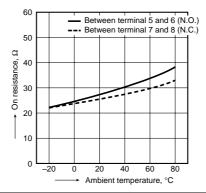
AQW614

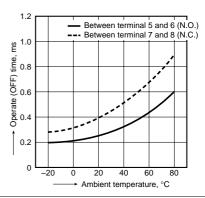
2. Electrical characteristics (Ambient temperature: 25°C 77°F) Symbol AQW614(A) Item Condition Minimum LED operate (OFF) IFon (N.O.) Typical 0.7 mA (N.O.) 0.9 mA (N.C.) $I_{L} = 100 \text{ mA}$ I_{Foff} (N.C.) current Maximum 3 mA Minimum 0.4mA IFoff (N.O.) LED reverse (ON) Input 0.7 mA (N.O.) 0.8 mA (N.C.) Typical $I_{L} = 100 \text{ mA}$ IFon (N.C.) current Maximum Minimum LED dropout 1.14 V (1.25 V at I_F = 50 mA) Typical V_{F} $I_F = 5 \text{ mA}$ voltage Maximum 1.5 V Minimum $I_F = 5 \text{ mA} (N.O.) I_F = 0 \text{ mA} (N.C.)$ On Typical Ron 27 Ω $I_{L} = 100 \text{ mA}$ resistance Maximum Within 1 s on time 50 Ω Output Minimum Off state leakage $I_F = 0 \text{ mA} (N.O.) I_F = 5 \text{ mA} (N.C.)$ Typical $V_{L} = 400 V$ current 1 μA Maximum Minimum Ton (N.O.) $I_F=0\ mA\rightarrow 5\ mA$ Operate (OFF) time Typical 0.28 ms (N.O.) 0.43 ms (N.C.) Toff (N.C.) $I_{L} = 100 \text{ mA}$ Maximum 1 ms Minimum Toff (N.O.) $I_F=5\ mA\rightarrow 0\ mA$ Typical 0.04 ms (N.O.) 0.3 ms (N.C.) Reverse (ON) time* Ton (N.C.) $I_L = 100 \text{ mA}$ Maximum 1 ms Transfer characteristics Minimum I/O f = 1 MHz0.8 pF Typical Ciso capacitance $V_B = 0$ 1.5 pF Maximum Initial Minimum 1,000 MΩ I/O isolation Typical 500 V DC Riso resistance Maximum


*Operate/Reverse time

REFERENCE DATA

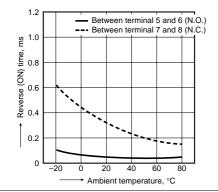
1. Load current vs. ambient temperature characteristics

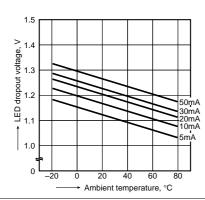

Allowable ambient temperature: -20°C to +80°C -4°E to +176°E


2. On resistance vs. ambient temperature characteristics

Measured portion: between terminals 5 and 6, 7 and 8; LED current: 5 mA;

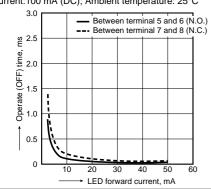
Continuous load current: 100 mA (DC)


3. Operate (OFF) time vs. ambient temperature characteristics LED current: 5 mA; Load voltage: 400 V (DC); Continuous load current: 100 mA (DC)

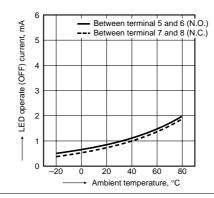

AQW614

4. Reverse (ON) time vs. ambient temperature characteristics

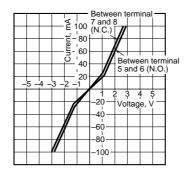
LED current: 5 mA; Load voltage: 400 V (DC); Continuous load current: 100 mA (DC)



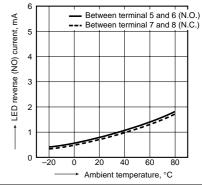
7. LED dropout voltage vs. ambient temperature characteristics LED current: 5 to 50 mA


10. LED forward current vs. operate (OFF) time characteristics

Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: Max. (DC); Continuous load current:100 mA (DC); Ambient temperature: 25°C


5. LED operate (OFF) current vs. ambient temperature characteristics

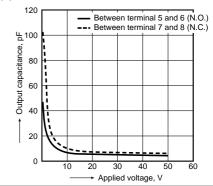
Load voltage: 400 V (DC);Continuous load current: 100 mA (DC)



8. Voltage vs. current characteristics of output at MOS portion

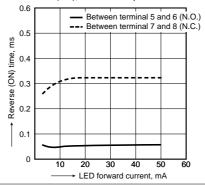
Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: $25^{\circ}C$ 77°F

6. LED reverse (ON) current vs. ambient temperature characteristics Load voltage: 400 V (DC); Continuous load current: 100 mA (DC)

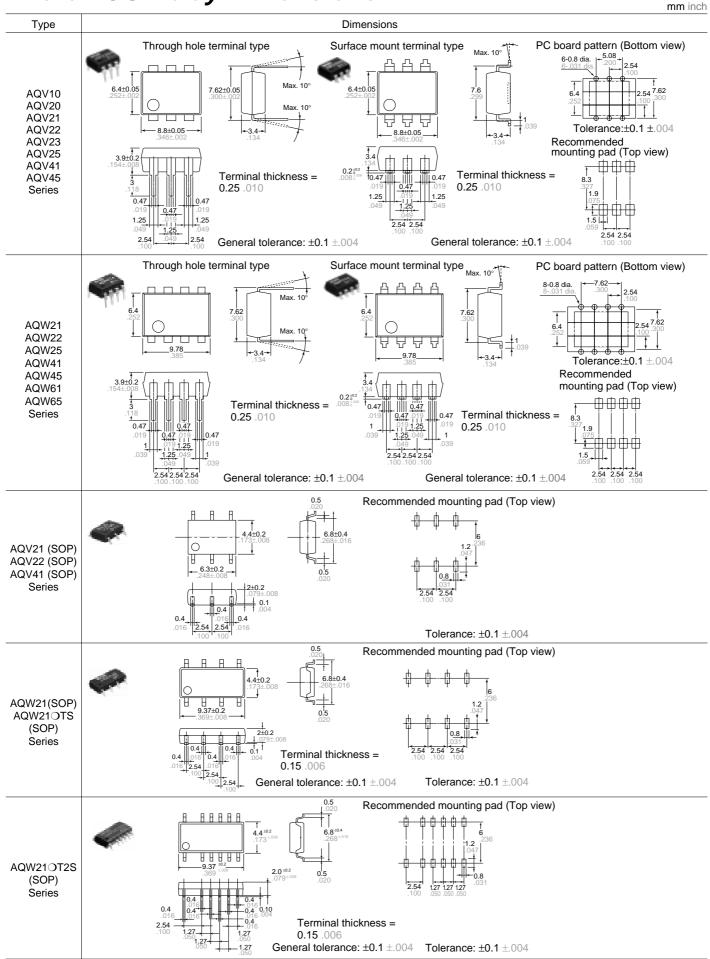


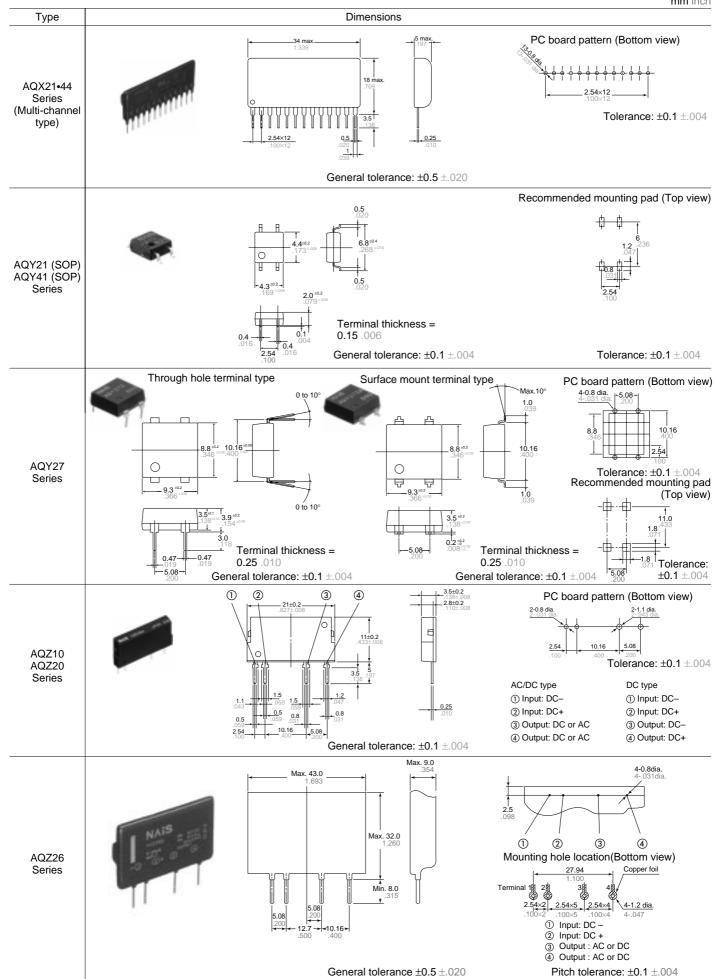
9. Off state leakage current Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: $25^{\circ}C$ 77°F

∢ 10 current, leakage 10 state en terminal 7 and 8 (N.C.) Bet đ 10 Between terminal 5 and 6 (N.O.) 10 ō 20 40 60 80 100 Load voltage, V


12. Applied voltage vs. output capacitance characteristics

Measured portion: between terminals 5 and 6, 7 and 8; Frequency: 1 MHz; Ambient temperature: $25^{\circ}C$

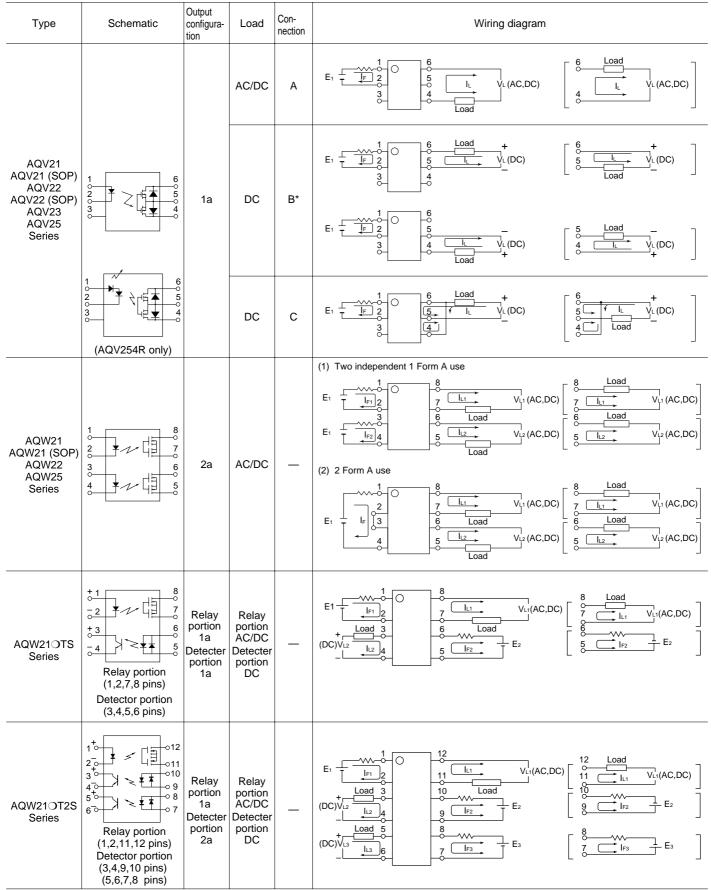

11. LED forward current vs. reverse (ON) time characteristics


Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: 400 V (DC); Continuous load current: 100 mA (DC); Ambient temperature: 25°C

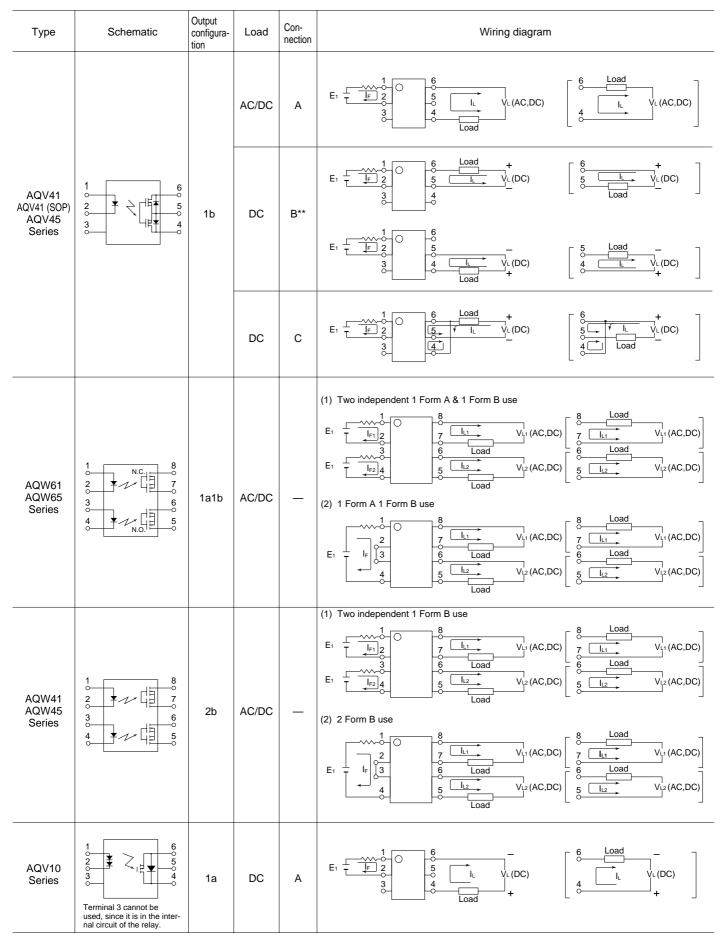
PhotoMOS Relay Technical Information How PhotoMOS Relays Operate: Optoelectronic device directly drives a power MOSFET. Semiconductor relay incorporating the advantages of both electromagnetic LED relays and semiconductors. Power MOSFET Optoelectronic device IN (-) IN (+) When operated When turned off When a signal current flows When the signal current at to the input terminals the LED the input terminal is cut off, the LED stops emitting light. on the input side emits light. The emitted light passes When the emitted light from through transparent silicon the LED stops, the voltage of and reaches the photoelectric the photoelectric element element (solar cell) which is decreases. mounted opposite the LED. The photoelectric element converts the received light to When the voltage supplied a voltage corresponding to from photoelectric element the quantity of light. This decrease, the control circuit voltage passes through a rapidly discharges the gate control circuit and charges the charge of MOSFET. MOSFET gate on the output side. When the MOSFET gate voltage supplied from the This control circuit makes photoelectric element reaches MOSFET stop conducting and a preset voltage value, the immediately turns off the load. MOSFET begins to conduct and turns on the load.

PhotoMOS Relay Dimensions

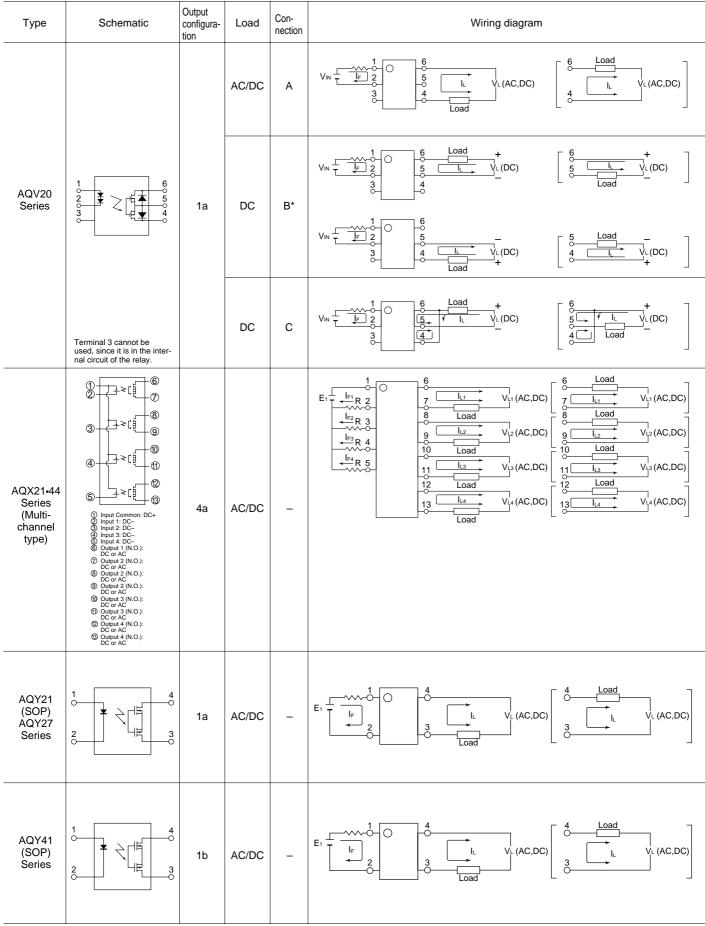
Terminology


	Term	Symbol	Description
	LED forward current	IF	Current that flows between the input terminals when the input diode is forward biased.
	LED reverse voltage	VR	Reverse breakdown voltage between the input terminals.
	Peak forward current	I _{FP}	Maximum instantaneous value of the forward current.
Input	LED operate current	I _{FON}	Current when the output switches on (by increasing the LED current) with a designated supply voltage and load connected between the output terminals.
	LED turn off current	I _{FOff}	Current when the output switches off (by decreasing the LED current) after operating the relay with a designated supply voltage and load connected between the output terminals
	LED dropout voltage	VF	Dropout voltage between the input terminals due to forward current.
	Power dissipation	Pin	Allowable power dissipation between the input terminals.
	Load voltage	VL	Supply voltage range at the output used to normally operate the PhotoMOS relay. Represents the peak value for AC voltages.
	Continuous load current	۱L	Maximum current value that flows continuously between the output terminals of the PhotoMOS relay under designated ambient temperature conditions. Represents the peak value for AC current.
Output	On resistance	Ron	Obtained using the equation below from dropout voltage V_{DS} (on) between the output terminals (when a designated LED current is made to flow through the input terminals and the designated load current through the output terminals.) $R_{On} = V_{DS}$ (on)/IL
	Off state leakage current	lleak	Current flowing to the output when a designated supply voltage is applied between the output terminals with no LED current flow.
	Power dissipation	Pout	Allowable power dissipation between the output terminals.
	Turn on time	Ton	Delay time until the output switches on after a designated LED current is made to flow through the input terminals.
	Turn off time	Toff	Delay time until the output switches off after the designated LED current flowing through the input terminals is cut off.
	I/O capacitance	Ciso	Capacitance between the input and output terminals.
	Output capacitance	Cout	Capacitance between output terminals when LED current does not flow.
Electrical characteristics	I/O isolation resistance	Riso	Resistance between terminals (input and output) when a specified voltage is applied between the input and output terminals.
	Total power dissipation	PT	Allowable power dissipation in the entire circuit between the input and output terminals.
	I/O isolation voltage	Viso	Critical value before dielectric breakdown occurs, when a high voltage is applied for 1 minute between the same terminals where the I/O isolation resistance is measured.
	Operating temperature	Topr	Ambient temperature range in which the PhotoMOS relay can operate normally with a designated load current conditions.
	Storage temperature	Tstg	Ambient temperature range in which the PhotoMOS relay can be stored without applying voltage.

Reliability tests


Classification	Item	Condition	Purpose	
	High temperature storage test	T _{stg} (Max.)	Determines resistance to long term storage at high temperature.	
	Low temperature storage test	T _{stg} (Min.)	Determines resistance to long term storage at low temperature.	
Life tests	High temperature and high humidity storage test	85°C 185°F, R.H. 85%	Determines resistance to long term storage at high temperature and high humidity.	
	Continuous operation life test	VL = Max., IL = Max., IF = LED operate current (Max.)	Determines resistance to electrical stress (voltage and current).	
Thermal	Temperature cycling test	Low storage temperature (T _{stg} Min.) High storage temperature (T _{stg} Max.)	Determines resistance to exposure to both low temperatures and high temperatures.	
environment	Thermal shock test	Low temperature (0°C) (32°F), High temperature (100°C) (212°F)	Determines resistance to exposure to sudden changes in tempera- ture.	
	Solder burning resistance	260±5°C 500±41°F, 10 s	Determines resistance to thermal stress occurring while soldering.	
	Vibration test	196 m/s² {20 G}, 20 to 2,000 Hz*1	Determines the resistance to vibration sustained during shipment or operation.	
Mechanical	Shock test	9,800 m/s² {1,000 G} 0.5 ms*²; 4,900 m/s² {500 G} 1 ms	Determines the mechanical and structural resistance to shock.	
environment tests	Drop test	Dropped at a height of 80 cm on oak board	Determines the mechanical resistance to drops sustained during shipment or operation.	
	Terminal strength test Determined from terminal shape and cross section		Determines the resistance to external force on the terminals of the PhotoMOS relay mounted on the PC board while wiring or operating.	
	Solderability	230°C 446°F 5 s (with soldering flux)	Evaluates the solderability of the terminals.	
		*1 10 t	o 55 Hz at double amplitude of 3 mm for Power PhotoMOS relavs.	

 *1 10 to 55 Hz at double amplitude of 3 mm for Power PhotoMOS relays. *2 4,900 m/s², 1 ms for Power PhotoMOS relays.


PhotoMOS Relay Schematic and Wiring Diagrams

*Can be also connected as 2 Form A type. (However, the sum of the continuous load current should not exceed the absolute maximum rating.)
**Can be also connected as 2 Form B type. (However, the sum of the continuous load current should not exceed the absolute maximum rating.)
Notes: 1. E₁: Power source at input side; V_{IN}: Input voltage; I_F: LED forward current; V_L: Load voltage; I_L: Load current; R: Current limit resistor.
2. Method of connecting the load at the output is devided into 3 types.

*Can be also connected as 2 Form A type. (However, the sum of the continuous load current should not exceed the absolute maximum rating.)
**Can be also connected as 2 Form B type. (However, the sum of the continuous load current should not exceed the absolute maximum rating.)
Notes: 1. E₁: Power source at input side; V_{IN}: Input voltage; I_F: LED forward current; V_L: Load voltage; I_L: Load current; R: Current limit resistor.
2. Method of connecting the load at the output is devided into 3 types.

*Can be also connected as 2 Form A type. (However, the sum of the continuous load current should not exceed the absolute maximum rating.)
**Can be also connected as 2 Form B type. (However, the sum of the continuous load current should not exceed the absolute maximum rating.)
Notes: 1. E₁: Power source at input side; V_{IN}: Input voltage; I_F: LED forward current; V_L: Load voltage; I_L: Load current; R: Current limit resistor.
2. Method of connecting the load at the output is devided into 3 types.

Notes: 1. E₁: Power source at input side; V_{IN}: Input voltage; I_F: LED forward current; V_L: Load voltage; I_L: Load current; R: Current limit resistor. 2. Method of connecting the load at the output is devided into 3 types.

PhotoMOS Relay Cautions for Use

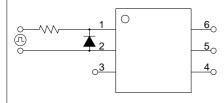
SAFETY WARNINGS

• Do not use the product under conditions that exceed the range of its specifications. It may cause overheating, smoke, or fire. • Do not touch the recharging unit while the power is on. There is a danger of electrical shock. Be sure to turn off the power when performing mounting, maintenance, or repair operations on the relay (including connecting parts such as the terminal board and socket).

• Check the connection diagrams in the catalog and be sure to connect the terminals correctly. Erroneous connections could lead to unexpected operating errors, overheating, or fire.

NOTES

PhotoMOS Relays excluding Power PhotoMOS Relays 1. Unused terminals 5. Ripple in th


The No. 3 terminal is used with the circuit inside the relay. Therefore, do not connect it to the external circuitry with either connection method A, B or C.

2. Short across terminals

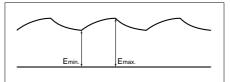
Do not short circuit between terminals when relay is energized, since there is the possibility of breaking the internal IC.

3. Surge voltages at the input

If reverse surge voltages are present at the input terminals, connect a diode in reverse parallel across the input terminals and keep the reverse voltages be- low the reverse breakdown voltage.

4. Recommended LED forward current (I⊧)

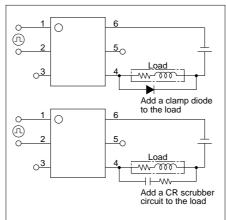
It is recommended that the LED forward current (IF) of each PhotoMOS Relay should be set according to the following table.


Туре		Product name	Recommended LED forward current (I _F)
		AQV10,20 Series	10 mA
		AQY27 Series*	5 to 10 mA
DIP SMD type	Standard I/O isolation type (1,500 V AC)	AQV21 Series (including SOP) AQV22 Series (including SOP) AQV25 Series AQV45 Series AQV45 Series AQW21 Series AQW21 Series AQW21 Series AQW25 Series AQW25 Series AQW25 Series AQW25 Series AQW25 Series AQW25 Series AQW25 Series AQW21,41 Series	5 mA
		AQV23 Series	2 mA
	Reinforced I/O isolation (5,000 V AC)	AQV21,41 Series AQV25,45 Series	5 to 10 mA
SIL	AQX21 Series		5 mA
type	AQZ10,20,26 Series		5 to 10 mA
*Standard I/O insolation type (2 500 V AC)			

Standard I/O insolation type (2,500 V AC)

5. Ripple in the input power supply

If ripple is present in the input power supply supply, observe the following: 1) For LED operate current at E_{min} , maintain the value mentioned in the table of "Note 4. Recommended LED forward current (IF)."

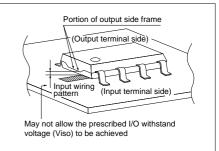

2) Keep the LED operate current at 50 VmA (25 mA for PhotoMOS HE Relay with LED display type) or less at E_{max} .

6. Output spike voltages

1) If an inductive load generates spike voltages which exceed the absolute maximum rating, the spike voltage must be limited.

Typical circuits are shown below.

2) Even if spike voltages generated at the load are limited with a clamp diode if the circuit wires are long, spike voltages will occur by inductance. Keep wires as short as possible to minimize inductance.

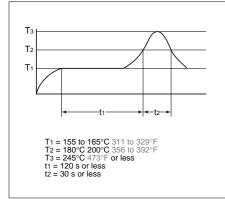

7. Cleaning solvents compatibility

Dip cleaning with an organic solvent is recommended for removal of solder flux, dust, etc. Select a cleaning solvent from the following table. If ultrasonic cleaning must be used, the severity of factors such as frequency, output power and cleaning solvent selected may cause loose wires and other defects. Make sure these conditions are correct before use. For details, please consult us.

CI	Cleaning solvent		
Chlorine- base	 I.I.I. Trichloroethlene (Chloroethlene) Trichloroethlene (Trichlene) Perchloroethlene Methlene chloride 	О	
Adueous	• Indusco 624, 1000 • Hollis 310 • Lonco Terg	О	
Alcohol- base	• IPA • Ethanol	О	
Others	• Thinner • Gasoline	×	

8. INPUT WIRING PATTERN

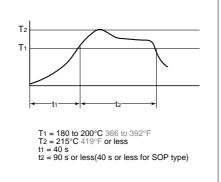
With AQY or AQW types, avoid installing the input (LED side) wiring pattern to the bottom side of the package if you require the specified I/O isolation voltage (Viso) after mounting the PC board. Since part of the frame on the output side is exposed, it may cause fluctuations in the I/O isolation voltage.



9. Soldering

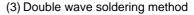
1) When soldering PC board terminals, keep soldering time to within 10 s at 260° C 500° F.

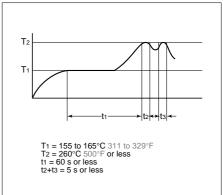
2) When soldering surface-mount terminals, the following conditions are recommended.


(1) IR (Infrared reflow) soldering method

(4) Soldering iron method Tip temperature: 280 to 300°C 536 to 572°F Wattage: 30 to 60 W

Soldering time: within 5 s

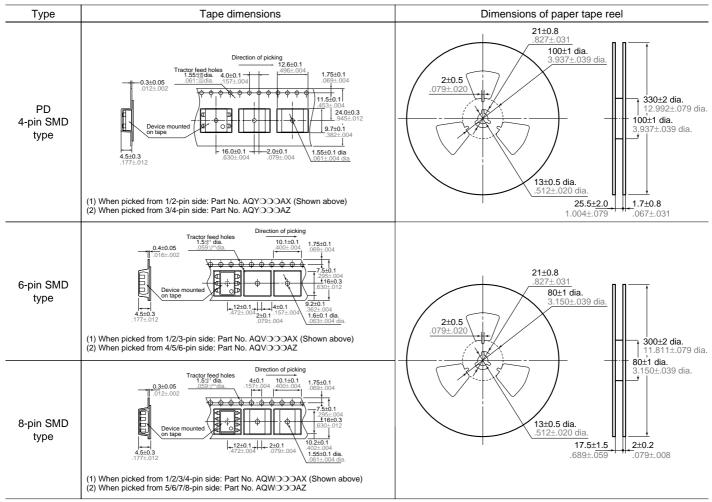

(2) Vapor phase soldering method



(5) Others

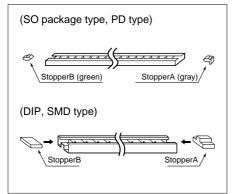
Check mounting conditions before using other soldering methods (hot-air, hot plate, pulse heater, etc.)

• The temperature profile indicates the temperature of the soldered terminal on the surface of the PC board. The



ambient temperature may increase excessively. Check the temperature under mounting conditions.

• The conditions for the infrared reflow soldering apply when preheating using the VPS method.


10. The following shows the packaging format

1) Tape and reel mm inch Туре Tape dimensions Dimensions of paper tape reel ection of p Tractor feed hole 1.55±0.05 dia 7.2±0.1 1.75±0.1 0.3±0.05 21±0.3 827±.012 φ **φφφ**φ 80+1 dia 39 <u>dia</u> SO package FP 12±0 To 4-pin type Device on tape 2±0.5 12±0.3 2±0.1 4.7+0.1 .079± 2.8±0 .55±0.1 250±2 dia. 9.843±.079 dia. (1) When picked from 1/2-pin side: Part No. AQYOOOSX (Reel color: blue) (Shown above) (2) When picked from 3/4-pin side: Part No. AQYOOOSZ (Reel color: orange) **80±1 dia.** 3.150±.039 dia. Direction of picking 3 ctor feed holes 1.55±0.06 dia. 4±0.1 7.2±0.1 1.75±0.1 0.3±0.06 SO package .217±.004 112±0.1 .472±.004 13+0.5 dia * 6-pin type 2 لمو Ŀ ice mounted 020 dia 14±1.5 2±0.5 +12±0.3 + + 2±0.1 2.8±0 72±.004 .55±0.1 dia 55 ± 059 .079±.020 (1) When picked from 1/2/3-pin side: Part No. AQVOOOSX (Reel color: blue) (Shown above) (2) When picked from 4/5/6-pin side: Part No. AQVOOOSZ (Reel color: orange) Direction of picking Tractor feed hole: 1.55±0.05 dia 1.75±0.1 0.3±0.05 7.5±0.1 2+0021±0.8 φ.φ.φ.φ.φ.φ 827±.031 - (1991) f 80±1 dia SO package .295±.00)39 dia 8-pin type Device on tap 4±0.1 0.5+0 2±0.5 2.8±0.3 3±.004 1.55±0.1 dia. 2±0.1 _12±0. .079 **250±2 dia.** 9.843±.079 dia. (1) When picked from 1/2/3/4-pin side: Part No. AQWOOOSX (Shown above) (2) When picked from 5/6/7/8-pin side: Part No. AQWOOOSZ 80±1 dia. 3.150±.039 dia. Direction of pic Tractor feed hole: 1.55±0.05 dia 1.75±0.1 0.3±0.05 7.5±0.1 ₩ SO package ±16±0.3 . 13+0.5 dia 12-pin type 4±0.1 2.8±0.3 17.5±1.5 2±1 2±0.1 1.55±0.1 dia .004 .689±.059 .079±.039 (1) When picked from 1/2/3/4/5/6-pin side: Part No. AQWOOOT2SX (Shown above) (2) When picked from 7/8/9/10/11/12-pin side: Part No. AQWOOOT2SZ

2) Tube

(1) Devices are packaged in a tube so pin No. 1 is on the stopper B side. Observe correct orientation when mounting them on PC boards.

(2) Storage

PhotoMOS relays implemented in SO packages are sensitive to moisture and come in sealed moisture-proof packages. Observe the following cautions on storage.

• After the moisture-proof package is unsealed, take the devices out of storage as soon as possible (within 1 month at the most).

• If the devices are to be left in storage for a considerable period after the moisture-proof package has been unsealed, it is recommended to keep them in another moisture-proof bag containing silica gel (within 3 months at the most).

11. Transportation and storage

1) Extreme vibration during transport will warp the lead or damage the relay. Handle the outer and inner boxes with care.

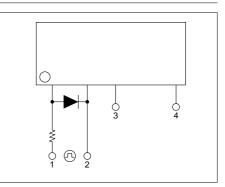
2) Storage under extreme conditions will cause soldering degradation, external appearance defects, and deterioration of the characteristics. The following storage conditions are recommended:

- Temperature: 5 to 30°C 41 to 86°F
 - Humidity: Less than 60% R.H.

• Atomosphere: No harmful gasses such as sulfurous acid gas, minimal dust.

Power PhotoMOS Relays 1.-1) Input LED current (Standard type and Internal varistor type)

For rising and dropping ratio of input LED current (di/dt), maintain min. 100 μ A/s.


1.-2) Input voltage (Voltage sensitive type)

For rising and dropping ratio of input voltage (dv/dt), maintain min. 100 mV/s.

2. Short across terminals

Do not short circuit between terminals when relay is energized, since there is possibility of breaking of the internal IC. **3. Surge voltages at the input**

If reverse surge voltages are present at the input terminals, connect a diode in reverse parallel across the input terminals and keep the reverse voltages be low the reverse breakdown voltage.

4. Recommended load voltage

As a guide in selecting PhotoMOS Relays, please refer to the following table.

1) Power photoMOS relays

<u> </u>	, ,			
	Turne	Absolute rat	Recom- mended	
	Туре	Load voltage	Load current	load voltage
	AQZ202	Peak AC 60 V	Peak AC 3.0 A	12 V AC; 5, 12,24 V DC
AC/DC type	AQZ205	Peak AC 100 V	Peak AC 2.0 A	24 V AC 48 V DC
AC/D(AQZ207	Peak AC 200 V	Peak AC 1.0 A	48 V AC 100 V DC
	AQZ204	Peak AC 400 V	Peak AC 0.5 A	100 V AC 200 V DC
	AQZ102	60 V DC	4.0 A DC	5,12,24 V DC
DC type	AQZ105	100 V DC	2.6 A DC	48 V DC
DC	AQZ107	200 V DC	1.3 A DC	100 V DC
	AQZ104	400 V DC	0.7 A DC	200 V DC

2) Power PhotoMOS relay high capacity type

Tura		Absolute rat	Recom- mended	
	Туре	Load voltage	Load current	load voltage
С e	AQZ262	Peak AC, DC 60V	Peak AC, DC 6A	12V AC 5,12,24V DC
AC/DC type	AQZ264	Peak AC, DC 400V	Peak AC, DC 1A	AC100V DC200V

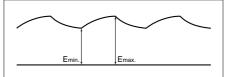
3) Power photoMOS relays (Voltage sensitive type)

	Turne	Absolute rat	Recom- mended	
	Туре	Load voltage	Load current	load voltage
	AQZ202D	Peak AC 60 V	Peak AC 2.7 A	12 V AC; 5, 12,24 V DC
AC/DC type	AQZ205D	Peak AC 100 V	Peak AC 1.8 A	24 V AC 48 V DC
AC/D(AQZ207D	Peak AC 200 V	Peak AC 0.9 A	48 V AC 100 V DC
	AQZ204D	Peak AC 400 V	Peak AC 0.45 A	100 V AC 200 V DC
	AQZ102D	60 V DC	3.6 A DC	5,12,24 V DC
DC type	AQZ105D	100 V DC	2.3 A DC	48 V DC
B	AQZ107D	200 V DC	1.1 A DC	100 V DC
	AQZ104D	400 V DC	0.6 A DC	200 V DC

4) Power photoMOS relays with internal varistor type

Туре		Absolute rat	Recom- mended	
		Load voltage	Load current	load voltage
	AQZ202V	17 V AC 22 V DC	Peak AC 3.0 A	12 V AC; 5,12 V DC
type	AQZ205V	30 V AC 38 V DC	Peak AC 2.0 A	24 V AC 48 V DC
AC/DC	AQZ207V	60 V AC 85 V DC	Peak AC 1.0 A	48 V AC 100 V DC
	AQZ204V	140 V AC 180 V DC	Peak AC 0.5 A	100 V AC 200 V DC

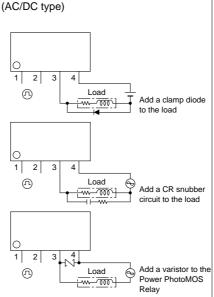
5.-1) Ripple in the input power supply (Standard type and high capacity type and internal varistor type)

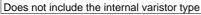

If ripple is present in the input power supply, observe the following:
1) For LED operate current at E_{min}, maintain min. 5 mA
2) Keep the LED operate current at 50 mA or less at E_{max}.

5.-2) Ripple in the input power supply (Voltage sensitive type)

If ripple is present in the input power supply, observe the following:

1) For input voltage at E_{min} , maintain min. 4 V


2) Keep input voltage at 30 V or less at E_{max} .



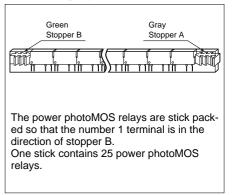
6. Output spike voltages

1) If an inductive load generates spike voltages which exceed the absolute maximum rating, the spike voltage must be limited.

Typical circuits are shown below.

2) Even if spike voltages generated at the load are limited with a clamp diode if the circuit wires are long, spike voltages will occur by inductance. Keep wires as short as possible to minimize inductance. **7. Adjacent mounting**

 Adjacent mounting
 When relays are mounted close together with the heat-generated devices, ambient temperature may rise abnormally. Mounting layout and ventilation should be considered.


2) When many relays are mounted close together, load current should be reduced. (Refer to the date of "Load current vs. ambient temperature characteristics in adjacent mounting.") 8. Cleaning solvents compatibility Dip cleaning with an organic solvent is recommended for removal of solder flux. dust, etc. Select a cleaning solvent from the following table. If ultrasonic cleaning must be used, the severity of factors such as frequency, output power and cleaning solvent selected may cause loose wires and other defects. Make sure these conditions are correct before use. For details, please consult us.

CI	Compatibility (O: Yes ×: No)	
Chlorine- base	 I.I.I. Trichloroethlene (Chloroethlene) Trichloroethlene (Trichlene) Perchloroethlene Methlene chloride 	О
Adueous	• Indusco 624, 1000 • Hollis 310 • Lonco Terg	0
Alcohol- base	• IPA • Ethanol	О
Others	• Thinner • Gasoline	×

9. Soldering

When soldering PC board terminals, keep soldering time to within 10 s at 260°C 500°F.

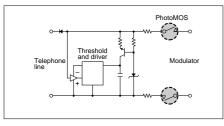
10. Packing style

11. Transport and storage

1) If the product is subject to extreme vibration during transport, the lead may warp or the main unit may become damaged. Handle the outer and inner boxes with care.

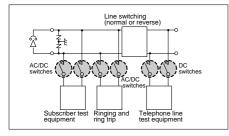
2) If the storage environment is extremely bad, it may give rise to deterioration of the soldering, external appearance defects, and degradation the characteristics of the product. The following conditions are recommended for the storage location:

- Temperature: 5 to 30°C 41 to 86°F
- Humidity: Less than 60% RH

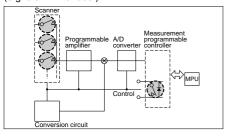

• Environment: No hazardous substances such as sulfurous acid gases, and little dust.

PhotoMOS Relays for Various Applications

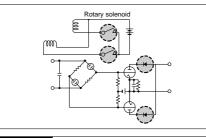
Automatic meter reading


The needs of centralized remote meter reading systems for water, gas and electricity in medium and high rise apartments and new subdivisions are now increasing. PhotoMOS relays are capable of controlling from low level signals up to power signals and feature low leakage current and noise from the optoelectronic device and power MOSFET combination.

A variety of signals, with levels from millivolts (at microamperes) to tens of volts (at several hundred milliamperes), AC or DC, and even high bit-rate signals, can be superimposed on telephone lines, the heart of

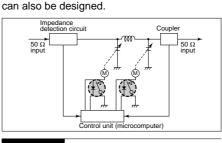

telecommunication networks. The switches in telecommunication circuits, which normally carry DC signals, also carry AC signals on top of the DC level when an intermittent signal (e.g. ringer signal) is being sent. PhotoMOS relays are capable of controlling small level (millivolts at microamperes) AC or DC signals.

Instrumentation


With the spread of microcomputer chips, the latest instruments are required to measure a variety of signals at high speeds under various conditions. PhotoMOS relays are recommended for measurement scanning functions, automatic zero-point compensation to eliminate zero-point error, and measurement sequence interfaces (e.g. alarm interface.)

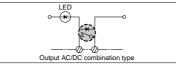
Medical equipment

Medical equipment which processes low level signals includes electrocardiographs, electroencephalographs, and X-ray CT scanners. PhotoMOS relays accurately transfer low level signals (less than several hundred millivolts). Furthermore, they are also convenient in driving rotary solenoids such as those used to automatically switch voltage ranges.



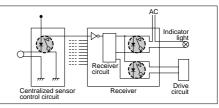
Communications

The future of communications is in satellite communications. Satellite-communications feature many advantages such as indifference to terrestrial disasters, wide service areas, simple circuit modification and simultaneous conversations. An important control operation in communications equipment is fast


equipment

automatic tuning. PhotoMOS relays can easily be connected in parallel, difficult with conventional transistor type. As a result, a variety of circuit connection are possible and power circuits

The output circuit of a programmable controller requires various interfaces to match the load type. Recently, as the computing speed and data processing speed increase, problems may arise from noise at the input interface as well as at the output interface. PhotoMOS relays are resistant to inrush current (due to phase shift) and eliminate the need for snubber circuits as long as they are operated within the ratings. Furthermore, use of PhotoMOS relays decreases the mounting area requirements, resulting in more compact programmable controllers.

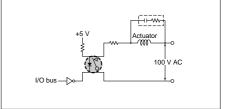


Security Equipment

There are many types of security systems from home and office security to building security. PhotoMOS relays are ideal for use as input interfaces for system sensors and output interfaces for alarms.

Input interface: Low leakage current makes use possible for low level voltage and current input.

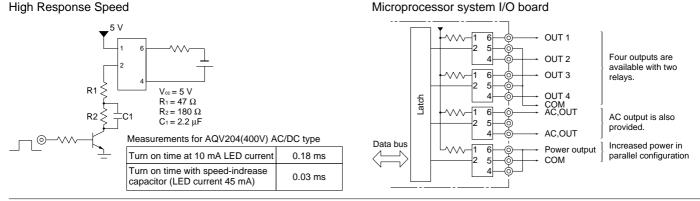
Output interface: Outputs either AC or DC up to a load voltage of 400 V.

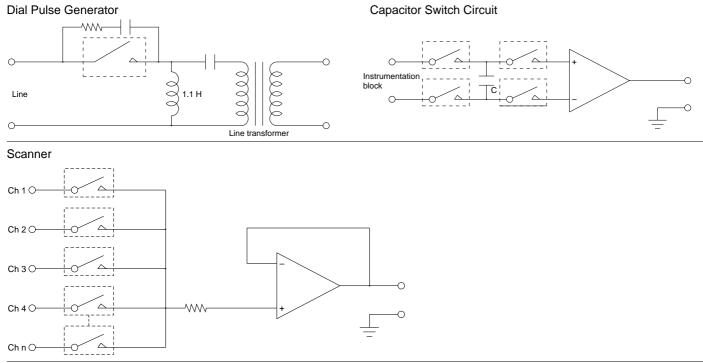

OA equipment usually contains a sensor control unit (for temperature, speed, torque, etc.), drive unit, power supply unit, and a processing unit which controls the overall system. It is organized similarly to compact factory

automation machinery. PhotoMOS relays have wide application in the interfaces for signals which connect the functions of these units.

• Operates on a 24 mW input to enable direct control of C-MOS devices.

• Signal transfer through optical coupling achieves high resistance to noise and transients, eliminating the need for adding a snubber circuit to the output to control the load voltage.


• Advantages in the total cost and reliability in the control system result from the absence of AC leakage current related to the snubber circuit.



If you are a user experiencing difficulty with solid-state relays and triacs:

If you would like to control small analog signals with a photocoupler and solid-state relays.	} >	$\left\{ \begin{array}{l} {\sf PhotoMOS \ relays \ feature \ low \ offset \ voltages \ and \ on \ resistances \ of \ 0.25 \ \Omega \ or \\ {\sf less. \ (AQV251 \ Connection)} \end{array} \right.$
If you require a device with a small leakage current (as opposed to bipolar devices having large internal leakage currents).	}	PhotoMOS relays have leakage currents in the order of microamperes and can control up to 1500 V (peak). (AQV258)
If you would like to directly control analog signals and you would like a device integrating a photocoupler, driver and analog IC to simplify the circuit as much as possible.	}	PhotoMOS relays contain all of these functions in a single package. Furthermore, circuit design is simplified as a power supply is unnecessary since the internal optoelectronic device directly drives the power MOSFET.
If you require a snubber circuit with a triac or solid-state relay, but are concerned about the snubber circuit's AC leakage current.	}	PhotoMOS relays are resistant to transients and as long as they are operated within the maximum ratings, eliminate the need for adding a snubber circuit to the output to control the rise in load voltage. Leakage current ceases to be a problem, with cost and reliability being other advantages.
If you require a device for AC control that is resistant to ambient temperature changes and input signal noise.	}	PhotoMOS relays do not employ the self-trigger mechanism used in SCRs and triacs. Therefore, they do not switch on accidentally. Furthermore, the noise suppression characteristics of optoelectronic devices make them highly resistant to ambient noise for operation at temperatures up to 80°C 176°F.

PhotoMOS Relay Application Examples High Response Speed Microprocessor system I/O board

Part No. vs. Load Voltage Quick Reference

PhotoMOS Relays

Form A Type

	J 1													
Group name	Part No.	Pack- age style	Number of channels	Load voltage	40 V	60 V	100 V (RF:80 V)	200 V	250 V	350 V	400 V	600 V	1000 V	1500 V
				Third digit	1	2	5	7	3	0	4	6	9	8
HE	AQV25O		1-channel	Standard Viso	AQV251	AQV252	AQV255	AQV257	AQV253		AQV254 AQV254R		AQV259	AQV258
		DIP		High Viso					AQV253H		AQV254H			
	AQW25O		2-channels	Standard Viso							AQW254			
HE Soft ON/OFF type	AQV25OM	DIP	1-channel	Standard Viso				AQV257M						
	AQV21O		1-channel	Standard Viso		AQV212	AQV215	AQV217		AQV210	AQV214	AQV216		
		DIP		High Viso							AQV214H			
	AQW21O		2-channels	Standard Viso		AQW212	AQW215	AQW217		AQW210	AQW214	AQW216		
	AQX2144O	SIL	4-channels	Standard Viso							AQX21444			
GU -	AQY21OS	SOP	1-channel (4 pin)	Standard Viso						AQY210S	AQY214S			
	AQV21OS		1-channel (6 pin)	Standard Viso		AQV212S	AQV215S	AQV217S		AQV210S	AQV214S	AQV216S		
	AQW21OS		2-channels	Standard Viso						AQW210S	AQW214S			
	AQW21OTS	SOP	2-channels (MOSFET+ optocoupler)	Standard Viso						AQW210TS				
	AQW21O T2S		SOP	SOP	3-channels (MOSFET+ 2optocouplers)	Standard Viso						AQW210T2S		
GU-E	AQV21OE	DIP	1-channel	Standard Viso						AQV210E	AQV214E			
				High Viso						AQV210EH	AQV214EH			
RF	AQV22O	DIP	1-channel	Standard Viso	AQV221		AQV225							
RF Low-ON type	AQV22ON		1-channel	Standard Viso			AQV225N	AQV227N			AQV224N			
	AQW22ON	DIP	2-channels	Standard Viso			AQW225N	AQW227N			AQW224N			
	AQV22ONS	SOP	1-channel	Standard Viso			AQV225NS	AQV227NS			AQV224NS			
нs	AQV23O	DIP	1-channel	Standard Viso							AQV234			
	AQV10O	— DIP	1-channel	Standard Viso	AQV101	AQV102			AQV103		AQV104			
HF	AQV20O		1-channel	Standard Viso	AQV201	AQV202			AQV203		AQV204			
PD	AQY27O	DIP	1-channel	Standard Viso		AQY272	AQY275	AQY277			AQY274			

Form B Type

Group	Part No.	Package	Number of	Load voltage	300 V	400 V
name	Part No.	style	channels	Third digit	3	4
HE	AQV45O		1-channel	Standard Viso	AQV453	AQV454
	AQV45O	DIP	r-channel	High Viso		AQV454H
	AQW45O		2-channels	Standard Viso		AQW454
	AQV41O	DID	1-channel	Standard Viso		AQV414
	AQW41O	DIP	2-channels	Standard Viso		AQW414
GU	AQY41OS	000	1-channel (4-pin)	Standard Viso		AQY414S
	AQV41OS	SOP	1-channel (6-pin)	Standard Viso		AQV414S
GU-E	AQV41OE	DIP	1-channel	Standard Viso		AQV414E
			r-charmer	High Viso		AQV414EH

David Ma	Package	Number of	Load voltage	400 V							
Part No.	style	channel	Third digit	4							
AQW65O	DIP	2-channel	Standard Viso	AQW654							
AQW61O	DIP	2-channel	Standard Viso	AQW614							
		AQW65O DIP	Part No. style channel AQW65O DIP 2-channel	Part No. Fackage style Indicate channel Third digit AQW65O DIP 2-channel Standard Viso							

Power PhotoMOS Relays Form A Type

0	Part No.	Package style	Number of channels	Load voltage	40 V	60 V	100 V	200 V	250 V	350 V	400 V
Group name	Part NO.			Third digit	1	2	5	7	3	0	4
Standard type	AQZ10O					AQZ102	AQZ105	AQZ107			AQZ104
Otandard type	AQZ20O	SIL	1-channel	Standard Viso		AQZ202	AQZ205	AQZ207			AQZ204
Varistor incorporated type	AQZ20OV					AQZ202V	AQZ205V	AQZ207V			AQZ204V
Voltage sensitive type	AQZ10OD					AQZ102D	AQZ105D	AQZ107D			AQZ104D
	AQZ20OD					AQZ202D	AQZ205D	AQZ207D			AQZ204D
High capacity type	AQZ26O					AQZ262					AQZ264

O stands for third digit. Notes: 1. Standard Viso: 1,500 V between I/O. 2.High Viso: 5,000 V between I/O.