March 2015 # FDD8447L 40V N-Channel PowerTrench MOSFET 40V, 50A, $8.5 m\Omega$ #### **Features** - Max $r_{DS(on)}$ = 8.5m Ω at V_{GS} = 10V, I_D = 14A - Max $r_{DS(on)}$ = 11.0m Ω at V_{GS} = 4.5V, I_D = 11A - Fast Switching - RoHS Compliant ## **General Description** This N-Channel MOSFET has been produced using Fairchild Semiconductor's proprietary PowerTrench technology to deliver low $r_{DS(on)}$ and optimized BV_{DSS} capability to offer superior performance benefit in the application. ## **Applications** - Inverter - Power Supplies ## **MOSFET Maximum Ratings** T_C = 25°C unless otherwise noted | Symbol | Parameter | Ratings | Units | |-----------------------------------|---|-------------|-------| | V _{DS} | Drain to Source Voltage | 40 | V | | V_{GS} | Gate to Source Voltage | ±20 | V | | | Drain Current -Continuous (Package limited) T _C = 25°C | 50 | | | | -Continuous (Silicon limited) T _C = 25°C | 57 | | | ΙD | -Continuous T _A = 25°C (Note | 1a) 15.2 | A | | | -Pulsed | 100 | | | I _S | Max Pulse Diode Current | 100 | Α | | E _{AS} | Drain-Source Avalanche Energy (Not | e 3) 153 | mJ | | | Power Dissipation T _C = 25°C | 44 | | | P_{D} | T _A = 25°C (Note | 1a) 3.1 | W | | | T _A = 25°C (Note | 1b) 1.3 | | | T _J , T _{STG} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ### **Thermal Characteristics** | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | | 2.8 | | |-----------------|---|-----------|-----|------| | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1a) | 40 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1b) | 96 | | #### **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |----------------|----------|---------------|-----------|------------|------------| | FDD8447L | FDD8447L | D-PAK(TO-252) | 13" | 16mm | 2500 units | ## **Electrical Characteristics** T_J = 25°C unless otherwise noted | Symbol | Parameter | Test Conditions | Min | Тур | Max | Units | |--|---|---|-----|-----|------|-------| | Off Chara | cteristics | | | | | | | BV_{DSS} | Drain to Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | 40 | | | V | | $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature Coefficient | I _D = 250μA, referenced to 25°C | | 35 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 32V, V _{GS} = 0V | | | 1 | μА | | I _{GSS} | Gate to Source Leakage Current | $V_{GS} = \pm 20V, V_{GS} = 0V$ | | | ±100 | nA | #### On Characteristics (Note 2) | $V_{GS(th)}$ | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_D = 250 \mu A$ | 1.0 | 1.9 | 3.0 | V | |--|--|--|-----|------|------|-------| | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage
Temperature Coefficient $I_D = 250 \mu A$, referenced to 25°C | | | -5 | | mV/°C | | | | V _{GS} = 10V, I _D = 14A | | 7.0 | 8.5 | | | r _{DS(on)} | Static Drain to Source On Resistance | $V_{GS} = 4.5V, I_D = 11A$ | | 8.5 | 11.0 | mΩ | | , , | | V _{GS} = 10V, I _D = 14A, T _J =125°C | | 10.4 | 14.0 | | | 9 _{FS} | Forward Transconductance | V _{DS} = 5V, I _D = 14A | | 58 | | S | ## **Dynamic Characteristics** | C _{iss} | Input Capacitance | V 00V V 0V | | 1970 | pF | |------------------|------------------------------|--|--|------|----| | C _{oss} | Output Capacitance | $V_{DS} = 20V, V_{GS} = 0V,$
f = 1MHz | | 250 | pF | | C _{rss} | Reverse Transfer Capacitance | 1 - 1101112 | | 150 | pF | | R_g | Gate Resistance | f = 1MHz | | 1.27 | Ω | ## **Switching Characteristics** | t _{d(on)} | Turn-On Delay Time | | | 12 | 21 | ns | |---------------------|--|--|--|----|----|----| | t _r | Rise Time | $V_{DD} = 20V, I_{D} = 1A$
$V_{GS} = 10V, R_{GEN} = 6\Omega$ | | 12 | 21 | ns | | t _{d(off)} | Turn-Off Delay Time | | | 38 | 61 | ns | | t _f | Fall Time | | | 9 | 18 | ns | | $Q_{g(TOT)}$ | Total Gate Charge, V _{GS} = 10V | | | 37 | 52 | nC | | $Q_{g(TOT)}$ | Total Gate Charge, V _{GS} = 5V | V _{DD} = 20V, I _D = 14A
V _{GS} = 10V | | 20 | 28 | nC | | Q _{gs} | Gate to Source Gate Charge | V _{GS} - 10V | | 6 | | nC | | Q_{gd} | Gate to Drain "Miller" Charge | | | 7 | | nC | #### **Drain-Source Diode Characteristics** | I_S | Maximum Continuous Drain-Source Diode | Maximum Continuous Drain-Source Diode Forward Current | | | 2.6 | Α | |-----------------|--|---|----------|-----|-----|----| | V_{SD} | Source to Drain Diode Forward Voltage V _{GS} = 0V, I _S = 14A | | (Note 2) | 8.0 | 1.2 | V | | t _{rr} | Reverse Recovery Time | 1 - 14A di/dt - 100/ | V/o | 22 | | ns | | Q _{rr} | Reverse Recovery Charge | I _F = 14A, di/dt = 100A/μs | | 11 | | nC | #### Notes: Reuc is guaranteed by design while Reua is determined by the user's board design. a. 40°C/W when mounted on a 1 in2 pad of 2 oz copper b. 96°C/W when mounted on a minimum pad. ^{2:} Pulse Test: Pulse Width < $300\mu\text{s},$ Duty cycle < 2.0%. ^{3:} Starting TJ = 25° C, L = 1mH, IAS = 17.5A, VDD = 40V, VGS = 10V. ## **Typical Characteristics** Figure 1. On-Region Characteristics Figure 2. On-Resistance Variation with Drain Current and Gate Voltage Figure 3. On-Resistance Variation with Temperature Figure 4. On-Resistance Variation with Gate-to-Source Voltage Figure 5. Transfer Characteristics Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature ## **Typical Characteristics** Figure 7. Gate Charge Characteristics Figure 8. Capacitance Characteristics Figure 9. Maximum Safe Operating Area Figure 10. Single Pulse Maximum Power Dissipation Figure 11. Single Pulse Maximum Peak Current Figure 12. Unclamped Inductive Switching Capability ## **Typical Characteristics** Figure 13. Transient Thermal Response Curve Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design. NON-DIODE PRODUCTS VERSION NOTES: UNLESS OTHERWISE SPECIFIED - A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, - ISSUE C, VARIATION AA. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009. - D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED CORNERS OR EDGE PROTRUSION. - E) TRIMMED CENTER LEAD IS PRESENT ONLY FOR DIODE PRODUCTS - F) DIMENSIONS ARE EXCLUSSIVE OF BURSS, - MOLD FLASH AND TIE BAR EXTRUSIONS. - G) LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD TO228P991X239-3N. - H) DRAWING NUMBER AND REVISION: MKT-TO252A03REV10 (ROTATED -90°) SCALE: 12X #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ F-PFS™ AttitudeEngine™ FRFET® Global Power ResourceSM Awinda[®] AX-CAP®* GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™ CorePLUS™ Gmax™ CorePOWER™ $\mathsf{GTO}^{\mathsf{TM}}$ CROSSVOLT™ IntelliMAX™ CTL™ ISOPLANAR™ Current Transfer Logic™ Making Small Speakers Sound Louder DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™ **ESBC™** MicroPak™ **f**® MicroPak2™ MillerDrive™ Fairchild® MotionMax™ Fairchild Semiconductor® MotionGrid® FACT Quiet Series™ MTi[®] FACT MTx® FAST[®] MVN® FastvCore™ mWSaver® FETBench™ OptoHiT™ FPS™ OPTOLOGIC® OPTOPLANAR® Power Supply WebDesigner™ PowerTrench® PowerXSTI Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM SYSTEM TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™ UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM. Xsens™ 仙童™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE <u>NRCHILDSEMI.COM.</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### **ANTI-COUNTERFEITING POLICY** Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS #### Definition of Terms | Definition of Terms | | | | | | |--------------------------|-----------------------|---|--|--|--| | Datasheet Identification | | Definition | | | | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | | Rev. 174