" Features

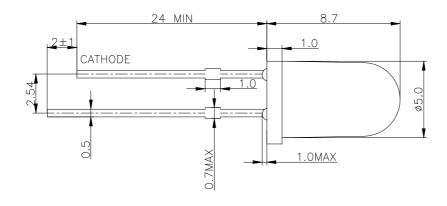
●5mm Round LED Lamps

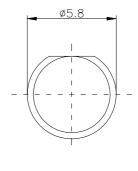
●Emitting Color: White

●Lens Color: Water Clear

●Mertial:InGaN

•Low power consumption


Excellent product quality and reliability


●Lead-free device

" Applications

- Electronic signs and signals
- Bright ambient lighting conditions
- Backlight
- General purpose indicatiors

Package Dimensions

Notes

- 1. All dimensions are in millimeters.
- 2. Tolerance is ± 0.25 unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.
- 5. The design and working Current for Led is not less than 2mA.

Absolute Maximum Ratings at TA=25 C

Parameter	Symbol	Value	Unit	
Power Dissipation	PD	120	mW	
Forward Current	IF	30	mA	
Peak Forward Current*1	IFP	100	mA	
Reverse Voltage	VR	5	V	
Operating Temperature	Topr	-40°C To +85°C		
Storage Temperature	Tstg	-40°C To +85°C		
Soldering Temperature*2	Tsol	260°C For 5 Seconds		

Notes:

" Electrical / Optical Characteristics at TA=25 C

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Forward Voltage	VF	_	3.0	_	V	IF=20mA
Reverse Current	IR			10	μΑ	VR=5V
Chromaticity Coordinates	X		0.283		!	IF=20mA
	Y		0.29		-:	IF=20mA
Luminous Intensity	IV		27000		mcd	IF=20mA
Power Angle	2 0 1/2	_	15	_	Deg.	IF=20mA

Remarks

If special sorting is required (e.g. binning based on forward voltage, luminous intensity, or dominant wavelength), the typical accuracy of the sorting process is as follows:

^{*1:} Pulse width≤0.1ms, Duty cycle≤1/10

^{*2:} ΔAt the position of 3mm below package base.

^{*3: ▲} Plese refer to the curve of forward current vs.temperature

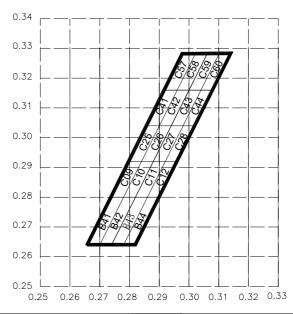
^{1.}Dominant Wavelength:+/-1nm

^{2.}Chromatic Coordinates:+/-0.01

^{3.} Luminous Intensity: +/-15%

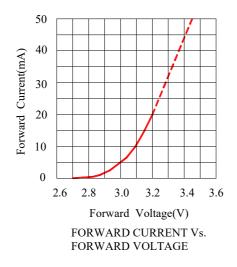
Forward Voltage Combination (V at 20mA)

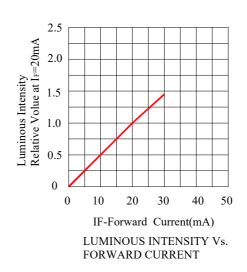
	VF	Condition			
Rank	Min	Max	Condition		
F2G1	2.8	3.0			
G2H1	3.0	3.2	IF=20mA		
H2I1	3.2	3.4	IF-ZUIIA		
I2J1	3.4	3.6			

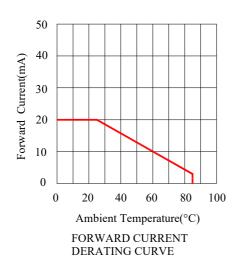

Tolerance:±0.1V

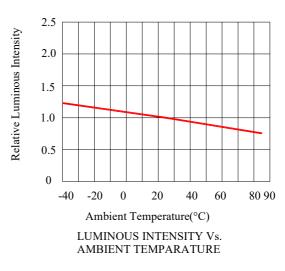
Luminous Intensity Combination (mcd at 20mA)

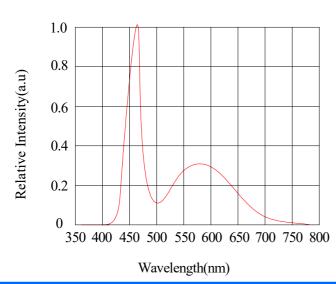
Rank	IV(n	Condition	
Name	Min	Max	Containin
Т	18000	27000	IF=20mA
U	27000	40000	IF-ZUITA

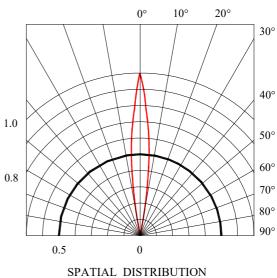

Tolerance:±15%


Color Combination (at 20mA)




D.4.1	X	0.266	0.274	0. 278	0. 270	C97	X	0.288	0. 294	0.298	0. 292
B41	Y	0. 264	0.280	0.280	0. 264	C27	Y	0.292	0.304	0.304	0. 292
D.40	X	0.270	0.278	0. 282	0. 274	000	X	0. 292	0. 298	0.302	0. 296
B42	Y	0. 264	0.280	0.280	0. 264	C28	Y	0.292	0.304	0.304	0. 292
D49	X	0. 274	0. 282	0.286	0. 278	C41	X	0.286	0. 292	0.296	0. 290
B43	Y	0. 264	0.280	0.280	0. 264	C41	Y	0.304	0.316	0.316	0.304
D44	X	0.278	0. 286	0.290	0. 282	C49	X	0.290	0. 296	0.300	0. 294
B44	Y	0. 264	0.280	0.280	0. 264	C42	Y	0.304	0.316	0.316	0.304
COO	X	0. 274	0.280	0. 284	0. 278	C43	X	0.294	0.300	0.304	0. 298
C09	Y	0.280	0. 292	0. 292	0. 280		Y	0.304	0.316	0.316	0.304
C10	X	0.278	0. 284	0.288	0. 282	CAA	X	0.298	0.304	0.308	0.302
C10	Y	0.280	0. 292	0. 292	0. 280	C44	Y	0.304	0.316	0.316	0.304
C11 -	X	0. 282	0. 288	0. 292	0. 286	C57	X	0. 292	0. 298	0.302	0. 296
CII	Y	0.280	0. 292	0. 292	0. 280	037	Y	0.316	0.328	0.328	0.316
C19	X	0.286	0.292	0.296	0.290	C58	X	0.296	0.302	0.306	0.300
C12	Y	0.280	0. 292	0. 292	0. 280	C36	Y	0.316	0.328	0.328	0.316
C25	X	0.280	0. 286	0. 290	0. 284	C59	X	0.300	0.306	0.310	0.304
625	Y	0. 292	0.304	0.304	0. 292		Y	0.316	0.328	0.328	0.316
C26	X	0. 284	0. 290	0. 294	0. 288	CCO	X	0.304	0.310	0.314	0.308
C26	Y	0. 292	0.304	0.304	0. 292	C60	Y	0.316	0. 328	0.328	0.316


Typical Electrical/Optical Characteristics Curves



Reliability Test Items and Conditions

Test Classifica- tion	Test ltim	Test Conditions	Test Du- ration	Sample Size	AC/RE
Life Test	Room Temperature DC Operating Life Test Ta=25°C±5°C, If=20mA		1000hrs	22pcs	0/1
	Thermal Shock Test	100°C±5°C 15min ↓↑ -40°C±5°C 15min	20 cycles	22pcs	0/1
Environment Test	Temperature Cyle Test	100°C±5°C 30min ↓↑5min -40°C±5°C 30min	20 cycles	22pcs	0/1
	High Temperature & High Humidity Test	85°C±5°C /85% RH	1000hrs	22pcs	0/1
	High Temperature Storage	Ta=100°C±5°C	1000hrs	22pcs	0/1
	Low temperature Storage	Ta=-40°C±5°C	1000hrs	22pcs	0/1
Mechanical Test	Resistance to Soldering Heat	Temp=260°C ±5°C T=5s max	2 times	22pcs	0/1

" Criteria for Judging the Damage

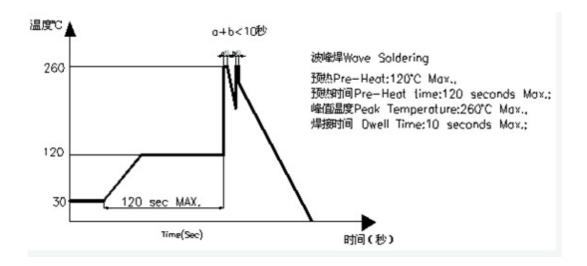
Item	Symbol	condition	Criteria for Judgement		
Item	Symbol	Condition	MIN.	MAX.	
Forward Voltage	VF V!	IF=20mA		U.S.L*1.1	
Reverse Current	IR uA!	VR=5V		10uA	
Luminous Intensity	IV mcd!	IF=20mA	L.S.L*0.5		

Note\$ 1.USL% Upper Specification Level

2.LSL% Lower Specification Level

CAUTIONS:

1.Lead Forming & Assembly


- Lead forming or bending must be done before soldering, at normal temperature.
- During lead forming, the leads should be bent at a point at least 3mm from the base of LED lens.
- Do not use the base of the lead frame as a fulcrum during lead forming.
- Avoid bending the leads at the same point more than once.
- During assembly on PCB, use minimum clinch force possible to avoid excessive mechanical stress.

2.LED Mounting Method

- •The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement.Lead-forming may be required to insure the lead pitch matches the hols pitch.
- When soldering wire to the LED. Use individual heat-shrink tubing to insulate the exposed leads to prevent accidental coontact short-circuit.
- •Use stand-offs or spacers to securely position the LED above the PCB.

3. Soldering

• When soldering, the soldering iron needs to be at least 3mm away from the epoxy edge. After soldering, allow at least 3 minutes for LEDs to cool back to normal temperature.DO not apply any pressure to the epoxy encapsulation or the lead frame during the soldering process.

- When using soldering iron .please solder once for less than 5 seconds at a maximum Temperature of 300°C. When soldering a row of LED on a PCB. Please do not solder both Leads of a LED in sequence. (Solder all the positive lead first .then all the negative leads).
- Do not dip the epoxy encapsulation part of LED into any soldering paste liquid.
- After soldering .do not adjust the location of the LED anymore .

• When attaching electronic parts to a PCB with LEDs .the curing time for the whole PCB

Should be less than 60 seconds .at less than a temperature of 120°C.

4. Cleaning:

• Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LEDs if necessary.

5.Storage

- The storage ambient for the LEDs should not exceed 30" temperature or 70% relative humidity.
- It is recommended that LEDs out of their original packaging are used within three months. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant or in desiccators with nitrogen ambient.

6.ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED.

Suggestions to prevent of ESD damage.

- All devices, equipment, and machinery must be properly grounded.
- Use a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- Maintain a humidity level of 50% or higher in production areas.
- Use anti-static packaging for transportation and storage.

7. Recommended Usage Guidelines

- Please only use 20mA(Lamp LED) of forward current to drive LEDs whether one LED or multiple LEDs are being used.
- Sudden surge could damage the LED interior connections.please design circuit with care to no sudden voltage surge or current surge will show when turning the circuit on or off.