

概要_				

MAX3483Eファミリ(MAX3483E/MAX3485E /MAX3486E/MAX3488E/MAX3490E/MAX3491E) のデバイスは、RS-485及びRS-422通信用の±15kV ESD保護付、+3.3V、低電力トランシーバです。各デバ イスは、ドライバを1つとレシーバを1つ含んでいます。 MAX3483EとMAX3488Eは、EMIを最小限に抑え、 不適切に終端処理されたケーブルによって生じる反射を 低減するスルーレート制限ドライバを備えているため、 250kbpsまでのデータレートでエラーフリーのデータ 伝送が可能です。部分的にスルーレート制限された MAX3486Eは、最大2.5Mbpsまで伝送します。 MAX3485E、MAX3490E及びMAX3491Eは最大 12Mbpsまでとなっています。

全てのデバイスは静電放電(ESD)保護が強化されて います。全てのトランシーバ出力及びレシーバ入力は IEC 1000-4-2エアギャップ放電で±15kV、IEC 1000-4-2接触放電で±8kV、ヒューマンボディモデルで ±15kVまで保護されています。

ドライバは短絡電流制限付で、しかもサーマルシャット ダウン回路が出力をハイインピーダンス状態にして 過剰な電力消費から保護します。レシーバ入力は、 両方の入力がオープン回路の時にロジックハイ出力を 保証するフェイルセーフ機能を備えています。

MAX3488E、MAX3490E及びMAX3491Eはフルデュー プレックス通信、MAX3483E、MAX3485E及び MAX3486Eはハーフデュープレックス通信用として 設計されています。

アプリケーション

テレコミュニケーション 工業制御ローカルエリアネットワーク EMIに敏感なアプリケーション用のトランシーバ 統合サービスディジタルネットワーク

パケット交換

選択ガイド _

特長

- ◆ RS-485 I/OピンのESD保護 ±15kV---ヒューマンボディモデル ±8kV---IEC 1000-4-2接触放電 ±15kV---IEC 1000-4-2エアギャップ放電
- ◆ 電源:単一+3.3V(チャージポンプ不要)
- ◆ +5Vロジックとの相互動作が可能
- ◆ 保証データレート: 12Mbps (MAX3485E/MAX3490E/MAX3491E)
- ◆ スルーレート制限によるエラーのないデータ伝送 (MAX3483E/MAX3488E)
- ◆ 2nA低電流シャットダウンモード (MAX3483E/MAX3485E/MAX3486E/MAX3491E)
- ◆ 同相入力電圧範囲: -7V~+12V
- ◆ フルデュープレックス及びハーフデュープレックス のバージョンを入手可能
- ◆ 工業標準75176と同じピン配置 (MAX3483E/MAX3485E/MAX3486E)
- ◆ 電流制限とサーマルシャットダウンによるドライバ 過負荷保護

型番

PART	TEMP. RANGE	PIN-PACKAGE
MAX3483ECSA	0°C to +70°C	8 SO
MAX3483ECPA	0°C to +70°C	8 Plastic DIP
MAX3483EESA	-40°C to +85°C	8 SO
MAX3483EEPA	-40°C to +85°C	8 Plastic DIP
MAX3485ECSA	0°C to +70°C	8 SO
MAX3485ECPA	0°C to +70°C	8 Plastic DIP
MAX3485EESA	-40°C to +85°C	8 SO
MAX3485EEPA	-40°C to +85°C	8 Plastic DIP

型番はデータシートの最後に続きます。

PART NUMBER	GUARANTEED DATA RATE (Mbps)	SUPPLY VOLTAGE (V)	HALF/FULL DUPLEX	SLEW-RATE LIMITED	DRIVER/ RECEIVER ENABLE	SHUTDOWN CURRENT (nA)	±15kV ESD PROTECTION	PIN COUNT
MAX3483E	0.25		Half	Yes	Yes	2	Yes	8
MAX3485E	12		Half	No	Yes	2	Yes	8
MAX3486E	2.5	3.0 to 3.6	Half	Yes	Yes	2	Yes	8
MAX3488E	0.25	3.0 10 3.0	Full	Yes	No	_	Yes	8
MAX3490E	12		Full	No	No	_	Yes	8
MAX3491E	12		Full	No	Yes	2	Yes	14

ABSOLUTE MAXIMUM RATINGS

	-
Supply Voltage (V _{CC})	+7V
Control Input Voltage (RE, DE)	
Driver Input Voltage (DI)	0.3V to +7V
Driver Output Voltage (A, B, Y, Z)	7.5V to +12.5V
Receiver Input Voltage (A, B)	7.5V to +12.5V
Receiver Output Voltage (RO)0.3	V to $(V_{CC} + 0.3V)$
Continuous Power Dissipation ($T_A = +70$ °C)	
8-Pin SO (derate 5.88mW/°C above +70°C)	471mW
8-Pin Plastic DIP (derate 9.09mW/°C above +	70°C)727mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.3V \pm 0.3V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	(CONDITION	s	MIN	TYP	MAX	UNITS
		$R_L = 100\Omega$ (RS-422), Fig		4	2.0			
Differential Driver Output	V _{OD}	$R_L = 54\Omega$ (RS-4	85), Figure 4	1	1.5			V
		$R_L = 60\Omega$ (RS-4	85), Vcc = 3	3.3V, Figure 5	1.5			1
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States (Note 1)	ΔV _{OD}	R_L = 54 Ω or 100 Ω , Figure 4				0.2	V	
Driver Common-Mode Output Voltage	Voc	$R_L = 54\Omega$ or 100	DΩ, Figure 4				3	V
Change in Magnitude of Common-Mode Output Voltage (Note 1)	ΔV _{OC}	R_L = 54 Ω or 100 Ω , Figure 4				0.2	V	
Input High Voltage	V _{IH}	DE, DI, RE			2.0			V
Input Low Voltage	V _{IL}	DE, DI, RE					0.8	V
Logic Input Current	I _{IN1}	DE, DI, RE					±2	μΑ
Input Current (A, B)	l _{IN2}	DE = 0, V _{CC} = 0 or 3.6V	1	$V_{IN} = 12V$ $V_{IN} = -7V$			1.0	- mA
Output Leakage (Y, Z)	I _O	$DE = 0$, $\overline{RE} = 0$, $V_{CC} = 0$ or 3.6V		$V_{OUT} = 12V$ $V_{OUT} = -7V$			20 -20	μΑ
Output Leakage (Y, Z) in Shutdown Mode	I _O	$DE = 0, \overline{RE} = V_0$ $V_{CC} = 0 \text{ or } 3.6V$		V _{OUT} = 12V V _{OUT} = -7V			1 -1	μΑ
Receiver Differential Threshold Voltage	VTH	-7V ≤ V _{CM} ≤ 12'	V		-0.2		0.2	V
Receiver Input Hysteresis	ΔV_{TH}	$V_{CM} = 0$				50		mV
Receiver Output High Voltage	Voh	$I_{OUT} = -1.5 \text{mA},$	V _{ID} = 200m ¹	V, Figure 6	Vcc - 0.4	4		V
Receiver Output Low Voltage	Vol	$I_{OUT} = 2.5 \text{mA}, V$	$I_{ID} = 200 \text{mV}$, Figure 6			0.4	V
Three-State (High-Impedance) Output Current at Receiver	lozr	V _{CC} = 3.6V, 0 ≤ V _{OUT} ≤ V _{CC}				±1	μА	
Receiver Input Resistance	RIN	-7V ≤ V _{CM} ≤ 12V			12			kΩ
Supply Voltage Range	V _{CC}				3.0		3.6	V
0 1 0 1		No load,	DE = V _{CC} ,	RE = 0 or V _{CC}		1.1	2.2	
Supply Current	Icc	$DI = 0$ or V_{CC} $DE = 0$, $\overline{RE} = 0$			0.95	1.9	mA mA	
Supply Current in Shutdown Mode	I _{SHDN}	$DE = 0$, $\overline{RE} = V_{CC}$, $DI = V_{CC}$ or 0				0.002	1	μА

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.3V \pm 0.3V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Short-Circuit Output Current	Loop	V _{OUT} = -7V			-250	mA
Driver Short-Circuit Output Current	losp	V _{OUT} = 12V			250] "
Receiver Short-Circuit Output Current	Iosr	0 ≤ V _{RO} ≤ V _{CC}	±8		±60	mA
		IEC 1000-4-2 Air Discharge		±15		
ESD Protection for Y, Z, A, B		IEC 1000-4-2 Contact Discharge (MAX3483E, MAX3485E, MAX3486E, MAX3491E)		±8		kV
		IEC 1000-4-2 Contact Discharge (MAX3490E, MAX3488E)*		±6		
		Human Body Model		±15		

^{*}MAX3488E and MAX3491E will be compliant to ±8kV per IEC 1000-4-2 Contact Discharge by September 1999.

DRIVER SWITCHING CHARACTERISTICS—MAX3485E/MAX3490E/MAX3491E

 $(V_{CC} = +3.3V, T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Data Rate			12	15		Mbps
Driver Differential Output Delay	t _{DD}	$R_L = 60\Omega$, Figure 7	1	22	35	ns
Driver Differential Output Transition Time	t _{TD}	$R_L = 60\Omega$, Figure 7	3	11	25	ns
Driver Propagation Delay, Low-to-High Level	tplH	$R_L = 27\Omega$, Figure 8	7	23	35	ns
Driver Propagation Delay, High-to-Low Level	tphL	$R_L = 27\Omega$, Figure 8	7	23	35	ns
tplh - tphl Driver Propagation-Delay Skew (Note 2)	tpDS	$R_L = 27\Omega$, Figure 8		-1.4	±8	ns
DRIVER-OUTPUT ENABLE/DISABLE TIMES (MAX3485	E/MAX349	1E only)				
Driver-Output Enable Time to Low Level	t _{PZL}	$R_L = 110\Omega$, Figure 10		42	90	ns
Driver-Output Enable Time to High Level	tpzh	$R_L = 110\Omega$, Figure 9		42	90	ns
Driver-Output Disable Time from High Level	tphz	$R_L = 110\Omega$, Figure 9		35	80	ns
Driver-Output Disable Time from Low Level	tpLZ	$R_L = 110\Omega$, Figure 10		35	80	ns
Driver-Output Enable Time from Shutdown to Low Level	tpsl	$R_L = 110\Omega$, Figure 10		650	900	ns
Driver-Output Enable Time from Shutdown to High Level	tpsh	$R_L = 110\Omega$, Figure 9		650	900	ns

DRIVER SWITCHING CHARACTERISTICS—MAX3486E

 $(V_{CC} = +3.3V, T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Data Rate			2.5			Mbps
Driver Differential Output Delay	t _{DD}	$R_L = 60\Omega$, Figure 7	20	42	70	ns
Driver Differential Output Transition Time	t _{TD}	$R_L = 60Ω$, Figure 7	15	28	60	ns
Driver Propagation Delay, Low-to-High Level	tpLH	$R_L = 27\Omega$, Figure 8	20	42	75	ns
Driver Propagation Delay, High-to-Low Level	tpHL	$R_L = 27\Omega$, Figure 8	20	42	75	ns
tplh - tphl Driver Propagation-Delay Skew (Note 2)	tpDS	$R_L = 27\Omega$, Figure 8		-6	±12	ns
DRIVER-OUTPUT ENABLE/DISABLE TIMES						
Driver-Output Enable Time to Low Level	tpzL	R_L = 110 Ω , Figure 10		52	100	ns
Driver-Output Enable Time to High Level	tpzh	R_L = 110 Ω , Figure 9		52	100	ns
Driver-Output Disable Time from High Level	tpHZ	R_L = 110 Ω , Figure 9		40	80	ns
Driver-Output Disable Time from Low Level	tpLZ	R_L = 110 Ω , Figure 10		40	80	ns
Driver-Output Enable Time from Shutdown to Low Level	tpsl	$R_L = 110\Omega$, Figure 10		700	1000	ns
Driver-Output Enable Time from Shutdown to High Level	tpsh	$R_L = 110\Omega$, Figure 9		700	1000	ns

DRIVER SWITCHING CHARACTERISTICS—MAX3483E/MAX3488E

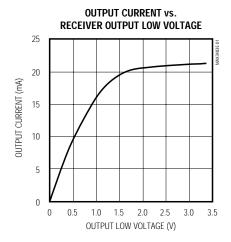
 $(V_{CC} = +3.3V, T_A = +25^{\circ}C.)$

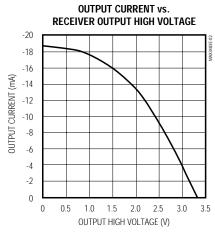
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Data Rate			250			kbps
Driver Differential Output Delay	t _{DD}	$R_L = 60\Omega$, Figure 7	600	900	1400	ns
Driver Differential Output Transition Time	t _{TD}	R_L = 60Ω, Figure 7	400	740	1200	ns
Driver Propagation Delay, Low-to-High Level	tplh	$R_L = 27\Omega$, Figure 8	700	930	1500	ns
Driver Propagation Delay, High-to-Low Level	tphL	$R_L = 27\Omega$, Figure 8	700	930	1500	ns
t _{PLH} - t _{PHL} Driver Propagation-Delay Skew (Note 2)	t _{PDS}	$R_L = 27\Omega$, Figure 8		±50		ns
DRIVER-OUTPUT ENABLE/DISABLE TIMES (MAX348)	BE only)					
Driver-Output Enable Time to Low Level	tpzL	$R_L = 110\Omega$, Figure 10		900	1300	ns
Driver-Output Enable Time to High Level	tрzн	$R_L = 110\Omega$, Figure 9		600	800	ns
Driver-Output Disable Time from High Level	tphz	R_L = 110 Ω , Figure 9		50	80	ns
Driver-Output Disable Time from Low Level		$R_L = 110\Omega$, Figure 10		50	80	ns
Driver-Output Enable Time from Shutdown to Low Level	tpsL	$R_L = 110\Omega$, Figure 10		1.9	2.7	μs
Driver-Output Enable Time from Shutdown to High Level	tpsh	$R_L = 110\Omega$, Figure 9		2.2	3.0	μs

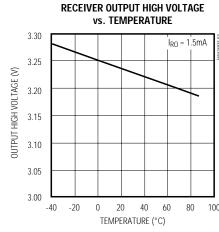
RECEIVER SWITCHING CHARACTERISTICS

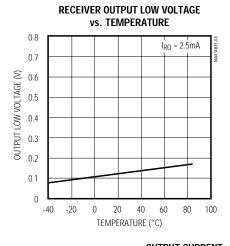
 $(V_{CC} = +3.3V, T_A = +25^{\circ}C.)$

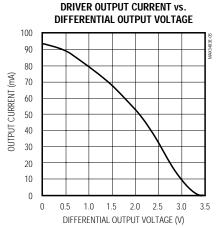
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Time to Shutdown	tshdn	MAX3483E/MAX3485E/MAX3486E/MAX3491E only (Note 3)		190	300	ns
Receiver Propagation Delay,	t _{RPLH}	V _{ID} = 0 to 3.0V, C _L = 15pF, Figure 11	25	62	90	ns
Low-to-High Level	IRPLH	MAX3483E/MAX3488E	25	75	120	113
Receiver Propagation Delay,	toouu	V _{ID} = 0 to 3.0V, C _L = 15pF, Figure 11	25	62	90	ns
High-to-Low Level	t _{RPHL}	MAX3483E/MAX3488E	25	75	120	1 113
t _{PLH} - t _{PHL} Receiver	toone	V _{ID} = 0 to 3.0V, C _L = 15pF, Figure 11		6	±10	ns
Propagation-Delay Skew	trpds	MAX3483E/MAX3488E		12	±20	1 115
Receiver-Output Enable Time to Low Level	t _{PRZL}	C _L = 15pF, Figure 12, MAX3483E/85E/86E/91E only		25	50	ns
Receiver-Output Enable Time to High Level	tprzh	C _L = 15pF, Figure 12, MAX3483E/85E/86E/91E only		25	50	ns
Receiver-Output Disable Time from High Level	tpRHZ	C _L = 15pF, Figure 12, MAX3483E/85E/86E/91E only		25	45	ns
Receiver-Output Disable Time from Low Level	tprlz	C _L = 15pF, Figure 12, MAX3483E/85E/86E/91E only		25	45	ns
Receiver-Output Enable Time from Shutdown to Low Level	tpRSL	C _L = 15pF, Figure 12, MAX3483E/85E/86E/91E only		720	1400	ns
Receiver-Output Enable Time from Shutdown to High Level	tprsh	C _L = 15pF, Figure 12, MAX3483E/85E/86E/91E only		720	1400	ns

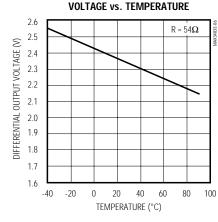

Note 1: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC}, respectively, when the DI input changes state.

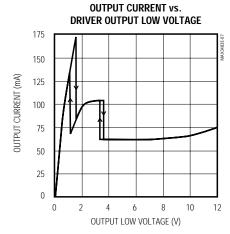

Note 2: Measured on |tplh (Y) - tphL (Y)| and |tplh (Z) - tphL (Z)|.

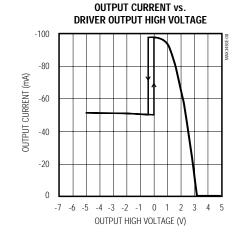

Note 3: The transceivers are put into shutdown by bringing $\overline{\text{RE}}$ high and DE low. If the inputs are in this state for less than 80ns, the devices are guaranteed not to enter shutdown. If the inputs are in this state for at least 300ns, the devices are guaranteed to have entered shutdown. See *Low-Power Shutdown Mode* section.

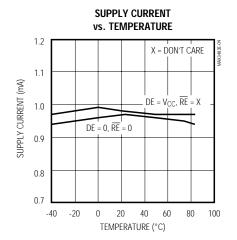

標準動作特性

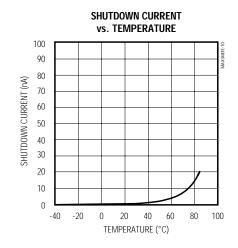

 $(V_{CC} = +3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$








DRIVER DIFFERENTIAL OUTPUT



標準動作特性(続き)

 $(V_{CC} = +3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

端子説明

	端子			
MAX3483E MAX3485E MAX3486E	MAX3488E MAX3490E	MAX3491E	名称	機能
1	2	2	RO	レシーバ出力。AがBよりも200mV高ければROはハイになります。 AがBよりも200mV低ければROはローになります。
2	_	3	RE	レシーバ出力イネーブル。 $\overline{\text{RE}}$ がローの時、 $\overline{\text{RO}}$ がイネーブルされます。 $\overline{\text{RE}}$ がハイの時、 $\overline{\text{RO}}$ は代インピーダンスになります。 $\overline{\text{RE}}$ がハイで $\overline{\text{DE}}$ がローの時、デバイスは低電力シャットダウンモードになります。
3	_	4	DE	ドライバ出力イネーブル。ドライバ出力は、DEをハイにすることによってイネーブルされます。DEがローの時はハイインピーダンスになります。REがハイでDEがローの場合、デバイスは低電力シャットダウンモードになります。ドライバ出力がイネーブルされると、デバイスはラインドライバとして機能します。ドライバ出力がハイインピーダンスになっていると、REがローの時にデバイスはラインレシーバとして機能します。
4	3	5	DI	ドライバ入力。DIがローの時、出力Yが強制的にローになり、出力Zがハイになります。同様に、DIがハイの時に出力Yがハイになり、出力Zがローになります。
5	4	6, 7	GND	グランド
_	5	9	Υ	非反転ドライバ出力
_	6	10	Z	反転ドライバ出力
6	_	_	А	非反転レシーバ入力及び非反転ドライバ出力
_	8	12	А	非反転レシーバ入力
7	_	_	В	反転レシーバ入力及び反転ドライバ出力
_	7	11	В	反転レシーバ入力
8	1	13, 14	Vcc	正電源: 3.0 V V_{CC} 3.6 V。 V_{CC} > 3.6 Vでデバイスを動作させないで下さい。
_	_	1, 8	N.C.	無接続。内部接続されていません。

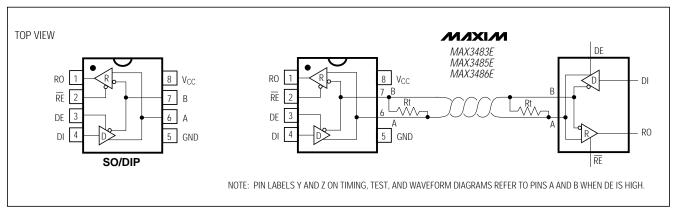


図1. MAX3483E/MAX3485E/MAX3486Eのピン配置及び標準動作回路

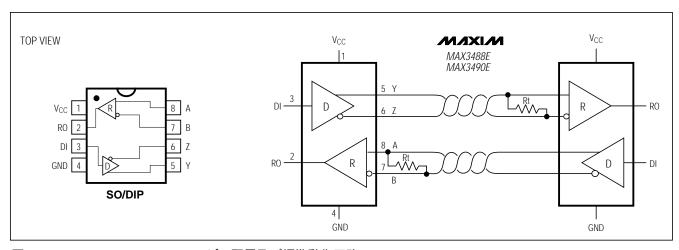


図2. MAX3488E/MAX3490Eのピン配置及び標準動作回路

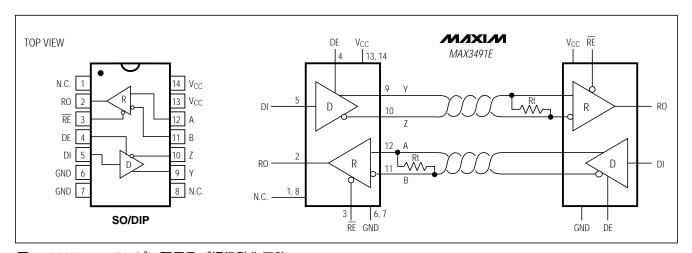


図3. MAX3491Eのピン配置及び標準動作回路

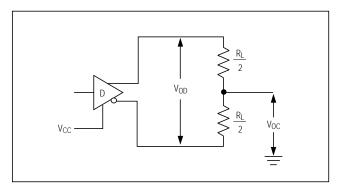


図4. ドライバV_{OD}及びV_{OC}

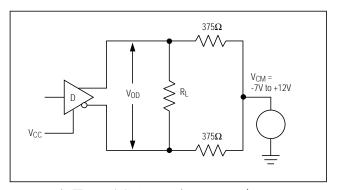


図5. 同相電圧を変化させた時のドライバVOD

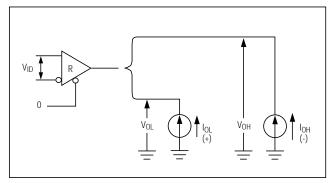


図6. レシーバV_{OH}及びV_{OL}

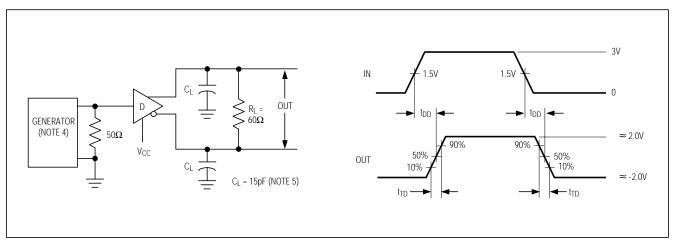


図7. ドライバの差動出力遅延及び遷移時間

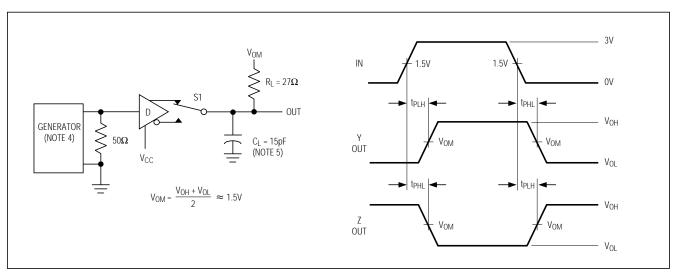


図8. ドライバの伝播時間

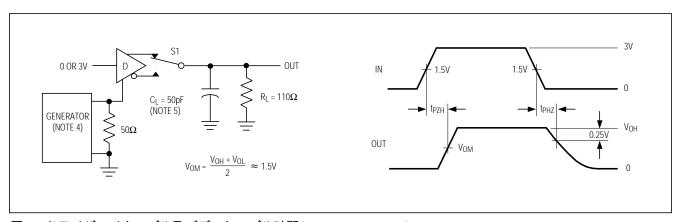


図9. ドライバのイネーブル及びディセーブル時間(t_{PZH}、t_{PSH}、t_{PHZ})

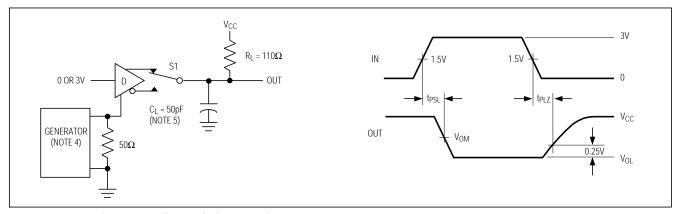


図10. ドライバのイネーブル及びディセーブル時間(t_{PZL}、t_{PSL}、t_{PLZ})

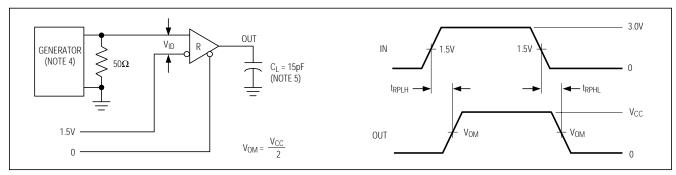


図11. レシーバ伝播遅延

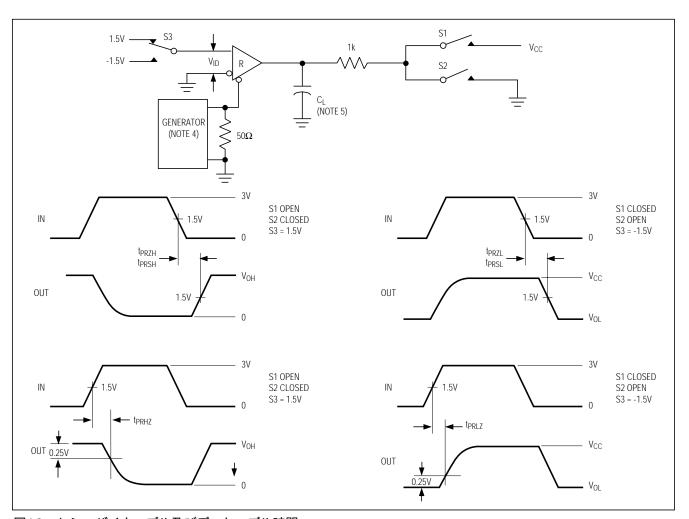


図12. レシーバイネーブル及びディセーブル時間

注記4:入力パルスはパルス発生器で供給され、以下の特性を持っています:f = 250kHz、デューティサイクル50%、

 $t_r = 6.0 \text{ ns}, Z_0 = 50$.

注記5:C₁はプローブ及び浮遊容量を含んでいます。

機能表

レシーバ/ドライバイネーブル付デバイス (MAX3483E/MAX3485E/MAX3486E/MAX3491E)

表1. 送信

INPUTS		OUTPUTS		MODE	
RE	DE	DI	В*	A *	WIODE
Х	1	1	0	1	Normal
Х	1	0	1	0	Normal
0	0	Χ	High-Z	High-Z	Normal
1	0	Χ	High-Z	High-Z	Shutdown

*B及びAはフルデュープレックスの場合それぞれZ及びYです (MAX3491E)。

X = 任意。High-Z = ハイインピーダンス

表2. 受信

INPUTS			OUTPUTS	MODE	
RE	DE	A, B	RO	WODL	
0	0*	≥+0.2V	1	Normal	
0	0*	≤-0.2V	0	Normal	
0	0*	Inputs Open	1	Normal	
1	0	Х	High-Z	Shutdown	

*DEはフルデュープレックスの場合任意(x)です(MAX3491E)。 X =任意。High-Z = ハイインピーダンス

レシーバ/ドライバイネーブルなしのデバイス (MAX3488E/MAX3490E)

表3. 送信

INPUT	OUTPUTS	
DI	Z	Υ
1	0	1
0	1	0

表4. 受信

INPUTS	OUTPUT
A, B	RO
≥+0.2V	1
≤-0.2V	0
Inputs Open	1

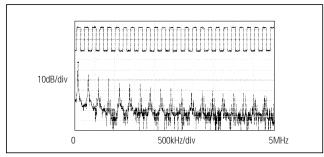


図13. MAX3485E/MAX3490E/MAX3491Eが 125kHz信号を送信している時の ドライバ出力波形及びFFTプロット

アプリケーション情報

MAX3483E/MAX3485E/MAX3486E/MAX3480E/MAX3490E/MAX3491Eは、RS-485及びRS-422通信用の低電力トランシーバです。MAX3483E及びMAX3488Eは、250kbpsまでのデータレートで送受信が可能です。MAX3486Eは最大2.5Mbpsまで、MAX3485E/MAX3490E/MAX3491Eは最大12Mbpsまでとなっています。MAX3488E、MAX3490E及びMAX3491Eはフルデュープレックストランシーバ、MAX3483E、MAX3485E及びMAX3486Eはハーフデュープレックスです。MAX3483E/MAX3486Eはハーフデュープレックスです。MAX3483E/MAX3485E/MAX3486E/MAX3491Eには、ドライバイネーブル(DE)及びレシーバイネーブル(RE)が含まれています。ディセーブルされると、ドライバとレシーバの出力はハイインピーダンスになります。

低EMI及び低反射

(MAX3483E/MAX3486E/MAX3488E)

MAX3483E/MAX3488Eはスルーレートが制限されているため、EMIを最小限に抑え、不適切に終端処理されたケーブルによって生じる反射を低減します。図13に、MAX3485E/MAX3490E/MAX3491Eが125kHz信号を送信している時のドライバ出力波形及びそのフーリエ解析を示します。大振幅の高周波高調波が目立ちます。図14は、同じ信号をスルーレート制限のMAX3483E/MAX3488Eが送信した場合を表わしています。高周波高調波の振幅がかなり小さくなり、EMIの可能性が著しく低下しています。

低電流シャットダウンモード

(MAX3483E/MAX3485E/MAX3486E/MAX3491E)

低電力シャットダウンモードは、REをハイに、DEをローにすることによって起動します。ドライバとレシーバの両方がディセーブル(ハイインピーダンス)されない限り、デバイスはシャットダウンしません。シャットダウン中、デバイスの消費電流は僅か2nA(typ)です。

これらのデバイスにおいては、イネーブル時間t_{PSH}及びt_{PSL}はデバイスが低電力シャットダウンモードにあると仮定し、イネーブル時間t_{PZH}及びt_{PZL}はレシーバ又はドライバがディセーブルされている一方で、デバイスはシャットダウンされていないと仮定しています。

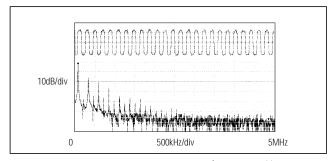


図14. MAX3483E/MAX3488Eが125kHz信号を 送信している時のドライバ出力波形及び FFTプロット

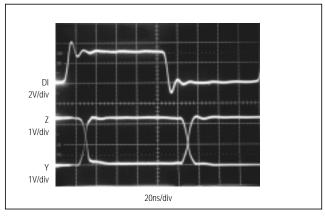


図15. MAX3485E/MAX3490E/MAX3491Eの ドライバ伝播遅延

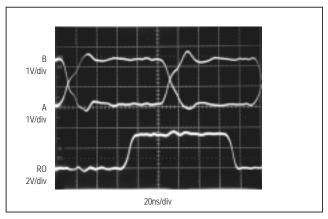


図16. MAX3485E/MAX3490E/MAX3491Eの レシーバ伝播遅延(外部RS-485デバイスで駆動)

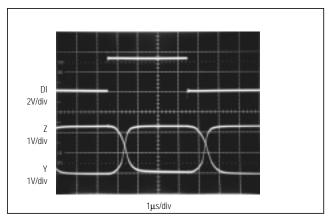


図17. MAX3483E/MAX3488Eのドライバ伝播遅延

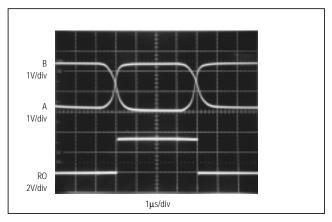


図18. MAX3483E/MAX3488Eのレシーバ伝播遅延

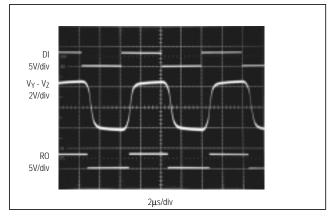


図19. MAX3483E/MAX3488Eが125kHzで1200m のケーブルを駆動している場合のシステム差動 電圧

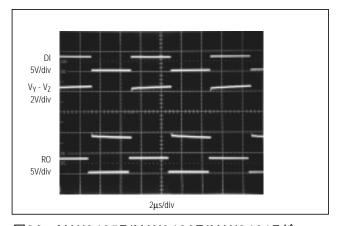


図20. MAX3485E/MAX3490E/MAX3491Eが 125kHzで1200mのケーブルを駆動している 場合のシステム差動電圧

ドライバ出力保護

本デバイスには、障害又はバス競合に起因する過剰な出力電流及び電力消費を防止する機構が2つ備わっています。出力段のフの字電流制限機能は、全同相電圧範囲にわたる短絡に対して直ちに保護を提供します(「標準動作特性」を参照)。さらに、チップが過熱するとサーマルシャットダウン回路がドライバ出力を強制的にハイインピーダンス状態にします。

伝播遅延

図15~18に標準伝播遅延を示します。スキュー時間はローからハイとハイからローの伝播遅延の間の差です。ドライバ/レシーバのスキュー時間が小さいため、対称的なマーク・スペース比(デューティサイクル50%)が保持しやすくなっています。

レシーバスキュー時間(ltpRLH - tpRHLi)は10ns以下です (MAX3483E/MAX3488Eは20ns)。ドライバスキュー時間は、MAX3485E/MAX3490E/MAX3491Eが8ns、MAX3486Eが12ns、そしてMAX3483E/MAX3488E が50ns以下(typ)です。

ラインの長さとデータレート

RS-485/RS-422規格は、1200mまでのライン長をカバーしています。1200mよりも長いラインについては、図21にラインリピータの例を示します。

図19及び20に、デバイスが1200mの26AWGツイストペア線で120 の負荷を125kHzで駆動した場合のシステム差動電圧を示します。

これよりも速いデータ速度での送信については、お問い合わせ下さい。

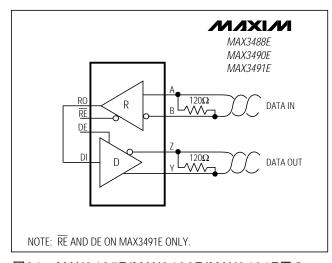


図21. MAX3485E/MAX3490E/MAX3491E用の ラインリピータ

±15kVのESD保護

本製品は、マキシム社の他の製品と同様、製品取扱い及び組立て中に生じる静電放電から保護するために、全てのピンにESD保護構造が取り入れられています。MAX3483Eファミリのドライバ出力及びレシーバ入力ピンは、静電気に対する保護が特別に強化されています。マキシム社は、±15kVのESDにもダメージを受けない新構造を開発しました。このESD構造は全ての状態(通常動作、シャットダウン及びパワーダウン)において高いESDに耐えます。ESD発生後でも、マキシム社のEバージョンの製品はラッチアップせず、損傷も受けずに動作します。

ESD保護は、様々な方法で試験できます。本製品ファミリのトランスミッタ出力及びレシーバ入力の下記の 範囲まで保護が確かめられています。

- 1) ヒューマンボディモデルの場合は、±15kV
- 2) IEC1000-4-2の接触放電法の場合は、±8kV
- 3) IEC1000-4-2のエアギャップ放電法の場合は、 ±15kV

ESD試験の条件

ESD性能は様々な条件に依存します。試験のセットアップ、試験方法及び試験結果を記載した信頼性レポートについては、マキシム社にお問合わせ下さい。

ヒューマンボディモデル

図22aに、ヒューマンボディモデルを示します。図22bは、低インピーダンスの負荷に放電した場合にヒューマンボディモデルが生成する電流波形を示しています。このモデルでは、測定するESD電圧まで充電された100pFのコンデンサを使用しています。この電圧は、1.5kの抵抗を通して試験素子に放電されます。

IEC1000-4-2

IEC1000-4-2規格は、完成品のESD試験及び性能については規定していますが、集積回路については特に触れていません。MAX3483Eファミリのデバイスを使用することにより、ESD保護部品を追加せずに、IEC1000-4-2のレベル4(最高レベル)に適合する機器を設計できます。

ヒューマンボディモデルとIEC 1000-4-2による試験の主な違いは、IEC 1000-4-2の方がピーク電流が高いことにあります。IEC 1000-4-2のESD試験モデルの方が直列抵抗が低いため、測定されたESD耐圧は一般的にヒューマンボディモデルによる耐圧よりも低くなっています。図23aにIEC 1000-4-2モデルを示します。図23bに、±8kVのIEC 1000-4-2レベル4のESD接触放電試験の電流波形を示します。

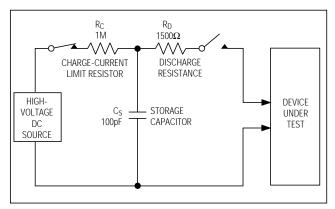


図22a. ヒューマンボディモデルによるESD試験モデル

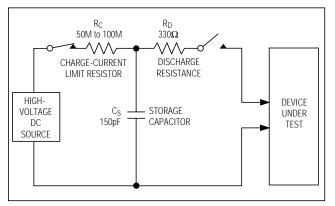


図23a. IEC 1000-4-2によるESD試験モデル

エアギャップ試験は、充電したプローブを素子に 近付けることによって行います。接触放電法では、 プローブが充電される前に素子に接触させます。

マシンモデル

マシンモデルによるESD試験では充電コンデンサを200pFに、放電抵抗をゼロにして全てのピンを試験します。この試験の目的は、製造中の取り扱い及び組み立て中の接触によるストレスをエミュレートすることです。もちろん、RS-485の入出力ピンだけでなく全てのピンにこのような保護が必要です。

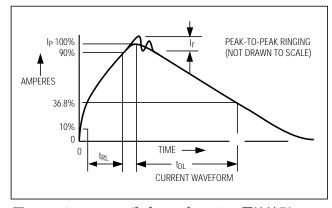


図22b. ヒューマンボディモデルによる電流波形

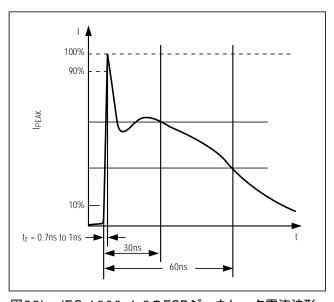


図23b. IEC 1000-4-2のESDジェネレータ電流波形

標準アプリケーション

MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491Eトランシーバは、マルチポイントバス伝送ライン上の双方向性データ通信用に設計されています。図24及び25に、標準ネットワークアプリケーション回路を示します。これらのデバイスは、ケーブルが1200m以上の長さの場合にラインリピータとして使用することもできます(図21)。

反射を最小限に抑えるため、ラインの両端をその特性インピーダンスで終端処理して下さい。また、メインラインからの分岐はできるだけ短くして下さい。スルーレート制限されたMAX3483E/MAX3488E及び部分的にスルーレート制限されたMAX3486Eは、不完全な終端処理に対する許容度が高くなっています。

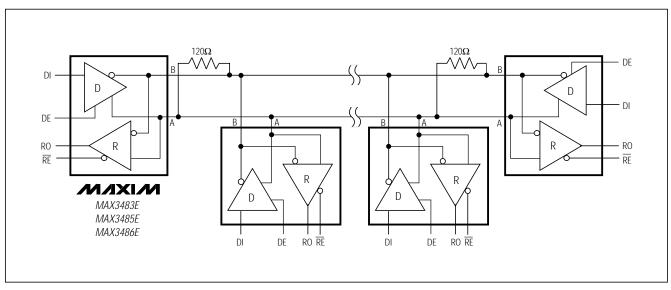


図24. MAX3483E/MAX3485E/MAX3486Eの標準RS-485ネットワーク

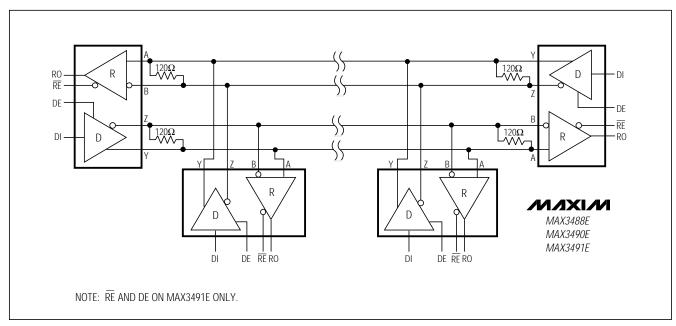


図25. MAX3488E/MAX3490E/MAX3491EフルデュープレックスRS-485ネットワーク

PART	TEMP. RANGE	PIN-PACKAGE
MAX3486ECSA	0°C to +70°C	8 SO
MAX3486ECPA	0°C to +70°C	8 Plastic DIP
MAX3486EESA	-40°C to +85°C	8 SO
MAX3486EEPA	-40°C to +85°C	8 Plastic DIP
MAX3488ECSA	0°C to +70°C	8 SO
MAX3488ECPA	0°C to +70°C	8 Plastic DIP
MAX3488EESA	-40°C to +85°C	8 SO
MAX3488EEPA	-40°C to +85°C	8 Plastic DIP
MAX3490ECSA	0°C to +70°C	8 SO
MAX3490ECPA	0°C to +70°C	8 Plastic DIP
MAX3490EESA	-40°C to +85°C	8 SO
MAX3490EEPA	-40°C to +85°C	8 Plastic DIP
MAX3491ECSD	0°C to +70°C	14 SO
MAX3491ECPD	0°C to +70°C	14 Plastic DIP
MAX3491EESD	-40°C to +85°C	14 SO
MAX3491EEPD	-40°C to +85°C	14 Plastic DIP

TRANSISTOR COUNT: 761		

販売代理店		

マキシム・ジャパン株式会社

〒169-0051東京都新宿区西早稲田3-30-16(ホリゾン1ビル) TEL. (03)3232-6141 FAX. (03)3232-6149

マキシム社では全体がマキシム社製品で実現されている回路以外の回路の使用については責任を持ちません。回路特許ライセンスは明言されていません。マキシム社は随時予告なしに回路及び仕様を変更する権利を保留します。

16 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600