
 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 1

Notice to Development Tools Customers

Important: 
All documentation becomes dated, and Development Tools manuals are no exception. Our tools
and documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our website
(www.microchip.com/) to obtain the latest version of the PDF document.

Documents are identified with a DS number located on the bottom of each page. The DS format is
DS<DocumentNumber><Version>, where <DocumentNumber> is an 8-digit number and <Version>
is an uppercase letter.

For the most up-to-date information, find help for your tool at onlinedocs.microchip.com/.

 MPLAB® ICD 5 In-Circuit Debugger User's Guide

https://www.microchip.com/
https://onlinedocs.microchip.com/

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 2

Table of Contents
Notice to Development Tools Customers.. 1

1. Preface.. 4

1.1. Conventions Used in This Guide.. 4
1.2. Recommended Reading.. 4

2. About the Debugger..6

2.1. Advantages... 6
2.2. Components... 7
2.3. Block Diagram.. 8
2.4. Using MPLAB® ICD 5 with MPLAB X IDE and MPLAB IPE... 8

3. Connections... 10

3.1. Power and Self Test... 10
3.2. PC Connections.. 11
3.3. Target Connections.. 13

4. Operation... 29

4.1. MPLAB X IDE Debugging... 29
4.2. SAM and PIC32C Arm Devices - On-Chip Debugging...29
4.3. AVR Devices - On-Chip Debugging (OCD)..29
4.4. PIC MCU/dsPIC DSC - On-Chip Debugging..38

5. Debugger Features..46

5.1. USB CDC Virtual COM Port..46
5.2. Data Gateway Interface...46
5.3. CI/CD Support...48
5.4. SAM ITM/SWO Trace.. 49
5.5. SAM (ARM) - Trace and Profiling...55
5.6. Debugger Polling..56
5.7. Power Monitor..57

6. Troubleshooting First Steps... 60

6.1. Some Questions to Answer First..60
6.2. Top Reasons Why You Can't Debug... 60
6.3. General Considerations...61
6.4. How to Use the Hardware Tool Emergency Boot Firmware Recovery Utility... 62

7. Frequently Asked Questions (FAQ)..63

7.1. How Does It Work?...63
7.2. What's Wrong?..63

8. Error Messages.. 65

8.1. Types of Error Messages... 65
8.2. General Corrective Actions... 71

9. Debugger Function Summary..73

9.1. Debugger Selection and Switching.. 73

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 3

9.2. Debugger Options Selection...73
9.3. Debugger Windows & Dialogs..80

10. Hardware Specification...83

10.1. Debugger Unit.. 83
10.2. Power Specifications..83
10.3. Indicator Lights (LEDs)...83
10.4. PC Connection Specifications... 84
10.5. 8-pin Communication Hardware..85
10.6. Communication Hardware... 88
10.7. Recovery Specifications...91
10.8. Target Board Considerations..91

11. Revision History...93

11.1. Revision A (May 2023)..93

12. Support...94

12.1. Warranty Registration..94
12.2. myMicrochip Personalized Notification Service...94

Microchip Information... 95

The Microchip Website... 95
Product Change Notification Service.. 95
Customer Support...95
Product Identification System..96
Microchip Devices Code Protection Feature.. 96
Legal Notice..96
Trademarks.. 97
Quality Management System...98
Worldwide Sales and Service... 99

Preface

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 4

1. Preface
MPLAB ICD 5 documentation and support information is discussed in this section.

1.1 Conventions Used in This Guide
The following conventions may appear in this documentation:

Table 1-1. Documentation Conventions
Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® ICD 5 In-Circuit Debugger User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection Select File and then Save.

Quotes A field name in a window or dialog “Save project before build”

Underlined, italic text with right
angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

N‘Rnnnn A number in verilog format, where N is
the total number of digits, R is the radix
and n is a digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Courier New Sample source code #define START
Filenames autoexec.bat
File paths C:\Users\User1\Projects
Keywords static, auto, extern
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be any valid filename

Square brackets [] Optional arguments xc8 [options] files
Curly brackets and pipe
character: { | }

Choice of mutually exclusive arguments;
an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [, var_name...]
Represents code supplied by user void main (void)

{ ...
}

1.2 Recommended Reading
This document describes how to use the MPLAB® ICD 5 In-Circuit Debugger. Other useful
documents are listed below. The following Microchip documents are available and recommended
as supplemental reference resources.

Development Tools Design Advisory

Please read this first!

Preface

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 5

This document contains important information about operational issues that should be considered
when using the MPLAB® ICD 5 In-Circuit Debugger with your target design. Refer to Development
Tools Design Advisory in Developer Help.

MPLAB X IDE WebHelp/User’s Guide

This is an essential document to be used with any Microchip hardware tool.

This is an extensive help file for the MPLAB X IDE. It includes an overview of embedded systems,
installation requirements, tutorials, details on creating new projects, setting build properties,
debugging code, setting configuration bits, setting breakpoints, programming a device, etc. This help
file is generally more up-to-date than the printable PDF of the user’s guide (DS-50002027) available
as a free download at www.microchip.com/mplabx/.

Release Notes for MPLAB® ICD 5 In-Circuit Debugger

For the latest information on using MPLAB ICD 5, select Help>Release Notes on the MPLAB X IDE
toolbar. The release notes contain update information and known issues that may not be included
in this user’s guide.

MPLAB® ICD 5 In-Circuit Debugger Quick Start Guide Poster (DS50003240)

This poster shows you how to connect the hardware and install the software for the MPLAB ICD 5
using a target board.

https://microchipdeveloper.com/dtda:start
https://microchipdeveloper.com/dtda:start
https://www.microchip.com/mplabx/

About the Debugger

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 6

2. About the Debugger
The MPLAB® ICD 5 In-Circuit Debugger/Programmer (DV164055) is Microchip’s latest fast and
feature-rich emulation and programming tool for Microchip microcontrollers (MCUs), which include
PIC®, dsPIC®, AVR® and SAM (Arm®) devices. It debugs and programs with the powerful and easy-to-
use graphical user interface of MPLAB X Integrated Development Environment (IDE).

By default, the MPLAB ICD 5 connects to your PC through a high-speed USB 2.0 interface. However,
you can also use Ethernet connections.

The MPLAB ICD 5 connects to targets using a flat cable, connected at one end to the debugger, and
at the other to the target device communication.

The debugger communicates with devices that have built-in emulation circuitry, instead of special
debugger chips, so executes code like an actual device. All available features of a given device are
accessible interactively and can be set and modified by the MPLAB X IDE interface.

The MPLAB ICD 5 was developed for debugging embedded processors with rich debug facilities
which differ from conventional system processors in the following aspects:

• Processors run at maximum speeds
• Multi-communication mediums (Windows®, Linux®, and macOS®)
• Advanced communication mediums and protocols
• Fast programming times

In addition to emulation functions, the MPLAB ICD 5 system also may be used as a device
production programmer.

2.1 Advantages
The MPLAB ICD 5 In-Circuit Debugger system provides the following advantages:

Features/Capabilities:
• Connects to a computer via high-speed USB 2.0 or Ethernet.
• Debugs at full speed.
• Monitors internal file registers.
• Configures pin drivers.
• Connects to new targets using an RJ11 or RJ45 modular cable. Also connects to legacy targets.
• Supports multiple breakpoints, stopwatch, and source code file debugging.
• Programs devices using MPLAB X IDE or MPLAB IPE.
• Debugs application on user’s hardware in real time.
• Sets breakpoints based on internal events.
• Field-upgradeable through firmware download.
• Adds new device support and features by installing the latest version of device and tool packs

(available as a free download at www.microchip.com/mplabx/).
• Operates within a temperature range of 0-70 degrees Celsius.

Performance/Speed:
• No firmware download delays incurred when switching devices.
• A 32-bit MCU running at 300 MHz with 384K bytes of RAM.
• A buffer memory of 4 MB.

https://www.microchip.com/mplabx/

About the Debugger

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 7

Safety:
• Receive feedback from debugger when external power supply is needed for target.
• Supports target supply voltages from 1.2V to 5.5V.
• Safely power up to 1A with the PoE Power Supply or a PC capable of providing 3A on the USB

Type-C® connector.
• Protection circuits are added to the probe drivers to guard from power surges from the target.
• VDD and VPP voltage monitors protect against overvoltage conditions/all lines have over-current

protection.
• Power pins are physically isolated until voltage is determined to be safe for connection,

programmable resistor value, and direction (pull-up, pull-down, or nonexistent).
• Controlled programming speed provides flexibility to overcome target board design issues.
• CE and RoHS compliant (conforms to industry standards).

2.2 Components
The components of the MPLAB ICD 5 In-Circuit Debugger kit box are:

• The rectangular MPLAB ICD 5 unit housed in a durable black and metallic case, which is accented
with an LED indicator bar (see figure). On the sides of the unit are the USB connector, Ethernet
connector, power connector, as well as the communication and debug connectors.

• A USB Type-C® to Type-C cable for default computer-to-debugger communication.
• A flat cable for connectivity to target devices.

Figure 2-1. Unit Enclosure

Additional hardware and accessories may be ordered separately from the Microchip Purchasing and
Client Services website (www.microchipdirect.com).

https://www.microchipdirect.com

About the Debugger

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 8

A CAT5e/CAT6 Ethernet cable may be purchased elsewhere. Cables that do not have a anti-snag boot
fit best.

Additional Power over Ethernet (PoE) power supplies that have been tried and tested with the unit
include:
• Microchip PoE Injector 30W 55V Desktop
• BV-Tech Gigabit PoE+ Injector 30W
• TRENDnet Gigabit PoE+ Injector 30W

2.3 Block Diagram
Below is a block diagram of basic MPLAB ICD 5 unit operational capabilities.

2.4 Using MPLAB® ICD 5 with MPLAB X IDE and MPLAB IPE
Download and install the latest version of MPLAB X IDE from the MPLAB X IDE webpage. The MPLAB
X IDE installer will install MPLAB X IDE and/or MPLAB IPE.

Update to the latest ICD 5 tool pack from within the MPLAB pack manager.

Using MPLAB® ICD 5 with MPLAB X IDE

The MPLAB® ICD 5 In-Circuit Debugger works with MPLAB X IDE to develop target applications. The
user’s guide and other documentation may be found on the MPLAB X IDE webpage.

https://www.digikey.com/en/products/detail/microchip-technology/PD-9001GR-AT-AC-US/3992861
https://www.amazon.com/BV-Tech-Single-Gigabit-Ethernet-Injector/dp/B005BQUNEG/ref=sr_1_3?crid=3CLWVU6LC7PGA&keywords=poe-i100g&qid=1675279402&sprefix=poe-i100g%2Caps%2C169&sr=8-3&th=1
https://www.amazon.com/TRENDnet-Ethernet-Injector-Distances-TPE-115GI/dp/B00BK4W8TQ/ref=sr_1_3?crid=NGPFRZ9KR4Q3&keywords=trendnet%252Btpe-115gi&qid=1675279443&sprefix=trendnet%252Btpe-115gi%252Caps%252C154&sr=8-3&th=1
https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide
https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide

About the Debugger

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 9

Table 2-1. MPLAB X IDE Overview
Use the desktop icon to launch the IDE.

Create a new project or open an existing project. Select MPLAB ICD 5 as the
hardware tool.

Open the Project Properties window by right clicking on the project name and
selecting “Properties.” This window is used to set up options for debugging,
programming and other features. See MPLAB ICD 5 option descriptions.

Using MPLAB® ICD 5 with MPLAB IPE

The MPLAB® ICD 5 In-Circuit Debugger works with MPLAB IPE as a production programmer. The
user’s guide and other documentation may be found on the MPLAB IPE webpage.

There are also command line IPE tools as an option.

Table 2-2. MPLAB IPE Overview
Use the desktop icon to launch the IPE.

Select a device to program and then select MPLAB ICD 5 as the tool.

Select on a button to Program, Erase, Read, Verify or Blank Check. For more on
MPLAB IPE, including Advanced mode, see the MPLAB IPE User’s Guide.

https://www.microchip.com/en-us/tools-resources/production/mplab-integrated-programming-environment
https://ww1.microchip.com/downloads/aemDocuments/documents/DEV/ProductDocuments/UserGuides/MPLAB_IPE_Integrated_Programming_Environment_Users_Guide_50002227.pdf

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 10

3. Connections
The MPLAB® ICD 5 In-Circuit Debugger hardware setup begins by connecting power,
communications, and targets to the debugger. For legacy targets, an adapter board and cables are
provided. A Debugger Adapter Board is also provided to expand ICD5 connection capabilities to a
wide range of connector types.

3.1 Power and Self Test
MPLAB ICD 5 can be powered by USB-C power or Power over Ethernet (PoE). It does not use an
external power supply. The MPLAB ICD 5 can provide power to the target with PoE. PoE also powers
the tool if USB is unplugged. For customers who power their MPLAB ICD 5 directly from USB-C, it
will depend on the power capabilities of the host PC which MPLAB X IDE will detect once the USB is
connected. For details, see 10.2. Power Specifications.

Power-up Self Test

The MPLAB ICD 5 unit performs a built-in self-test (or BIST) during power-up. Errors that occur
during this test are reported in the MPLAB X IDE or IPE Output window. Depending on the error, LED
colors may indicate the error as well.

Power the Target

It is possible to power the target using the debugger. For details, see 10.2. Power Specifications.

Select this option in the Project Properties window (see figure below). Also select the desired target
voltage.

Figure 3-1. Select Power to Target

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 11

Related Links
10.2. Power Specifications
8. Error Messages
10.3. Indicator Lights (LEDs)

3.2 PC Connections
MPLAB® ICD 5 In-Circuit Debugger can connect with the PC (and MPLAB X IDE/MPLAB IPE) using the
connections in the table below.

Connection Type Connection Details Programming and
Debugging*

Trace* MPLAB Data Visualizer
Support

USB Type-C® (default) HS USB 2.0 Yes (USB 2.0) Yes (SWO) Yes

Ethernet Direct or via network Yes No No

* For speed specifications, see 10.4. PC Connection Specifications.

Figure 3-2. MPLAB ICD 5 Power and PC Connections

Begin with the USB (default) connection. Then switch to Wi-Fi or Ethernet using the “Manage
Network Tools” dialog found under Tools>Manage Network Tools. For details, see the following topics.

Selecting Ethernet communication instead of USB has several uses:

• Access a target remotely. The debugger and target can be in one location and a PC in another.
• Isolate the target. Targets that need to be in a controlled environment can be separate from the

PC location.

Related Links
10.4.1. USB Type-C Connector (J1) and Cable
10.4.2. Ethernet Connector (J6) and Cable

3.2.1 USB Default Connection
The default connection between the PC and MPLAB ICD 5 unit is USB using a USB Type-C cable. It is
recommended that you use the cable that comes with the kit to avoid communication issues.

Note: Only USB communications can be used for trace.

Note: MPLAB Data Visualizer, whether as an MPLAB X IDE included plugin or as a stand-alone
application, can only detect the debugger when it is using USB communications.

If you have problems with the other types of communications, return to USB and then use the
Manage Network Tools (MNT) dialog to switch to Ethernet again.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 12

3.2.2 Ethernet - Modes
MPLAB® ICD 5 In-Circuit Debugger supports different modes of Ethernet communication.

3.2.2.1 Ethernet Wired/DHCP/APIPA
When connecting MPLAB® ICD 5 In-Circuit Debugger to the Ethernet, request a DHCP (or APIPA) IP
address.

DHCP (Dynamic Host Configuration Protocol) is for assigning dynamic IP addresses to devices that
are connected to the network. Automatic Private IP Addressing (APIPA) is a feature in Windows
operating systems that enables computers to automatically self-configure an IP address and subnet
mask when their DHCP server isn’t reachable.

3.2.2.2 Ethernet Static IP
A Static IP address is one that is permanently assigned to your network devices.

3.2.3 Ethernet - Setup and Tool Discovery
Follow the steps in the table to set up the desired Ethernet mode and then find the connection.

Table 3-1. Ethernet Setup and Tool Discovery in MPLAB® X IDE
Step Action

1 Connect the debugger to your PC via the USB cable.
If you will be using Ethernet communication, a PoE injector is mandatory.
Note: A USB connection is required at first to setup Ethernet communication.

2 Go to Tools> Manage Network Tools in MPLAB X IDE (see figure below).

3 Under "Network Capable Tools Plugged into USB," select your debugger.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 13

...........continued
Step Action

4 Under "Configure Default Connection Type for Selected Tool" select the radio button for the connection you want.
Ethernet (Wired/StaticIP): Input Static IP Address, Subnet Mask and Gateway.
Click Update Connection Type.

5 If Ethernet communication was chosen, ensure the PoE injector is connected and then unplug the USB cable from your
debugger unit.
Note: Keep the Manage Network Tools window open.

6 The debugger will restart automatically and come up in the connection mode you selected. Then:
The LEDs will display for either a successful network connection or a network connection failure/error.

7 Now go back to the "Manage Network Tools" dialog and click on the Scan button, which will list your debugger under
"Active Discovered Network Tools." Select the checkbox for your tool and close the dialog.

8 If your debugger is not found under "Active Discovered Network Tools," you can manually enter information in the
"User Specified Network Tools" section. You must know the IP address of the tool (by the way of network admin or
static IP assignment).

Figure 3-3. Initial USB Connection

3.3 Target Connections
MPLAB® ICD 5 In-Circuit Debugger connects to a target via an 8-pin flat cable assembly. For legacy
target connections, an adapter board is available. There is also a Current Sense connection for use
when Power Debugging.

Device and communication types, as well as an available adapter board, are discussed in the
following sections.

Note: MPLAB ICD 5 can power the target. For details, see 10.2. Power Specifications. Select
powering the target in the Project Properties window, “ICD 5” category, “Power” option category.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 14

Figure 3-4. MPLAB ICD 5 Unit to Target Connection

3.3.1 Connecting the Debugger to an RJ-45 Target via an RJ-45 Type Cable
The MPLAB ICD 5 In-Circuit Debugger has an RJ-45 connector for communication to the target.
Connect the RJ-45 type cable into the RJ-45 connector. Connect the other end of the cable to the
RJ-45 connector on the target.

Refer to the figure below for the pinouts for this connection.

Figure 3-5. RJ-45 Connections to Target

3.3.2 Target Connection Pinouts
The programming connector pin functions are different for various devices and interfaces. Refer
to the following pinout tables for debug and data stream interfaces. Legacy 6-pin RJ-11 cable can
also be used, however target interfaces which use pins 1 (TMS/SWDIO) and 8 (TDI/MOSI) can not be
programmed or debugged.
Note: Refer to the data sheet for the device you are using as well as the application notes for the
specific interface for additional information and diagrams.

Connections

 U
ser G

uide
©

 2023 M
icrochip Technology Inc. and its subsidiaries

D
S-50003529A - 15

Table 3-2. Pinouts for Debug Interfaces
rotatethispage90 MPLAB ICD 5 DEBUG TARGET4

8-
Pi

n
M

od
ul

ar
 C

on
ne

ct
or

1

Pi
n

#

Pi
n

N
am

e

IC
SP

™
 (M

CH
P)

M
IP

S
EJ

TA
G

Co
rt

ex
®

SW
D

AV
R®

 JT
AG

AV
R

de
bu

gW
IR

E

AV
R

U
PD

I

AV
R

PD
I

AV
R

IS
P

AV
R

TP
I

8-
Pi

n
M

od
ul

ar
 C

on
ne

ct
or

6-
Pi

n
M

od
ul

ar
 C

on
ne

ct
or

8 TTDI TDI TDI MOSI 1

7 TVPP MCLR /Vpp MCLR RESET RESET3 2 1

6 TVDD VDD VDD/VDDIO VDD VTG VTG VTG VTG VTG VTG 3 2

5 GND GND GND GND GND GND GND GND GND GND 4 3

4 PGD DAT TDO SWO2 TDO DAT3 DAT MISO DAT 5 4

3 PGC CLK TCK SWCLK TCK SCK CLK 6 5

2 TAUX RESET RESET/dW CLK RESET RESET 7 6

1 TTMS TMS SWDIO2 TMS 8

rotatethispage90

1. Black (8-pin) cable must be used for EJTAG, JTAG, SWD and ISP.

2. SWO is used for trace. SWDIO is for debug.

3. Pin may be used for High-Voltage Pulse reactivation of UPDI function depending on device. See device data sheet for details.

4. These are example target connectors that are assumed similar to the debug unit (modular).

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 16

Figure 3-6. 8-Pin Modular Connector

Table 3-3. Pinouts for Data Stream Interfaces
MPLAB® ICD 5 DATA STREAM TARGET2

8-Pin Modular Connector PIC and AVR Devices SAM Devices1 8-Pin Modular Connector 6-Pin Modular Connector

Pin # DGI UART / CDC DGI UART / CDC Pin # Pin #

8 TX (target) TX (target) 1

7 2 1

6 VTG VTG 3 2

5 GND GND 4 3

4 5 4

3 6 5

2 RX (target) 7 6

1 RX (target) 8

1. RX pin moved because of wiring for other devices.

2. These are example target connectors that are assumed similar to the debug unit (modular).

Note: For 6-pin RJ11 into 8-pin RJ45 socket, pins 1 and 8 are lost.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 17

3.3.3 Debugger Adapter Board
The Debugger Adapter Board is a connectivity board that gives MPLAB ICD 5 and MPLAB PICkit
5 Debuggers cable compatibility to demo boards with Atmel-ICE, Power Debugger and ARM style
connectors. It supports JTAG, SWD and ICSP protocols in multiple connector formats. It is useful for
debugging AVR Xplained demonstration boards with MPLAB PICkit 5 debuggers.

Table 3-4. Connection to Device Mappings
Connector Device Input/Output

J1 RJ-11 modular connector for ISCP (PIC
MCUs)

Input from tool

J2 JTAG/SWD, 20 pin - SAM MCUs Output to target

J3 JTAG (MIPS EJTAG), 14 pin - PIC32 MCUs Output to target

J4 JTAG/SWD, 10 pin mini - SAM MCUs Output to target

J5 ICSP/JTAG, 8 pin mini - PIC MCUs Output to target

J6 8-pin single inline connector for ICSP
(PIC MCUs)

Input from tool

J7 AVR JTAG, 10 pin mini - AVR MCUs Output to target

3.3.3.1 Adapter Board Pinout
This is a connectivity board that supports JTAG, SWD, ICSP and AVR protocols.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 18

Figure 3-7. MPLAB ICD 5 Adapter Board (AC102015) Pinouts

3.3.4 SAM MCUs - JTAG/SWD Interfaces
SAM devices feature the Serial Wire Debug (SWD) interface for programming and debugging and/or
a JTAG interface with identical functionality. Check the device data sheet for supported interfaces of
that device.

3.3.4.1 JTAG Physical Interface
The JTAG interface consists of a four-wire Test Access Port (TAP) controller that is compliant with
the IEEE® 1149.1 standard. The IEEE standard was developed to provide an industry-standard way
to efficiently test circuit board connectivity (Boundary Scan). Microchip AVR and SAM devices have
extended this functionality to include full Programming and On-chip Debugging support.

To use this target interface with MPLAB X IDE, open the Project Properties window, “ICD 5” category,
“Communications” option category, and select JTAG. For MIPS devices, select 2-wire or 4-wire JTAG.
Note: 2-wire JTAG uses standard ICSP pinout.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 19

Figure 3-8. JTAG Interface Basics

Vcc

TMS
TDI
TDO

TCK
Programmer/
debugger

Target
device

3.3.4.1.1 Connecting to a SAM JTAG Target
The MPLAB ICD 5 using the 3.3.4. SAM MCUs - JTAG/SWD Interfaces provides a legacy 10-pin 50-mil
JTAG connection as well as a legacy 20-pin 100-mil JTAG connection.

Direct Connection to a 10-pin 50-mil Header

Use the 10-pin 50-mil flat cable to connect directly to a target board with headers complying with
the Arm® Cortex® Debug header pinout shown in 3.3.4.1.2. SAM JTAG Pinout (Cortex-M debug
connector).

Direct Connection to a 20-pin 100-mil Header

Plug the adapter board into targets with a 20-pin 100-mil header.

3.3.4.1.2 SAM JTAG Pinout (Cortex®-M debug connector)
When designing an application PCB which includes a Microchip SAM with the JTAG interface, it is
recommended to use the pinout as shown in the figure below.

Figure 3-9. SAM JTAG Header Pinout

TMS
TCK
TDO
TDI
nRESET

VCC
GND
GND

(KEY)
GND

1 2

SAM JTAG

Table 3-5. SAM JTAG Pin Description
Name Pin Description

TCK 4 Test Clock (clock signal from the MPLAB ICD 5 into the target device).

TMS 2 Test Mode Select (control signal from the MPLAB ICD 5 into the target device).

TDI 8 Test Data In (data transmitted from the MPLAB ICD 5 into the target device).

TDO 6 Test Data Out (data transmitted from the target device into the MPLAB ICD 5).

nRESET 10 Reset (optional).

VTG 1 Target voltage reference. Not used by MPLAB ICD 5.

GND 3, 5, 9 Ground. All must be connected to ensure that the MPLAB ICD 5 and the target device share the
same ground reference.

KEY 7 Connected internally to the TRST pin on the AVR connector. Recommended as not connected.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 20

Tip: Remember to include a decoupling capacitor between VTG and GND.

3.3.4.2 SAM SWD Interface
The Arm® SWD interface is a subset of the JTAG interface, making use of TCK and TMS pins.

3.3.4.2.1 Connecting to a SAM SWD Target
When connecting to an SWD device, the 10-pin JTAG connector can be used.

3.3.4.2.2 SAM SWD Pinout
For the 10-pin JTAG connector:

Figure 3-10. SAM SWD Header Pinout

Table 3-6. SAM SWD Pin Description
Name SAM Port Pin Description

SWDCLK 4 Serial Wire Debug Clock

SWDIO 2 Serial Wire Debug Data Input/Output

SWO 6 Serial Wire Output (optional- not implemented on all devices)

nSRST 10 Reset

VTG 1 Target voltage reference - not used by MPLAB ICD 5

GND 3, 5, 9 Ground

3.3.5 AVR MCUs Connections
AVR devices feature various programming and debugging interfaces. Check the device datasheet for
supported interfaces of that device.

The MPLAB ICD 5 ICSP Adapter Board may be used with additional AVR 10-pin or 6-pin JTAG plugin
boards for legacy target connections. Snap off the plugin board needed (see figure below) and plug
into the adapter board 8-pin SIL connector.

3.3.5.1 JTAG Physical Interface
The JTAG interface consists of a four-wire Test Access Port (TAP) controller that is compliant with
the IEEE® 1149.1 standard. The IEEE standard was developed to provide an industry-standard way
to efficiently test circuit board connectivity (Boundary Scan). Microchip AVR and SAM devices have
extended this functionality to include full Programming and On-chip Debugging support.

To use this target interface with MPLAB X IDE, open the Project Properties window, “ICD 5” category,
“Communications” option category. It will say JTAG. Select the JTAG speed.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 21

Figure 3-11. JTAG Interface Basics

Vcc

TMS
TDI
TDO

TCK
Programmer/
debugger

Target
device

3.3.5.2 Connecting to a AVR JTAG Target
The MPLAB ICD 5 using the MPLAB ICD 5 ICSP Adapter Board and the AVR JTAG (10 Pin) Adapter
Board provides a legacy 10-pin 50-mil JTAG connection.

Direct Connection to a 10-pin 50-mil Header

Use the 10-pin 50-mil plugin connector on the “AVR JTAG (10 pin)” adapter board to connect directly
to a target board with headers complying with the header pinout.

3.3.5.3 AVR JTAG Pinout
When designing an application PCB, which includes an AVR with the JTAG interface, it is
recommended to use the pinout as shown in the figure below.

For other AVR connections, see 4.3. AVR Devices - On-Chip Debugging (OCD).

Figure 3-12. AVR JTAG Header Pinout

Table 3-7. AVR JTAG Pin Description
Name Pin Description

TCK 1 Test Clock (clock signal from the MPLAB ICD 5 into the target device).

TMS 5 Test Mode Select (control signal from the MPLAB ICD 5 into the target device).

TDI 9 Test Data In (data transmitted from the MPLAB ICD 5 into the target device).

TDO 3 Test Data Out (data transmitted from the target device into the MPLAB ICD 5).

nTRST 8 Test Reset (optional, only on some AVR devices). Used to reset the JTAG TAP controller.

nSRST 6 Reset (optional). Used to reset the target device. Connecting this pin is recommended since it allows the MPLAB
ICD 5 to hold the target device in a reset state, which can be essential to debugging in certain scenarios.

VTG 4* Target voltage reference. The MPLAB ICD 5 samples the target voltage on this pin in order to power the level
converters correctly. The MPLAB ICD 5 draws less than 1mA from this pin in this mode.

GND 2, 10 Ground. All must be connected to ensure that the MPLAB ICD 5 and the target device share the same ground
reference.

* Remember to include a decoupling capacitor between VTG and GND.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 22

3.3.5.4 AVR SPI Physical Interface
In-system programming uses the target Microchip AVR’s internal SPI (Serial Peripheral Interface) to
download code into the Flash and EEPROM memories. It is not a debugging interface.

3.3.5.4.1 Connecting to an AVR SPI Target
The recommended pinout for the 6-pin SPI connector is shown in 3.3.5.4.2. AVR SPI Pinout.

Connection to a 6-pin 100-mil SPI Header

Use the AVR 6-pin adapter board to connect to a standard 100-mil SPI header.

Connection to a 6-pin 50-mil SPI Header

Use the AVR 6-pin mini adapter board to connect to a standard 50-mil SPI header.

Important: 
The SPI interface is effectively disabled when the debugWIRE Enable (DWEN) fuse is
programmed, even if the SPIEN fuse is also programmed. To re-enable the SPI interface, the
‘disable debugWIRE’ command must be issued while in a debugWIRE debugging session.
Disabling debugWIRE in this manner requires that the SPIEN fuse is already programmed.
If MPLAB X IDE fails to disable debugWIRE, it is probably because the SPIEN fuse is NOT
programmed. If this is the case, it is necessary to use a high-voltage programming interface
to program the SPIEN fuse.

Follow the instructions in the popup window that appears.

Info: 
The SPI interface is often referred to as “ISP” since it was the first in-system programming
interface on Microchip AVR products. Other interfaces are now available for in-system
programming.

3.3.5.4.2 AVR SPI Pinout
When designing an application PCB, which includes an AVR with the SPI interface, the pinout, as
shown in the figure below, should be used.

Figure 3-13. SPI Header Pinout

PDO/MISO
SCK

/RESET

VCC
PDI/MOSI
GND

1 2

SPI

Table 3-8. SPI Pin Mapping
AVR PORT Pins Target Pins SPI Pinout

Pin 1 (TCK) SCK 3

Pin 2 (GND) GND 6

Pin 3 (TDO) MISO 1

Pin 4 (VTG) VTG 2

Pin 5 (TMS)

Pin 6 (nSRST) /RESET 5

Pin 7 (not connected)

Pin 8 (nTRST)

Pin 9 (TDI) MOSI 4

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 23

...........continued
AVR PORT Pins Target Pins SPI Pinout

Pin 10 (GND)

3.3.5.5 AVR PDI
The Program and Debug Interface (PDI) is a Microchip proprietary interface for external
programming and on-chip debugging of a device. PDI Physical is a 2-pin interface providing a
bidirectional half-duplex synchronous communication with the target device.

3.3.5.5.1 Connecting to an AVR PDI Target
The recommended pinout for the 6-pin PDI connector is shown in 3.3.5.5.2. AVR PDI Pinout.

Connection to a 6-pin 100-mil PDI Header

Use the AVR 6-pin adapter board to connect to connect to a standard 100-mil PDI header.

Connection to a 6-pin 50-mil PDI Header

Use the AVR 6-pin mini adapter board to connect to a standard 50-mil PDI header.

3.3.5.5.2 AVR PDI Pinout
When designing an application PCB, which includes a Microchip AVR with the PDI interface, the
pinout shown in the figure below, should be used.

Figure 3-14. PDI Header Pinout

PDI_DATA

PDI_CLK

VCC

GND

1 2

PDI

(NC)(NC)

Table 3-9. PDI Pin Mapping
AVR PORT Pin Target Pins Microchip STK600 PDI Pinout

Pin 1 (TCK)

Pin 2 (GND) GND 6

Pin 3 (TDO) PDI_DATA 1

Pin 4 (VTG) VTG 2

Pin 5 (TMS)

Pin 6 (nSRST) PDI_CLK 5

Pin 7 (not connected)

Pin 8 (nTRST)

Pin 9 (TDI)

Pin 10 (GND)

3.3.5.6 AVR UPDI
The Unified Program and Debug Interface (UPDI) is a Microchip proprietary interface for external
programming and on-chip debugging of a device. It is a successor to the PDI two-wire physical
interface, which is found on all AVR XMEGA devices. UPDI is a one-wire interface providing a
bidirectional half-duplex asynchronous communication with the target device for purposes of
programming and debugging.

3.3.5.6.1 UPDI and /RESET
The UPDI one-wire interface can be a dedicated pin or a shared pin, depending on the target AVR
device. Consult the device data sheet for further information.

When the UPDI interface is on a shared pin, the pin can be configured to be either UPDI, /RESET, or
GPIO by setting the RSTPINCFG[1:0] fuses.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 24

The RSTPINCFG[1:0] fuses have the following configurations, as described in the data sheet. The
practical implications of each choice are given here.

Table 3-10. RSTPINCFG[1:0] Fuse Configuration
RSTPINCFG[1:0] Configuration Usage

00 GPIO General purpose I/O pin. To access UPDI, a 12V pulse must be applied to this pin. No
external Reset source is available.

01 UPDI Dedicated programming and debugging pin. No external Reset source is available.

10 Reset Reset signal input. To access UPDI, a 12V pulse must be applied to this pin.

11 Reserved NA

Note: Older AVR devices have a programming interface, known as “High-Voltage Programming”
(both serial and parallel variants exist). In general, this interface requires 12 V to be applied to the /
RESET pin for the duration of the programming session. The UPDI interface is an entirely different
interface. The UPDI pin is primarily a programming and debugging pin, which can be fused to have
an alternative function (/RESET or GPIO). If the alternative function is selected then a 12 V pulse is
required on that pin to re-activate the UPDI functionality.

Note: If a design requires the sharing of the UPDI signal due to pin constraints, steps must be taken
to ensure that the device can be programmed. To ensure that the UPDI signal can function correctly,
as well as to avoid damage to external components from the 12 V pulse, it is recommended to
disconnect any components on this pin when attempting to debug or program the device. This can
be done using a 0 Ω resistor, which is mounted by default and removed or replaced by a pin header
while debugging. This configuration effectively means that programming should be done before
mounting the device.

3.3.5.6.2 Connecting to an AVR UPDI Target
The recommended pinout for the 6-pin UPDI connector is shown in 3.3.5.6.3. AVR UPDI Pinout.

Connection to a 6-pin 100-mil UPDI Header

Use the AVR 6-pin adapter board to connect to a standard 100-mil UPDI header.

Connection to a 6-pin 50-mil UPDI Header

Use the AVR 6-pin mini adapter board to connect to a standard 50-mil UPDI header.

3.3.5.6.3 AVR UPDI Pinout
When designing an application PCB, which includes a Microchip AVR with the UPDI interface, the
pinout shown below should be used.

Figure 3-15. UPDI Header Pinout

Table 3-11. UPDI Pin Mapping
AVR PORT Pin Target Pins Microchip STK600 UPDI Pinout

Pin 1 (TCK)

Pin 2 (GND) GND 6

Pin 3 (TDO) UPDI_DATA 1

Pin 4 (VTG) VTG 2

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 25

...........continued
AVR PORT Pin Target Pins Microchip STK600 UPDI Pinout

Pin 5 (TMS)

Pin 6 (nSRST)

Pin 7 (Not connected)

Pin 8 (nTRST)

Pin 9 (TDI)

Pin 10 (GND)

3.3.5.7 AVR TPI
TPI is a programming-only interface for some tinyAVR devices. It is not a debugging interface and
these devices do not have OCD capability.

3.3.5.7.1 Connecting to an AVR TPI Target
The recommended pinout for the 6-pin TPI connector is shown in 3.3.5.7.2. AVR TPI Pinout.

Connection to a 6-pin 100-mil TPI Header

Use the AVR 6-pin adapter board to connect to a standard 100-mil TPI header.

Connection to a 6-pin 50-mil TPI Header

Use the AVR 6-pin mini adapter board to connect to a standard 50-mil TPI header.

3.3.5.7.2 AVR TPI Pinout
When designing an application PCB, which includes an AVR with the TPI interface, the pinout shown
in the figure below, should be used.

Figure 3-16. TPI Header Pinout

TPIDATA
TPICLK
/RESET

VCC

GND

1 2

TPI

(NC)

Table 3-12. TPI Pin Mapping
AVR PORT Pins Target Pins TPI Pinout

Pin 1 (TCK) CLOCK 3

Pin 2 (GND) GND 6

Pin 3 (TDO) DATA 1

Pin 4 (VTG) VTG 2

Pin 5 (TMS)

Pin 6 (nSRST) /RESET 5

Pin 7 (not connected)

Pin 8 (nTRST)

Pin 9 (TDI)

Pin 10 (GND)

3.3.5.8 AVR debugWIRE
The debugWIRE interface is for use on low pin-count devices. Unlike the JTAG interface which
uses four pins, debugWIRE makes use of just a single pin (/RESET) for bidirectional half-duplex
asynchronous communication with the debugger tool.

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 26

Note: 
The debugWIRE interface can not be used as a programming interface. This means that the SPI
interface must also be available (as shown in 3.3.5.4.2. AVR SPI Pinout) in order to program the
target.

When launching a debug session using debugWIRE, flash will be programmed using the debugWIRE
interface. This is not an option which can be considered for factory programming.

When the debugWIRE enable (DWEN) fuse is programmed and lock-bits are un-programmed, the
debugWIRE system within the target device is activated. The /RESET pin is configured as a wire-AND
(open-drain) bidirectional I/O pin with pull-up enabled and becomes the communication gateway
between target and debugger.

3.3.5.8.1 AVR Connecting to debugWIRE
The recommended pinout for the 6-pin debugWIRE (SPI) connector is shown in 3.3.5.8.2. AVR
debugWIRE Pinout.

Connection to a 6-pin 100-mil SPI Header

Use the 6-pin 100-mil tap on the flat cable (included in some kits) to connect to a standard 100-mil
SPI header.

Connection to a 6-pin 50-mil SPI Header

Use the adapter board (included in some kits) to connect to a standard 50-mil SPI header.

Although the debugWIRE interface only requires one signal line (RESET), VCC, and GND to operate
correctly, it is advised to have access to the full SPI connector so that the debugWIRE interface can
be enabled and disabled using SPI programming.

When the DWEN fuse is enabled, the SPI interface is overridden internally for the OCD module to
have control of the RESET pin. The debugWIRE OCD is capable of disabling itself temporarily, thus
releasing control of the RESET line. The SPI interface is then available again (only if the SPIEN fuse
is programmed), allowing the DWEN fuse to be un-programmed using the SPI interface. If power is
toggled before the DWEN fuse is un-programmed, the debugWIRE module will again take control of
the RESET pin. Normally MPLAB X IDE or Microchip Studio will automatically handle the interface
switching, but it can also be done manually using the button on the debugging tab in the properties
dialog in Microchip Studio.

Note: It is highly recommended to let MPLAB X IDE or Microchip Studio handle the setting and
clearing of the DWEN fuse.

It is not possible to use the debugWIRE interface if the lockbits on the target AVR device are
programmed. Always be sure that the lockbits are cleared before programming the DWEN fuse and
never set the lockbits while the DWEN fuse is programmed. If both the debugWIRE Enable (DWEN)
fuse and lockbits are set, one can use High Voltage Programming to do a chip erase, and thus clear
the lockbits. When the lockbits are cleared, the debugWIRE interface will be re-enabled. The SPI
Interface is only capable of reading fuses, reading signature, and performing a chip erase when the
DWEN fuse is un-programmed.

3.3.5.8.2 AVR debugWIRE Pinout
When designing an application PCB which includes an Microchip AVR with the debugWIRE interface,
the pinout shown in the figure below should be used.

Figure 3-17. debugWIRE (SPI) Header Pinout

PDO/MISO
SCK

/RESET

VCC
PDI/MOSI
GND

1 2

SPI

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 27

Table 3-13. debugWIRE Pin Mapping
AVR Port Pins Target pins debugWIRE Pinout

Pin 1 (TCK)

Pin 2 (GND) GND 6

Pin 3 (TDO)

Pin 4 (VTref) VTref 2

Pin 5 (TMS)

Pin 6 (nSRST) RESET 5

Pin 7 (Not connected)

Pin 8 (nTRST)

Pin 9 (TDI)

Pin 10 (GND)

3.3.6 PIC32M Connections
PIC32M MIPS-based devices use EJTAG for debug and programming.

3.3.6.1 Connecting to a PIC32M EJTAG Target
The MPLAB ICD 5 provides a direct connection for new designs or a legacy 14-pin 10-mil JTAG/EJTAG
connection using the adapter board.

3.3.6.2 PIC32M EJTAG Pinout - 4-Wire JTAG
PIC32M EJTAG pin names and descriptions are shown in the table below. Pin numbers are shown for
MPLAB ICD 5 direct connection and Debugger Adapter Board 14-pin connection.

Table 3-14. PIC32M JTAG Connector 14-Pin Description
MPLAB ICD 5
Pin

Adapter Board
(14-Pin) Pin

Name Description

1 11 MCLR Reset (optional). Used to reset the target device. Connecting this pin is
recommended since it allows the MPLAB ICD 5 to hold the target device in a
reset state, which can be essential to debugging in certain scenarios.

2 14 VDD MPLAB ICD 5 providing power to target (optional) or target providing power to
MPLAB ICD 5 (PTG).

3 2, 4, 6, 8, 10 GND Ground. All must be connected to ensure that the MPLAB ICD 5 and the target
device share the same ground reference.

4 3 TDO Test Data Out (data transmitted from the target device into the MPLAB ICD 5).

5 9 TCK Test Clock (clock signal from the MPLAB ICD 5 into the target device).

6 1 NC Not connected.

7 5 TDI Test Data In (data transmitted from the MPLAB ICD 5 into the target device).

8 7 TMS Test Mode Select (control signal from the MPLAB ICD 5 into the target device).

3.3.7 PIC MCUs - ICSP Connection
The MPLAB® ICD 5 In-Circuit Debugger supports debug and programming of PIC microcontrollers
(MCUs) and dsPIC digital signal controllers (DSCs) through ICSP™ (In-Circuit Serial Programming™)
connections.

3.3.7.1 ICSP Target Connection
Connect a debugger directly to a PIC® MCU target using the ICSP® modular connector or inline
connector on most MPLAB® debug tools. The connections to the debugger adapter board are the
same as connections to target boards.

If the debugger and target have different connections (modular-to-inline or inline-to-modular
respectively) a small adapter can be purchased to enable proper connections: “RJ11 to ICSP Adapter”
(AC164110).

https://www.microchipdirect.com/dev-tools/AC164110?allDevTools=true
https://www.microchipdirect.com/dev-tools/AC164110?allDevTools=true

Connections

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 28

Figure 3-18. 6-Pin RJ11 to ICSP Adapter

Alternatively, the MPLAB ICD 5 using the adapter board provides an 8-pin 50-mil Microchip Universal
connection for the 6-pin and 8-pin ICSP interfaces.

3.3.7.2 ICSP Target Connection Circuitry
The figure below shows the interconnections of the MPLAB ICD 5 In-Circuit Debugger to the ICSP
connector on the target board. The diagram also shows the wiring from the connector to a device on
the target PCB. A pull-up resistor (usually around 10-50 kΩ) is recommended to be connected from
the VPP/MCLR line to VDD so that the line may be strobed low to reset the device.

Figure 3-19. Standard Connection to Target Circuitry

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 29

4. Operation
A simplified theory of operation of the MPLAB ICD 5 In-Circuit Debugger system is provided here. It
is intended to provide enough information so that a target board can be designed that is compatible
with the debugger for both debugging and programming operations. The basic theory of in-circuit
debugging and programming is discussed so that problems, if encountered, are quickly resolved.

4.1 MPLAB X IDE Debugging
In the Project Properties window, set up debugging, programming or other options. See

9.2. Debugger Options Selection. Then debug your project .

For details on how to debug an application with MPLAB X IDE, see the user’s guide on the MPLAB X
IDE webpage or the WebHelp version on onlinedocs.microchip.com/.

4.2 SAM and PIC32C Arm Devices - On-Chip Debugging
Both SAM and PIC32C microcontrollers are based on Arm® Cortex-M® core. Debug features available
depend on the type of core (see table below). Debug connectors support SWD and JTAG.

For more information on which devices have which cores, see 32-bit PIC® and SAM Microcontrollers
or your device data sheet. See also CoreSight documentation provided by Arm.

Table 4-1. Cortex-M Debug and Trace Support Summary
Cortex-M Types Debug Support

Cortex-M0+ Debug Optional: Basic debug functionality includes processor halt, single-step, processor core register
access, Reset and HardFault Vector Catch, unlimited software breakpoints, and full system memory access.
Also 1/2/3/4 breakpoint, and 1/2 watchpoint functionality.

Cortex-M23 Debug Optional: Basic debug functionality includes processor halt, single-step, processor core register
access, reset and HardFault Vector Catch, unlimited software breakpoints, and full system memory access.
Also 1/2/3/4 breakpoint, and 1/2/3/4 watchpoint functionality.

Cortex-M4, M4F Debug Optional: Basic debug functionality includes processor halt, single-step, processor core register
access, Vector Catch, unlimited software breakpoints, and full system memory access. Also various
breakpoint and 1/4 watchpoint functionality.

Cortex-M7 Cortex-M7 debug functionality includes processor halt, single-step, processor core register access, Vector
Catch, unlimited software breakpoints, and full system memory access. The processor also includes
support for 4/8 hardware breakpoints and 2/4 watchpoints configured during implementation.

4.3 AVR Devices - On-Chip Debugging (OCD)
An on-chip debug module is a system allowing a developer to monitor and control the execution on
a device from an external development platform, usually through a device known as a debugger or
debug adapter.

With an OCD system, the application can be executed while maintaining exact electrical and timing
characteristics in the target system, allowing you to stop execution conditionally or manually to
inspect program flow and memory.

Run Mode
When in Run mode, the execution of code is completely independent of the MPLAB ICD 5. The
MPLAB ICD 5 will continuously monitor the target device to see if a break condition has occurred.
When this happens, the OCD system will interrogate the device through its debug interface, allowing
the user to view the internal state of the device.

Stopped Mode
When a breakpoint is reached, the program execution is halted, but some I/O may continue to run
as if no breakpoint had occurred. For example, assume that a USART transmit has just been initiated
when a breakpoint is reached. In this case, the USART continues to run at full speed, completing the
transmission, even though the core is in Stopped mode.

https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide
https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide
https://onlinedocs.microchip.com/
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus
https://developer.arm.com/Processors/Cortex-M4

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 30

Hardware Breakpoints
The target OCD module contains several Program Counter comparators implemented in the
hardware. When the Program Counter matches the value stored in one of the comparator registers,
the OCD enters Stopped mode. Since hardware breakpoints require dedicated hardware on the
OCD module, the number of breakpoints available depends upon the size of the OCD module
implemented on the target. Usually, one such hardware comparator is ‘reserved’ by the debugger for
internal use.

Software Breakpoints
A software breakpoint is a BREAK instruction placed in the program memory on the target device.
When this instruction is loaded, program execution will break, and the OCD enters Stopped mode.
To continue execution a “start” command has to be given from OCD. Not all Microchip devices have
OCD modules supporting the BREAK instruction.

4.3.1 AVR Device Interfaces
Note: If you are having problems with programming and debugging with AVR microcontroller
devices that use the UPDI/PDI/TPI interfaces, check Engineering Technical Notes (ETNs) for your
tool.

The AVR devices feature various programming and debugging interfaces. Check the device data
sheet for supported interfaces of that device.

• All AVR E/D devices and newer tinyAVR devices have a UPDI interface, which is used for
programming and debugging. AVR E/D devices also have the SPI interface for in-system
programming.

• Some tinyAVR® devices have a TPI interface. TPI can be used for programming the device only.
These devices do not have on-chip debug capability at all.

• Some tinyAVR devices and some megaAVR devices have the debugWIRE interface, which connects
to an on-chip debug system known as tinyOCD. All devices with debugWIRE also have the SPI
interface for in-system programming.

• Some megaAVR devices have a JTAG interface for programming and debugging, with an on-chip
debug system, also known as megaOCD. All devices with JTAG also feature the SPI interface as an
alternative interface for in-system programming.

• All AVR XMEGA devices have the PDI interface for programming and debugging. Some AVR
XMEGA devices also have a JTAG interface with identical functionality.

Table 4-2. Programming and Debugging Interfaces Summary
UPDI TPI SPI debugWIRE JTAG PDI

AVR E/D New devices New devices

tinyAVR New devices Some devices Some devices Some devices

megaAVR All devices Some devices Some devices

AVR XMEGA Some devices All devices

4.3.1.1 AVR E/D OCD - Features
The AVR E/D OCD is based on the UPDI physical interface, which is a single pin programming and
debugging interface. Other features include:

• Two hardware breakpoints
• Change of flow, interrupt, and software breakpoints
• Run-time read-out of Stack Pointer (SP) register, Program Counter (PC), and Status Register

(SREG)
• Register file read- and writable in Stopped mode

https://microchipdeveloper.com/hwtools:etn

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 31

4.3.1.2 tinyAVR OCD Features
The tinyAVR OCD for new devices is based on the UPDI physical interface, which is a single pin
programming and debugging interface. It supports the following features:

• Memory-mapped access to device address space (NVM, RAM, I/O)
• No limitation on the device clock frequency
• Unlimited number of user program breakpoints
• Two hardware breakpoints
• Support for advanced OCD features
• Nonintrusive run-time chip monitoring without accessing the system registers
• Interface for reading the result of the CRC check of the Flash on a locked device

The tinyAVR OCD for older devices is based on debugWIRE. For more on OCD features, see
4.3.1.5. debugWIRE OCD Features.

4.3.1.2.1 TinyX-OCD (UPDI) Special Considerations
The UPDI data pin (UPDI_DATA) can be a dedicated pin or a shared pin, depending on the target
AVR device. A shared UPDI pin will require activation using a High-Voltage (HV) pulse on the UPDI or
RESET pin depending on device. See your device data sheet for details.

On devices which include the CRCSCAN module (Cyclic Redundancy Check Memory Scan), this
module should not be used in Continuous Background mode while debugging. The OCD module
has limited hardware breakpoint comparator resources, so BREAK instructions may be inserted into
Flash (software breakpoints) when more breakpoints are required, or even during source-level code
stepping. The CRC module could incorrectly detect this breakpoint as a corruption of Flash memory
contents.

The CRCSCAN module will appear configured to perform a CRC scan before boot. In the case of a
CRC mismatch, the device will not boot and appears to be in a locked state. The only way to recover
the device from this state is to perform a full chip erase and either program a valid Flash image or
disable the pre-boot CRCSCAN (a simple chip erase will result in a blank Flash with invalid CRC and
the part will thus still not boot). The software front-end will automatically disable the CRCSCAN fuses
when chip erasing a device in this state.

When designing a target application PCB where the UPDI interface will be used, the following
considerations must be made for correct operation:

• Pull-up resistors on the UPDI line must not be smaller than 10 kΩ. A pull-down resistor should
not be used, or it should be removed when using UPDI. The UPDI physical is push-pull capable, so
only a weak pull-up resistor is required to prevent false Start bit triggering when the line is idle.

• If the UPDI pin is to be used as a RESET pin, any stabilizing capacitor must be disconnected when
using UPDI, since it will interfere with correct operation of the interface.

• If the UPDI pin is used as RESET or GPIO pin, all external drivers on the line must be disconnected
during programming or debugging since they may interfere with the correct operation of the
interface.

4.3.1.2.2 AVR devices with TPI
TPI (Tiny Programming Interface) is present on tinyAVR devices which have no OCD. Debugging of
these devices is not possible - TPI is for programming only.

4.3.1.3 megaAVR OCD Features
The megaAVR OCD is based on the JTAG physical interface. It supports the following features:

• Complete program flow control
• Full access to all registers and memory areas

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 32

• Four program memory (hardware) breakpoints (one is reserved)
• Hardware breakpoints can be combined to form data breakpoints
• Unlimited number of program breakpoints (using BREAK) (except ATmega128[A])

4.3.1.3.1 megaAVR® Special Considerations
Software Breakpoints
Since it contains an early version of the OCD module, ATmega128[A] does not support the use of the
BREAK instruction for software breakpoints.

JTAG Clock
The target clock frequency must be accurately specified in the software front-end before starting a
debug session. For synchronization reasons, the JTAG TCK signal must be less than one-fourth of the
target clock frequency for reliable debugging. When programming using the JTAG interface, the TCK
frequency is limited by the maximum frequency rating of the target device and not the actual clock
frequency being used.

When using the internal RC oscillator, be aware that the frequency may vary from device to device
and is affected by temperature and VCC changes. Be conservative when specifying the target clock
frequency.

OCDEN Fuse
To be able to debug a megaAVR device, the OCDEN fuse must be programmed (by default, OCDEN
is unprogrammed). This allows access to the OCD to facilitate debugging the device. The software
front-end will always ensure that the OCDEN fuse is programmed when starting a debug session
and is left unprogrammed when terminating the session, thereby restricting unnecessary power
consumption by the OCD module.

JTAGEN Fuse
The JTAG interface is enabled using the JTAGEN fuse, which is programmed by default. This allows
access to the JTAG programming interface.

Important: If the JTAGEN fuse is unintentionally disabled, it can only be re-enabled using
SPI or High Voltage programming methods.

If the JTAGEN fuse is programmed, the JTAG interface can still be disabled in firmware by setting the
JTAG disable bit in the MCU Control Register. This will render code un-debuggable and should not
be done when attempting a debug session. If such code is already executing on the Microchip AVR
device when starting a debug session, the MPLAB ICD 5 will assert the RESET line while connecting.
If this line is wired correctly, it will force the target AVR device into Reset, thereby allowing a JTAG
connection.

If the JTAG interface is enabled, the JTAG pins cannot be used for alternative pin functions. They will
remain dedicated JTAG pins until either the JTAG interface is disabled by setting the JTAG disable bit
from the program code, or by clearing the JTAGEN fuse through a programming interface.

Tip: 
Selecting the “use external reset” checkbox, in both the programming dialog and debug
options dialog in Microchip Studio, allows the MPLAB ICD 5 to assert the RESET line. This
also re-enables the JTAG interface on devices, which are running code that disables the
JTAG interface by setting the JTAG disable bit.

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 33

IDR/OCDR Events
The IDR (In-out Data Register) is also known as the OCDR (On-Chip Debug Register) and is used
extensively by the debugger to read and write information to the MCU when in Stopped mode
during a debug session. When the application program in Run mode writes a byte of data to the
OCDR register of the AVR device being debugged, the MPLAB ICD 5 reads this value out and displays
it in the message window of the software front-end. The OCDR register is polled every 50 ms, so
writing to it at a higher frequency will NOT yield reliable results. When the AVR device loses power
while being debugged, spurious OCDR events may be reported. This happens because the MPLAB
ICD 5 may still poll the device as the target voltage drops below the AVR’s minimum operating
voltage.

4.3.1.4 AVR XMEGA OCD Features
The AVR XMEGA OCD is otherwise known as PDI (Program and Debug Interface). Two physical
interfaces (JTAG and PDI physical) provide access to the same OCD implementation within the
device. It supports the following features:

• Complete program flow control
• Full access to all registers and memory areas
• One dedicated program address comparator or symbolic breakpoint (reserved)
• Four hardware comparators
• Unlimited number of user program breakpoints (using BREAK instruction)

• No limitation on system clock frequency

Note: For the ATxmegaA1 family, only revision G or later is supported.

4.3.1.4.1 AVR® XMEGA® Special Considerations
OCD and Clocking
When the MCU enters Stopped mode, the OCD clock is used as MCU clock. The OCD clock is either
the JTAG TCK if the JTAG interface is being used, or the PDI_CLK if the PDI interface is being used.

I/O Modules in Stopped Mode
In contrast to earlier Microchip megaAVR devices, in XMEGA, the I/O modules are stopped in Stop
mode. This means that USART transmissions will be interrupted and timers (and PWM) will be
stopped.

Hardware Breakpoints
There are four hardware breakpoint comparators - two address comparators and two value
comparators. They have certain restrictions:

• All breakpoints must be of the same type (program or data).
• All data breakpoints must be in the same memory area (I/O, SRAM, or XRAM).
• There can only be one breakpoint if the address range is used.

Here are the different combinations that can be set:

• Two single data or program address breakpoints.
• One data or program address range breakpoint.
• Two single data address breakpoints with single value compare.
• One data breakpoint with address range, value range, or both.

MPLAB X IDE and Microchip Studio will tell you if the breakpoint cannot be set, and why. Data
breakpoints have priority over program breakpoints if software breakpoints are available.

JTAGEN Fuse
The JTAG interface is enabled using the JTAGEN fuse, which is programmed by default. This allows
access to the JTAG programming interface.

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 34

Important: If the JTAGEN fuse is unintentionally disabled, it can only be re-enabled using
the PDI physical interface.

If the JTAGEN fuse is programmed, the JTAG interface can still be disabled in firmware by setting the
JTAG disable bit in the MCU Control Register. This will render code un-debuggable and should not
be done when attempting a debug session. If such code is already executing on the Microchip AVR
device when starting a debug session, the MPLAB ICD 5 will assert the RESET line while connecting.
If this line is wired correctly, it will force the target AVR device into Reset, thereby allowing a JTAG
connection.

If the JTAG interface is enabled, the JTAG pins cannot be used for alternative pin functions. They will
remain dedicated JTAG pins until either the JTAG interface is disabled by setting the JTAG disable bit
from the program code, or by clearing the JTAGEN fuse through a programming interface.

Tip: 
Selecting the “use external reset” checkbox, in both the programming dialog and debug
options dialog in Microchip Studio, allows the MPLAB ICD 5 to assert the RESET line. This
also re-enables the JTAG interface on devices, which are running code that disables the
JTAG interface by setting the JTAG disable bit.

Debugging with Sleep for ATxmegaA1 rev H and Earlier

A bug existed on early versions of ATxmegaA1 devices that prevented the OCD from being enabled
while the device was in certain sleep modes. There are two work-arounds to re-enable OCD:

• Go into the MPLAB ICD 5. Options in the Tools menu and enable “Always activate external Reset
when reprogramming device.”

• Perform a chip erase.

The sleep modes that trigger this bug are:

• Power-Down
• Power-Save
• Standby
• Extended Standby

4.3.1.5 debugWIRE OCD Features
The debugWIRE OCD is a specialized OCD module with a limited feature set specially designed for
AVR devices with low pin-count. It supports the following features:

• Complete program flow control
• Full access to all registers and memory areas
• Unlimited user program breakpoints (using BREAK instruction)

• Automatic baud rate configuration based on target clock

4.3.1.5.1 debugWIRE Special Considerations
The debugWIRE communication pin (dW) is physically located on the same pin as the external Reset
(RESET). An external Reset source is, therefore, not supported when the debugWIRE interface is
enabled.

The debugWIRE Enable (DWEN) fuse must be set on the target device for the debugWIRE interface to
function. This fuse is by default unprogrammed when the Microchip AVR device is shipped from the
factory. The debugWIRE interface itself cannot be used to set this fuse. To set the DWEN fuse, the SPI

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 35

mode must be used. The software front-end handles this automatically provided that the necessary
SPI pins are connected. It can also be set manually using SPI programming in the software front-end.

Either: Attempt to start a debug session on the debugWIRE part. If the debugWIRE interface is not enabled, the software
front-end will offer to retry or attempt to enable debugWIRE using SPI programming. If you have the full SPI header
connected, debugWIRE will be enabled and you will be asked to toggle power on the target. This is required for the
fuse changes to be effective.

Or: Open the programming dialog in Microchip Studio in SPI mode and verify that the signature matches the correct
device. Check the DWEN fuse to enable debugWIRE.

Important: 
Make sure to leave the SPIEN fuse programmed and the RSTDISBL fuse unprogrammed!
Not doing this will render the device stuck in debugWIRE mode and High-Voltage
programming will be required to revert the DWEN setting.

To disable the debugWIRE interface, use High-Voltage programming to unprogram the DWEN fuse.
Alternately, use the debugWIRE interface itself to temporarily disable itself, which will allow SPI
programming to take place, provided that the SPIEN fuse is set.

Important: 
If the SPIEN fuse was NOT left programmed, the software front-end will not be able to
complete this operation and High-Voltage programming must be used.

In MPLAB X IDE, if debugWIRE is enabled on the target device and an SPI programming session
is attempted, the IDE will offer to disable debugWIRE first. In Microchip Studio, this must be done
manually during a debug session, by selecting the Disable debugWIRE and Close option from the
Debug menu. The debugWIRE interface will be temporarily disabled and the software front-end will
use SPI programming to unprogram the DWEN fuse.

Having the DWEN fuse programmed enables some parts of the clock system to be running in all
sleep modes. This will increase the power consumption of the AVR while in sleep modes. The DWEN
Fuse should, therefore, always be disabled when debugWIRE is not used.

When designing a target application PCB where debugWIRE will be used, the following
considerations must be made for correct operation:

• Pull-up resistors on the dW/(RESET) line must not be smaller than 10 kΩ. The pull-up resistor is
not required for debugWIRE functionality since the debugger tool provides this.

• Any stabilizing capacitor connected to the RESET pin must be disconnected when using
debugWIRE since they will interfere with correct operation of the interface.

• All external Reset sources or other active drivers on the RESET line must be disconnected, since
they may interfere with the correct operation of the interface.

Never program the lock-bits on the target device. The debugWIRE interface requires that lock-bits
are cleared to function correctly.

4.3.1.5.2 debugWIRE Software Breakpoints
The debugWIRE OCD is drastically downscaled when compared to the megaAVR (JTAG) OCD. This
means that it does not have any Program Counter breakpoint comparators available to the user
for debugging purposes. One such comparator does exist for purposes of run-to-cursor and single-
stepping operations, but additional user breakpoints are not supported in hardware.

Instead, the debugger must make use of the AVR BREAK instruction. This instruction can be placed
in FLASH, and when loaded for execution, it will cause the AVR CPU to enter Stopped mode. To

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 36

support breakpoints during debugging, the debugger must insert a BREAK instruction into FLASH
at the point at which the users request a breakpoint. The original instruction must be cached for
later replacement. When single-stepping over a BREAK instruction, the debugger has to execute
the original cached instruction to preserve program behavior. In extreme cases, the BREAK has to
be removed from FLASH and replaced later. All these scenarios can cause apparent delays when
single-stepping from breakpoints, which will be exacerbated when the target clock frequency is very
low.

It is thus recommended to observe the following guidelines, where possible:

• Always run the target at as high a frequency as possible during debugging. The debugWIRE
physical interface is clocked from the target clock.

• Try to minimize the number of breakpoint additions and removals, as each one requires a FLASH
page to be replaced on the target.

• Try to add or remove a small number of breakpoints at a time, to minimize the number of FLASH
page write operations.

• If possible, avoid placing breakpoints on double-word instructions.

4.3.1.5.3 Understanding debugWIRE and the DWEN Fuse
When enabled, the debugWIRE interface takes control of the device’s RESET pin, which makes it
mutually exclusive to the SPI interface, which also needs this pin. When enabling and disabling the
debugWIRE module, follow one of these two approaches:
• Let the software front-end take care of things (recommended)
• Set and clear DWEN manually (exercise caution, advanced users only!)

Important: When manipulating DWEN manually, the SPIEN fuse must remain set to avoid
having to use High-Voltage programming.

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 37

Figure 4-1. Understanding debugWIRE and the DWEN Fuse

Start debug session

Power toggle
(latches debugWIRE state)

Atmel Studio "Disable debugWIRE and close"
 (disables debugWIRE module temporarily
 and then clears DWEN fuse using SPI)
MPLAB® X IDE offers to do this automatically
if an attempt to connect using the SPI interface
fails due to debugWIRE being enabled

atprogram dwdisable
 (atprogram disables
 debugWIRE module temporarily)

Clear DWEN fuse
using SPI

Set DWEN fuse
using SPI

Intermediate state 1:
 Fuse DWEN set
 Fuse SPIEN set* (NB!)
 Module debugWIRE disabled until power toggle
You can: Toggle power

DWEN
SPIEN

Default state:
 Fuse DWEN cleared
 Fuse SPIEN set
 Module debugWIRE disabled
You can: Access flash and fuses using SPI

DWEN
SPIEN

Debug state:
 Fuse DWEN set
 Fuse SPIEN set
 Module debugWIRE enabled
You can: Use debugWIRE
You cannot: Access fuses or flash using SPI

DWEN
SPIEN

Intermediate state 2:
 Fuse DWEN set
 Fuse SPIEN set
 Module debugWIRE disabled
You can: Access fuses and flash using SPI

DWEN
SPIEN

Debug state (not recommended):
 Fuse DWEN set
 Fuse SPIEN cleared
 Module debugWIRE enabled
You can: Use debugWIRE
To access flash and fuses, it is now necessary to
use the High-Voltage Programming interface

DWEN
SPIEN

4.3.1.6 Advanced Debugging (AVR® JTAG/debugWIRE devices)
I/O Peripherals
Most I/O peripherals will continue to run even though the program execution is stopped by a
breakpoint. Example: If a breakpoint is reached during a UART transmission, the transmission will be
completed and corresponding bits set. The TXC (transmit complete) flag will be set and be available
on the next single step of the code even though it normally would happen later in an actual device.

All I/O modules will continue to run in Stopped mode with the following two exceptions:

• Timer/Counters (configurable using the software front-end)
• Watchdog Timer (always stopped to prevent Resets during debugging)

Single Stepping I/O Access
Since the I/O continues to run in Stopped mode, care should be taken to avoid certain timing issues.
For example, the code:

OUT PORTB, 0xAA
IN TEMP, PINB

When running this code normally, the TEMP register would not read back 0xAA because the data
would not yet have been latched physically to the pin by the time it is sampled by the IN operation.
A NOP instruction must be placed between the OUT and the IN instruction to ensure that the correct
value is present in the PIN register.

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 38

However, when single-stepping this function through the OCD, this code will always give 0xAA in
the PIN register since the I/O is running at full speed even when the core is stopped during the
single-stepping.

Single Stepping and Timing
Certain registers need to be read or written within a given number of cycles after enabling a
control signal. Since the I/O clock and peripherals continue to run at full speed in Stopped mode,
single-stepping through such code will not meet the timing requirements. Between two single steps,
the I/O clock may have run millions of cycles. To successfully read or write registers with such timing
requirements, the whole read or write sequence should be performed as an atomic operation
running the device at full speed. This can be done by using a macro or a function call to execute the
code or use the run-to-cursor function in the debugging environment.

Accessing 16-Bit Registers
The Microchip AVR peripherals typically contain several 16-bit registers that can be accessed via the
8-bit data bus (e.g., TCNTn of a 16-bit timer). The 16-bit register must be byte accessed using two
read or write operations. Breaking in the middle of 16-bit access or single-stepping through this
situation may result in erroneous values.

Restricted I/O Register Access
Certain registers cannot be read without affecting their content. Such registers include those which
contain flags which are cleared by reading, or buffered data registers (e.g., UDR). The software
front-end will prevent reading these registers when in Stopped mode to preserve the intended
non-intrusive nature of OCD debugging. Also, some registers cannot safely be written without side-
effects occurring. These registers are read-only. For example:

• Flag registers, where a flag is cleared by writing 1 to any bit. These registers are read-only.

• UDR and SPDR registers cannot be read without affecting the state of the module. These registers
are not accessible.

4.3.2 PIC32M MCU - On-Chip Debugging
PIC32M MCU devices support two types of debugging: (1) In-Circuit Serial Programming™ (ICSP™) and
debugging using the PGECx and PGEDx pins or (2) 4-wire MIPS® Enhanced JTAG.

The MIPS32 M4K Processor core provides for an Enhanced JTAG (EJTAG) interface for use in the
software debug of application and kernel code. In addition to the standard JTAG instructions, special
instructions defined in the EJTAG specification define which registers are selected and how they are
used. For details on this interface, see your device data sheet.

In addition, there are program and complex data breakpoints. See your device data sheet for details
on debug features for your specific PIC32M device.

4.4 PIC MCU/dsPIC DSC - On-Chip Debugging
An on-chip debug module is a system allowing a developer to monitor and control the execution
on a device from an external development platform, usually through a device known as a debugger
or debug adapter. With an OCD system, the application can be executed while exact electrical and
timing characteristics in the target system (as opposed to a simulator). The system is able to stop
execution conditionally or manually and inspect program flow and memory.

For PIC microcontrollers (MCUs) or dsPIC digital signal controllers (DSC), some device resources may
need to be reserved for debug.

4.4.1 Basic Debug Features
MPLAB® ICD 5 In-Circuit Debugger has the following basic debug features.

4.4.1.1 Start and Stop Emulation
To debug an application in MPLAB X IDE, you must create a project containing your source code so
that the code may be built, programmed into your device, and executed as specified below:

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 39

Debug or execute project code in debug mode.

Pause or halt code execution.

Continue code execution after a pause or halt.

For paused/halted code, Step Into or execute one instruction. Be careful not to step into a Sleep instruction or you
will have to perform a processor Reset to resume emulation.

For paused/halted code, Step Over an instruction.

Finish the debug session, which ends code execution.

Perform a processor Reset. Additional Resets, such as POR/BOR, MCLR and System, may be available, depending
on device.

4.4.1.2 View Processor Memory and Files
MPLAB X IDE provides several windows for viewing debug and various processor memory
information. These are selectable from the Window menu. See MPLAB X IDE online help for
assistance on using these windows.

• Window>Target Memory Views – view the different types of device memory. Depending on the
selected device, memory types include Program Memory, File Registers, Configuration Memory,
etc.

• Window>Debugging – view debug information. Select from variables, watches, call stack,
breakpoints, stopwatch, and trace.

To view your source code, find the source-code file you wish to view in the Projects window and
double click it to open it in a Files window. Code in this window is color-coded according to the
processor and build tool selected. To change the style of color-coding, select Tools>Options>Fonts &
Colors>Syntax.

For more on the Editor, see MPLAB X IDE online help, Editor section.

4.4.1.3 Use Breakpoints
Use breakpoints to halt code execution at specified lines in your code.

4.4.1.3.1 Breakpoint Resources
For 16-bit PIC/dsPIC devices, breakpoints, data captures, and runtime watches use the same
resources. So, the available number of breakpoints is actually the available number of combined
breakpoints/triggers.

For 32-bit PIC devices, breakpoints use different resources than data captures and runtime watches.
So, the available number of breakpoints is independent of the available number of triggers.

The number of hardware and software breakpoints available and/or used is displayed in the
Dashboard window (Window>Dashboard). See the MPLAB X IDE documentation for more on this
feature. Not all devices have software breakpoints.

See MPLAB X IDE Help>Help Contents>Hardware Tool Reference> Limitations - Emulators and Debuggers
for limitations on breakpoint operation, including the general number of hardware breakpoints per
device and hardware breakpoint skidding amounts.

4.4.1.3.2 Hardware or Software Breakpoint Selection
To select hardware or software breakpoints:

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 40

1. Select your project in the Projects window and then right click to select “Properties.”
2. In Project Properties, select ICD 5>Debug Options.
3. Check “Use software breakpoints” to use software breakpoints. Uncheck to use hardware

breakpoints.

Note: Using software breakpoints for debug impacts device endurance. Therefore, it is
recommended that devices used in this manner not be used as production parts.

To help you decide which type of breakpoints to use (hardware or software) the following table
compares the features of each.

Table 4-3. Hardware vs. Software Breakpoints
Feature Hardware Breakpoints Software Breakpoints

Number of breakpoints Limited Unlimited

Breakpoints written to* Internal debug registers Flash Program Memory

Breakpoints applied to** Program Memory/Data Memory Program Memory only

Time to set breakpoints Minimal Dependent on oscillator speed, time to
program Flash Memory and page size.

Breakpoint skidding Most devices. See MPLAB X IDE Help>Help
Contents>Hardware Tool Reference> Limitations -
Emulators and Debuggers.

No

* Where information about the breakpoint is written in the device.

** What kind of device feature applies to the breakpoint. This is where the breakpoint is set.

4.4.1.4 Use the Stopwatch
Use the stopwatch to determine the timing between two breakpoints.

Note: The stopwatch uses breakpoint resources.

To use the Stopwatch:

1. Add a breakpoint where you want to start the stopwatch.
2. Add another breakpoint where you want to stop the stopwatch.
3. Select Window>Debugging>Stopwatch. Click on the Properties icon on the left of the window and

select the start and stop breakpoints.
4. Debug the program again to get the stopwatch timing result.

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 41

Figure 4-2. Stopwatch Setup

Figure 4-3. Stopwatch Window with Content

The stopwatch has the following icons on the left side of the window:

Table 4-4. Stopwatch Icons
Icon Icon Text Description

Properties Set stopwatch properties. Select one current breakpoint or trigger to start the stopwatch
and one to stop the stopwatch.

Reset Stopwatch on Run Reset the stopwatch time to zero at the start of a run.

Clear History Clear the stopwatch window.

Clear Stopwatch (Simulator Only) Reset the stopwatch after you reset the device.

4.4.1.5 Set Freeze Peripherals
For some devices and tools, you can select a “Freeze on Halt” option, which allows you to freeze/
unfreeze selected peripherals on a halt.

4.4.2 ICSP Debugging
There are two steps to using MPLAB ICD 5 In-Circuit Debugger as a debugger. The first requires that
an application is programmed into the target device (MPLAB ICD 5 can be used for this). The second

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 42

uses the internal in-circuit debug hardware of the target Flash device to run and test the application
program. These two steps are directly related to MPLAB X IDE operations:

1. Programming the code into the target and activating special debug functions (see the next
section for details).

2. Using the debugger to set breakpoints and run.

For more information, refer to the MPLAB X IDE WebHelp.

If the target device cannot be programmed correctly, the MPLAB ICD 5 will not be able to debug it.

A simplified diagram of some of the internal interface circuitry of the MPLAB ICD 5 is shown in the
figure below. In the figure, Rpu=10 kΩ typical and Ric=4.7 kΩ.

Figure 4-4. Proper Connections for ICSP Programming

For programming, no clock is needed on the target device, but power must be supplied. When
programming, the debugger puts programming levels on VPP/MCLR, sends clock pulses on PGC,
and serial data via PGD. To verify that the part has been programmed correctly, clocks are sent
to PGC and data is read back from PGD. This sequence confirms the debugger and device are
communicating correctly.

4.4.2.1 ICSP Circuits That Will Prevent a Debug Tool From Functioning
The figure below shows the active debugger lines with some components that will prevent the
MPLAB ICD 5 In-Circuit Debugger from functioning.

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 43

Figure 4-5. Improper Circuit Components

In particular, these guidelines must be followed:

• Do not use pull-ups on PGC/PGD – they could disrupt the voltage levels.
• Do not use capacitors on PGC/PGD – they will prevent fast transitions on data and clock lines

during programming and debugging communications, and slow programming times.
• Do not use capacitors on MCLR – they will prevent fast transitions of VPP. A simple pull-up

resistor is generally sufficient.
• Do not use diodes on PGC/PGD – they will prevent bidirectional communication between the

debugger and the target device.

4.4.2.2 Sequence of Operations Leading to Debugging
Given that the 4.4.2.4. Requirements for Debugging are met, set the MPLAB ICD 5 In-Circuit
Debugger as the current tool in MPLAB X IDE. Go to File> Project Properties to open the dialog and
then under “Hardware Tool,” click “ICD 5.”

The following actions can now be performed:

• When Debug > Debug Main Project is selected, the application code is programmed into the
device’s memory via the ICSP protocol as described at the beginning of this section.

• A small “debug executive” program is loaded into the memory of the target device. Since some
architectures require that a debug executive must reside in program memory, the application
program must not use this reserved space. Some devices have special memory areas dedicated
to the debug executive. Check your device data sheet for details.

• Special “in-circuit debug” registers in the target device are enabled by MPLAB X IDE. These allow
the debug executive to be activated by the debugger. For more information on the device’s
reserved resources, see 4.4.2.5. Resources Used by the Debugger.

• The target device is run in Debug mode.

4.4.2.3 Debugging Details
The figure below illustrates the MPLAB ICD 5 In-Circuit Debugger system when it is ready to begin
debugging. In the figure, Rpu=10 kΩ typical and Ric=4.7 kΩ.
Note: There are programmable pullups and pulldowns instead of fixed resistor.

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 44

Figure 4-6. MPLAB ICD 5 Ready to Begin Debugging - PIC MCU

To find out whether an application program will run correctly, a breakpoint is typically set early in the
program code. When a breakpoint is set from the user interface of MPLAB X IDE, the address of the
breakpoint is stored in the special internal debug registers of the target device. If using ICSP only,
commands on PGC and PGD communicate directly to these registers to set the breakpoint address.

Next, the Debug > Debug Main Project function is usually selected in MPLAB X IDE. The debugger
instructs the debug executive to run the target application. The target starts from the Reset vector
and executes until the Program Counter reaches the breakpoint address that was stored previously
in the internal debug registers.

After the instruction at the breakpoint address is executed, the in-circuit debug mechanism of the
target device “fires” and transfers the device’s program counter to the debug executive (like an
interrupt) and the user’s application is effectively halted. The debugger communicates with the
debug executive via PGC and PGD, gets the breakpoint status information, and sends it back to
MPLAB X IDE. MPLAB X IDE then sends a series of queries to the debugger to get information about
the target device, i.e., file register contents and the state of the CPU. These queries are performed by
the debug executive.

The debug executive runs like an application in program memory or special test memory. It uses
some locations on the stack for its temporary variables. If the device does not run, for whatever
reason (no oscillator, faulty power supply connection, shorts on the target board, etc.), then the
debug executive cannot communicate to the MPLAB ICD 5, and MPLAB X IDE will issue an error
message.

Another way to halt the target is to select Debug > Pause. This toggles the PGC and PGD lines
so that the in-circuit debug mechanism of the target device switches the Program Counter from
the user’s code in program memory to the debug executive. The target application program is
effectively halted, and MPLAB X IDE uses the debugger communications with the debug executive to
interrogate the state of the target device.

4.4.2.4 Requirements for Debugging
To debug (set breakpoints, see registers, etc.) with the MPLAB ICD 5 In-Circuit Debugger system,
there are critical elements that must be working correctly:

• The debugger must be powered, must be connected to a computer, and must be communicating
with the MPLAB X IDE software.

Operation

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 45

• The target device must have power and a functional, running oscillator. If for any reason the
target device does not run, the MPLAB ICD 5 In-Circuit Debugger will not be able to debug it.

• The target device must have its Configuration words programmed correctly. These may be set
using code or the Configuration Bits window in MPLAB X IDE.

– The oscillator Configuration bits should correspond to oscillator types available on the target.
– For some devices, the Watchdog Timer is enabled by default and needs to be disabled.
– The target device must not have any type of code protection enabled.
– The target device must not have table read protection enabled.

• For some devices with more than one PGC/PGD pair, the correct pair needs to be selected in the
device’s configuration word settings. This only refers to debugging, since programming will work
through any PGC/PGD pair.

4.4.2.5 Resources Used by the Debugger
For some devices, device resources must be used for debug. For a complete list of resources used
by the debugger for your device, in MPLAB X IDE select Help > Release Notes. In addition to a section
for “Release Notes/Readmes,” there is a section for “Reserved Resources.” Select either “Reserved
Resources by Device Family and Tool” or “Reserved Resources by Device for All Tools.”

4.4.3 Programming
Note: For information on programming, refer to the WebHelp.

In the MPLAB X IDE, use the MPLAB ICD 5 as a programmer to program a non-ICE/-ICD device, that
is, a device not on a header board. Set the MPLAB ICD 5 as the current tool (click the Debug Tool
ICD 5 in the navigation window, then select File > Project Properties from the main menu to open the
dialog, then under “Hardware Tool,” click “ICD 5”) to perform these actions:

• When Run > Run Main Project icon (see below) is selected, the application code is programmed
into the device’s memory via the ICSP protocol. No clock is required while programming and all
modes of the processor can be programmed – including code protect, Watchdog Timer enabled,
and table read protect.

Run Main Project Icon

• A small “program executive” program may be loaded into the high area of program memory for
some target devices.

• Special “in-circuit debug” registers in the target device are disabled by MPLAB X IDE, along with all
debug features. This means that a breakpoint cannot be set and register contents cannot be seen
or altered.

• The target device is run in Release mode. As a programmer, the debugger can only toggle the
MCLR line to Reset and start the target device.

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 46

5. Debugger Features
In addition to basic debug features, the debugger has advanced debug features. Some debug
features are dependent on other debug features.

To see if a specific debug feature is available for your device:

• In MPLAB X IDE, on the Help menu select “Release Notes.”
• In addition to Release Notes/Readmes, find Debug Features Support.
• Click on the link for “Hardware Tool Debug Features by Device.”

In addition to features already mentioned, this table specifies additional debug features.

Table 5-1. Supported Debugger Features
Feature Microcontroller Family*

PIC10/12/16 (8-bit) PIC24, dsPIC (16-
bit)

PIC32 (32-bit) AVR (8-bit) SAM (32-bit)

Virtual COM Port X X X X X

DGI X X X X X

Basic Debug X X X X X

SAM ITM/SWO
Trace

X

PC Profiling X

Debugger Polling X X

Power Monitoring X X X X X

* Not all devices in a family have support. See feature sections below for details.

5.1 USB CDC Virtual COM Port
Provides a bridge between the target UART and the USB interface, which provides a CDC Virtual
“COM” port on USB Host which is a read/write access to a true UART of target.

Use this virtual port to access the debugger when using containers for CI/CD.

CDC/DGI U(S)ART supported Baud rates : 7200, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400, 460800, 921600.

5.2 Data Gateway Interface
The Data Gateway Interface (DGI) is an interface for handling the low-level transport of data from a
target MCU. The DGI is available on a selection of tools and on-board debuggers.

The DGI provides several interfaces utilizing the same API for configuration and communication.
Each interface implements an abstraction to a physical communication interface, such as UART, or
represents a service not directly tied to a physical communication interface, such as the timestamp
interface.

The MPLAB Data Visualizer is the application used to control and stream Data Gateway Interfaces.
The application may be accessed from within MPLAB X IDE or as a standalone program. For more on
this application and DGI, see the MPLAB Data Visualizer webpage.

5.2.1 Interfaces
All functionality of the DGI is centered around the implemented interfaces. All interfaces use the
same USB protocol, but every interface has its own configuration parameters and handling of
communication. For details, refer to the interface-specific sections. Note that not all interfaces are
available on all boards implementing the DGI device. The available interfaces can be read through
the USB protocol.

https://www.microchip.com/en-us/development-tools-tools-and-software/embedded-software-center/mplab-data-visualizer

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 47

Table 5-2. List of Interfaces
Name Identifier Description

Timestamp 0x00 Service interface which appends timestamps to all received events on associated interfaces.

UART 0x21 Communicates directly over UART in Client mode.

Power 0x40 (data) Receives data and sync events from the attached power measurement co-processors.

Debugger Polling 0x50 Polling of timestamped samples of the program counter,allowing an insight in the program
execution of the device.
For more information, see 5.6. Debugger Polling.

Reserved 0xFF Special identifier used to indicate no interface.

5.2.1.1 Timestamp
The data returned over the timestamp interface is a sequential stream of timestamped packets of
data belonging to the interfaces that have timestamping enabled. The first byte in each packet is the
interface identifier and will decide how the rest of the packet must be parsed.

The timestamp is relying on a 16-bit timer, which is sampled and embedded into each packet. The
timer tick frequency can be read from the timestamp configuration. It is in the area of about half a
microsecond. When the timer overflows, a packet will be embedded in the stream to indicate this
event. Note that if a data packet is being embedded as the timer overflows, an overflow packet will
not be embedded. Instead, it will be indicated in the header of the data packet.

All timestamped packets are generated from module interrupts within the DGI device, which can not
be interrupted by the timer overflow interrupt. This means that there is a possibility that the timer
has overflowed before the timer was sampled and embedded. To be able to keep the timestamp in
sync and accurate for such events the packets are also embedding the timer overflow bit. This bit is
sampled after the timer itself, and can potentially be set even if the sampled timer value was in sync.

5.2.1.2 UART Interface
The UART source streams the raw values received on the UART interface.

On the Data Sources (left) pane, when the UART source is selected, the UART settings are displayed
on the lower section.

Note: Asynchronous serial protocols (e.g., UART protocols used by DGI UART and CDC Virtual COM
port interfaces) use the baud rates listed in 5.1. USB CDC Virtual COM Port.

Table 5-3. USART Settings
Field Name Values Usage

Baud Rate 0-2000000 Baud rate for UART interface in Asynchronous mode

Char Length 5, 6, 7, or 8 bits Number of bits in each transfer

Parity None, Even, Odd, Mark, or Space Parity type used for communication

Stop bits 1, 1.5, or 2 bits Number of Stop bits

5.2.1.3 Power Interface
The Power interface measures the power consumption of the connected circuitry.

Select the Power interface beneath the debug tool DGI. Set up the interface using the controls under
“Power Settings.”

Table 5-4. Power Settings Controls
Control Value Usage

Enabled Channels A Enable channel A only. Channel A is always enabled.

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 48

...........continued
Control Value Usage

Lock Channel A in high range* Unchecked, checked Channel A can be locked to the high range to avoid automatic
switching to the low range. This allows detection of short
spikes in current consumption without critical samples being
lost when switching between the ranges.

Output Voltage in mV Between 1600 mV and 5500
mV, or 0

The MPLAB ICD 5 features an adjustable target supply that
can be used to power the target application. This setting
enables and controls the output voltage of this supply. A
selection of 0 disables the supply.

* Future feature.

Tip: Any setting changes will not take effect until clicking Apply in the Power Settings
panel. E.g., to enable the Voltage Output, the Output Voltage value set and Apply must be
clicked before the voltage output will actually be enabled and set accordingly.

Tip: The channel A range lock will not force the debugger to return to the high current
range if already running in the low range. Either wait for a current high enough to force it to
change, or simply Stop and Start the debugger.

Tip: Each power signal time plot uses system resources. Reduce the number of concurrent
plots for better performance.

5.3 CI/CD Support
MPLAB® ICD 5 In-Circuit Debugger can be used as a hardware test tool for Continuous Integration /
Continuous Delivery (or Deployment) because of its network communication capabilities. In MPLAB
X IDE, use the CI/CD Wizard to create files for Jenkins-Docker or Docker-only integration. See the
CI/CD Wizard in MPLAB X IDE User’s Guide (DS-50003243) or the section in the MPLAB X IDE User’s Guide
(DS-50002027) for details on CI/CD and using the wizard.

If Jenkins Pipeline Files are selected for creation in the wizard, the debugger may be included using
one of the wizard screens (see table below.)

Table 5-5. CI/CD Wizard - Hardware Testing
Option Description

Enable Hardware Testing Enable the debugger as a test tool.

Configuration to Build and
Run on ICD 5

Select a project configuration that uses the debugger; either default or one dedicated to
hardware use.

IP Address of ICD 5 Enter the IP address of the debugger you wish to use. If you do not know the IP address
of the debugger, you can use ipconfig or a similar tool to search the system to which the
debugger is connected for the address.

Enable MPLAB Code
Coverage

Enable the MPLAB Code Coverage feature. An MPLAB Analysis Tool Suite license will be
required to use this feature.
Note: The Code Coverage API plugin must be available on your Jenkins server if coverage
reporting is enabled.

Scan Output for Unity Test
Results

Enable if the configuration builds Unity test runners and the build job should create a report
based on the resulting output. For more info on how to write Unity tests see Unity - Getting
Started.

https://www.microchip.com/sitesearch/search/All/SW006027-2
https://plugins.jenkins.io/code-coverage-api/
https://github.com/ThrowTheSwitch/Unity/blob/master/docs/UnityGettingStartedGuide.md
https://github.com/ThrowTheSwitch/Unity/blob/master/docs/UnityGettingStartedGuide.md

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 49

5.4 SAM ITM/SWO Trace
ITM trace outputs UART-format data using the single-pin SWO. ITM has the provision to send this
data over multiple ports available from 0 to 31. Details of ITM/SWO trace may be found in the
following topics.

Not all SAM devices have ITM trace. See in MPLAB X IDE Help>Release Notes> Debug Features
Support>Hardware Tool Debug Features by Device.

5.4.1 How ITM Trace Works
All SAM MCUs/MPUs that support ITM trace are Arm® Cortex®-M processor-based devices with Arm®

CoreSight® architecture. Currently ITM is supported in Cortex M3, M4, M33, and SC300 cores.

The CoreSight Instrumentation Trace Macrocell (ITM) block is a software application driven trace
source. Supporting user code generates SoftWare Instrumentation Trace (SWIT). In addition, the block
provides a coarse-grained timestamp functionality. The main uses for this block are to:

• support printf style debugging.

• trace OS and application events.
• emit diagnostic system information.

MPLAB ICD 5 is capable of streaming UART-format ITM trace to the host computer. Trace is captured
on the TRACE/SWO pin of the 10-pin header (JTAG TDO pin). Data is buffered internally on the
MPLAB ICD 5 and is sent over the trace interface to the host computer. The maximum reliable data
rate is about 4 MB/s at this time.

Note: You can set the ITM baud rate in MPLAB X IDE. See 5.4.5.4. Setup ITM Trace.

Figure 5-1. ITM Block Diagram

The ITM contains the following sub-blocks:

Timestamp Generates timestamp packet.

Sync control ITM synchronizer.

Arbiter Arbitrates between synchronous, timestamp, and SWIT packet.

FIFO ATB First In First Out (FIFO).

Emitter ATB registered emitter.

Data is written to the stimulus registers using the APB interface. This data is then transmitted on the
ATB interface as SWIT packets .

5.4.2 How SWO Works with ITM Trace
The CoreSight Serial Wire Output (SWO) is a trace data drain that acts as a bridge between the
on-chip trace data to a data stream that is captured by a Trace Port Analyzer (TPA) which is the MPLAB
ICD 5 In-Circuit Debugger.

Compared to the Trace Port Interface Unit (TPIU), the SWO contains:

• no formatter.

https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture
https://developer.arm.com/documentation/ddi0314/h/Instrumentation-Trace-Macrocell/About-the-Instrumentation-Trace-Macrocell?lang=en
https://developer.arm.com/documentation/ddi0314/h/Serial-Wire-Output/About-the-Serial-Wire-Output?lang=en
https://developer.arm.com/documentation/ddi0314/h/Trace-Port-Interface-Unit/About-the-Trace-Port-Interface-Unit?lang=en

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 50

• no pattern generator.
• an 8-bit ATB input.
• no synchronous trace output, that is, no TRACEDATA, TRACECTL, or TRACECLK pins.
• no support for flush, because this is not required.
• no support for triggering.
• no external inputs and outputs (EXTCTLIN and EXTCTLOUT are not implemented).

Figure 5-2. SWO Block Diagram

5.4.3 Requirements for ITM/SWO Trace
The following is required to use trace for SAM devices:

• MPLAB X IDE v6.10 or greater.
• A target board with debug and trace connections to a device that supports SWO trace.
• For debug and trace support, use one of the following:

– MPLAB ICD 5 Cortex-M Trace Adapter Board
– ICD 5 JTAG Adapter Board (Note: SWO pin multiplexed with JTAG pins)
– a target board with a connector to the 8-pin flat cable

5.4.4 Hardware Setup
Preliminaries
1. Use USB communication between the PC and MPLAB ICD 5. Other communication types do not

support trace.
2. Find devices that support ITM trace – see Help>Release Notes> Debug Features Support>Hardware

Tool Debug Features by Device.
3. Design the target board to have a connector for debugger-target communication and for trace

pins if using SAM 3.3.3. Debugger Adapter Board. Alternately design the target board to connect
to the cable with pins for both debug and trace.

4. When using trace, the TRACESWO pin on the target is used. Therefore you cannot use another
function multiplexed on that pin.

Set Up Hardware
To use the ITM/SWO feature:

1. The target board should be unpowered.
2. Install the communication cable between the debugger or adapter board and the

communication connector on your target board.

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 51

3. If using the adapter board, connect the trace cable between the adapter board and trace
connector on your target board.

4. Power the target.

5.4.5 Set Up ITM in MPLAB X IDE
An MPLAB X IDE project is needed for code development and debugging. Then project can be
configured for debug tool feature support.

5.4.5.1 Create a Project in MPLAB X IDE
Create a project in MPLAB X IDE while being mindful of the 5.4.3. Requirements for ITM/SWO Trace.
For more on creating a project, consult MPLAB X IDE documentation.

To assist with code development, consider using MCC MPLAB Harmony:

1. Select Tools>Plugins>Available Plugins>MPLAB Code Configurator and click Install. MPLAB X IDE will
need to restart.

2. Click on the toolbar icon. Please wait for MCC to initialize and install.
3. On the Content Manager tab, click to Select MPLAB Harmony.
4. Ensure Required Content is downloaded and select any Optional Content needed for your

application. Then click Finish.
5. Edit main() and other files as necessary to create your application.

5.4.5.2 Use CMSIS ITM Functions
Right click on the project name in the Projects window and select “Properties.” Under Packs, in
addition to the device pack (DFP), CMSIS is also included (see figure below).

The Common Microcontroller Software Interface Standard (CMSIS) is a vendor-independent
abstraction layer for microcontrollers that are based on Arm Cortex processors. CMSIS defines
generic tool interfaces and enables consistent device support. The CMSIS software interfaces
simplify software reuse, reduce the learning curve for microcontroller developers, and improve time
to market for new devices.

The ARM CMSIS package comes with specific header files/APIs for sending ITM data. For example, in
<MPLAB_Installation>packs\arm\CMSIS\x.x.x\CMSIS\Core\Include\core_cm7.h,

find the CMSIS function ITM_SendChar() that can be used to print a character over ITM/SWO:

__STATIC_INLINE uint32_t ITM_SendChar(uint32_t ch)

These are the lowest level APIs at the byte level (only writing to PORT 0); however you can customize
and develop your own functions for printing the messages to any port 0 through 31 (see 5.4. SAM
ITM/SWO Trace).

__STATIC_INLINE uint32_t ITM_SendCharPort (uint8_t port, uint32_t ch)
{
 if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && /* ITM enabled */
 ((ITM->TER & 1UL << port) != 0UL)) /* ITM Port enabled */
 {
 while (ITM->PORT[port].u32 == 0UL)
 {

https://onlinedocs.microchip.com/v2/keyword-lookup?redirect=true&keyword=MPLABX:NEW_PROJECT
https://www.microchip.com/en-us/tools-resources/configure/mplab-harmony#MCC

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 52

 __NOP();
 }
 ITM->PORT[port].u8 = (uint8_t)ch;
 }
 return (ch);
}

//-SL: same as ITM-fct from CMSIS-header (see above), but with portNum
void ITM_PrintString(const char *s, uint8_t portNo)
{
 while (*s!='\0')
 {
 ITM_SendCharPort(portNo,*s++);
 }
}

Alternately, if you do not want to use CMSIS ITM functions, you can write your own by understanding
the ITM PORT registers and ITM configuration/status registers which are available as part of the ARM
CoreSight Documentation.

5.4.5.3 Setup the Clock
In the Project Properties dialog, click on “ICD 5” (under “Categories”). Select “Clock” from the drop
down and enter the “Target run-time clock frequency (in MHZ)” in “Option categories.”

Figure 5-3. Setup the Clock Test

Note: This does not set the clock but informs the debugger of its value for runtime watch, data
capture and trace.

5.4.5.4 Setup ITM Trace
Select “Trace and Profiling” from “Option categories” drop down,
1. Select “ITM TraceUnder” from the “Data Collection Selection” drop down.

https://developer.arm.com/documentation/ddi0314/h/Instrumentation-Trace-Macrocell/ITM-programmers-model?lang=en
https://developer.arm.com/documentation/ddi0314/h/Instrumentation-Trace-Macrocell/ITM-programmers-model?lang=en

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 53

2. Select an “ITM baud rate” to specify the SWO speed. The clock and this value will be used to
determine the SWO prescaler value.
Note: The debugger has a finite set of SWO baud rates that it can use: 512KHz, 1MHz, 2MHz,
and 4MHz.

Note: It is advised that if clock switching is involved in the application, the SWO baud rate is
setup for the intended clock rate at which SWO functionality is desired.

3. For some SAM devices, you will need to add a .ini file for additional ITM setup. See
5.4.5.5. Additional Initialization File.

4. Change any logging setup as desired.
5. Click OK when done.

Figure 5-4. Trace and Profiling

5.4.5.5 Additional Initialization File
SAM E70 and SAM E54 device families have clocking (PLL) that differs from standard Arm devices.
Therefore specific device configuration is required. This is done using an ini file. This file will be
launched on a reset.

useroperationsITMSAME70.ini

; Trace Clock Setup
; _WDWORD (0x400E064C, 0x4); // Select Master clock for ITM/ETM
write,0x400E064C, 4

;PMC->PMC_SCER = PMC_SCER_PCK3; // Enable PCK3
write,0x400E0600,0x800

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 54

useroperationsITMSAME54.ini

; Trace Clock Setup
; Enable ITM/ETM Peripheral Generic clock and set it to Master Clock
write,0x40001D3C, 0x40

; Configure PB30 to SWO - GPIO PORT MUX
write,0x410080BF,0x07

; Configure Pullups for PB30
write,0x410080DE,0x41

5.4.6 Viewing ITM Data
On a Debug Run, trace will continue to fill the trace buffer with data, rolling over when the buffer
is full or when a Halt is executed. The application will determine how the trace data is used or
displayed.

Note: There can be a delay in the display of data in the ITM Display window until there is enough
data to fill the buffer. Some data can be lost during processing.

Figure 5-5. Example Output in ITM Display

Related Links
9.3.2. ITM Window and Related Dialogs

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 55

5.5 SAM (ARM) - Trace and Profiling
The SAM D5x/E5x Cortex-M4 processors implements a complete hardware debug solution. This
provides high system visibility of the processor and memory through a 2-pin Serial Wire Debug
(SWD) port that is ideal for microcontrollers and other small package devices.

5.5.1 ARM Cortex-M4 Processor - Trace and Profiling
For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data
watchpoints and a profiling unit.

To enable simple and cost-effective profiling of the system events these generate, a stream of
software-generated messages, data trace, and profiling information is exported over two different
ways:

• Output off chip using the TPIU - through a single pin, called Serial Wire Viewer (SWV). Limited to
ITM system trace.

• Internally stored in RAM - using the CoreSight ETB. Bandwidth is then optimal but capacity is
limited.

Figure 5-6. Block Diagram

SWV trace data are output on the Serial Wire Output (SWO).

5.5.2 SAM D5x/E5x - ETB Connection
When enabled, the bottom 32 KB system memory space is reserved for CoreSight ETB debug usage.
The figure below shows an example where both error correction codes (ECC) and CoreSight ETB are
enabled.

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 56

Figure 5-7. Memory with ECC and CoreSight ETB

5.6 Debugger Polling
MPLAB ICD 5 can be instructed by MPLAB Data Visualizer to repeatedly poll the Program Counter
(PC) as fast as possible during active debug session with a target device. Though this will not yield a
very high percentage of PC sampling or code trace, it can be useful in Code vs Power correlation to
trap the areas of code which use more power than intended. As an example, see the figure below.

For more on the MPLAB Data Visualizer, see MPLAB Data Visualizer webpage.

https://www.microchip.com/en-us/development-tools-tools-and-software/embedded-software-center/mplab-data-visualizer

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 57

Figure 5-8. Debugger Polling

5.6.1 Requirements
Currently, to use Debugger Polling your project must be set up for these supported devices:

• AVR-8bit devices (UPDI interface)
• SAM-32bit devices (SWD interface)

5.6.2 Operation
The Debugger polling uses the SWD interface of SAM 32-bit devices and UPDI interface of AVR 8-bit
devices to access the internal program counter location. It provides timestamped samples of the
program counter address, allowing an insight in the program execution of the device.

Note:  Debugger polling is only available when MPLAB Data Visualizer is run from within
MPLAB X IDE. This allows the data visualizer access the debug system on the device through the
MPLAB X IDE backend.

Note: Debugger polling requires that the debugger is running, i.e., select “Debug Project” in MPLAB
X IDE.

5.7 Power Monitor
The MPLAB ICD 5 In-Circuit Debugger can be a power monitor. Power monitoring means capturing
power data, such as current values. When power is supplied by the debugger, the Vdd and GND lines
can be monitored and power data gathered.

Power Monitoring is available for the following Microchip devices: PIC®, dsPIC®, AVR® and SAM MCU.

The debugger works with the MPLAB Data Visualizer to provide plots of power data. As of MPLAB
X IDE v5.50, the MPLAB DV plugin is included with the IDE. A separate stand-alone version is also
available.

Note: You can only use USB communication with the data visualizer.

For more on this software, see the MPLAB Data Visualizer Product Page.

5.7.1 About Power Monitoring
When the MPLAB ICD 5 is connected to and powering the target, the following can be measured:

https://www.microchip.com/en-us/development-tools-tools-and-software/embedded-software-center/mplab-data-visualizer

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 58

Table 5-6. Power Monitor Specifications
Current and Voltage Resolution Full Scale

Current 29 uA/step 1.0 A

Voltage 0.2087 mV/step 6.8 V

5.7.2 MPLAB X IDE Setup
In the Project Properties (right click on project name and select “Properties”), ensure that the
debugger is not powering the target.

Click the Make and Program Device button to build and program the code into the target
device.

Troubleshooting:

• If the project fails to build, check that you have copied and pasted the code fully. Also look at the
error messages in the Output window for additional help.

• If MPLAB X IDE has connection issues with the debugger or the target, check your connections.

5.7.3 MPLAB Data Visualizer Displays
MPLAB Data Visualizer may be launched from within MPLAB X IDE or as a stand-alone application.

To open in MPLAB X IDE, select Window>Debugging>Data Visualizer. When the data visualizer opens,
there will be a Power selection available under the MPLAB ICD 5 DGI list, as current sense is being
used. Click on it to view Power Setting controls. For this use case, no power from the debugger will
be used (Output Voltage = 0).

Debugger Features

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 59

Figure 5-9. MPLAB ICD 5 DGI Options

Plot all power sources by clicking on the drop-down arrow and selecting Plot all sources. The plot
data will start to stream.

Troubleshooting First Steps

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 60

6. Troubleshooting First Steps
If you are experiencing problems with MPLAB ICD 5 In-Circuit Debugger operation, the following
sections are provided to help.

6.1 Some Questions to Answer First
1. What device are you working with? Often an upgrade to a newer pack (DFP/TP) version for

MPLAB X IDE is required to support newer devices.
2. Are you using a Microchip demo board or one of your own design? Have you followed

the guidelines for resistors/capacitors for communications connections? See 3.3. Target
Connections.

3. Have you powered the target? For details see 10.2. Power Specifications.
4. Are you using a USB hub in your setup? Is it powered? Some hubs may have compatibility

issues with MPLAB tools. If you continue to have problems, try using the debugger without the
hub (plugged directly into the PC).

5. Are you using a communication cable shipped with debugger? If you are using a longer
cable, it may have communications errors. If a longer cable is required, consider another type of
communication. See 3.2. PC Connections.

6. Are you using the USB cable shipped with the debugger? Other USB cables may be of poor
quality, too long or do not support USB communication.

6.2 Top Reasons Why You Can't Debug
1. Oscillator not working. Check your Configuration bits setting for the oscillator. If you are using

an external oscillator, try using an internal oscillator then retry debugging. If you are using an
internal PLL, make sure your PLL settings are correct.

2. No power to the target board. Check the power cable connection to the target or the debugger
if powered by the debugger.

3. Incorrect VDD voltage. The VDD voltage is outside the specifications for this device. See the
device programming specification for details.

4. Physical disconnect. The debugger has become physically disconnected from the computer
and/or the target board. Check the communications cables’ connections.

5. Communications lost. The PC to debugger communication has somehow been interrupted.
Reconnect to the debugger in MPLAB X IDE.

6. Device not seated. The device is not properly seated on the target board. If the debugger is
properly connected and the target board is powered, but the device is absent or not plugged in
completely, you may receive the message:
Target Device ID (0x0) does not match expected Device ID (0x%x)
, where %x is the expected device ID.

7. Device is code-protected. Check your Configuration bits settings for code protection.
8. No device debug circuitry. The production device may not have debugging capabilities. Use a

Processor Extension Pak (DS50001292) or Debugger Extension Pak (DS50002243) as required.
9. Application code corrupted. The target application has become corrupted or contains errors.

Try rebuilding and reprogramming the target application. Then initiate a Power-On-Reset of the
target.

10. Incorrect programming pins. The PGC/PGD pin pairs are not correctly programmed in your
Configuration bits (for devices with multiple PGC/PGD pin pairs).

11. Additional setup required. Other configuration settings are interfering with debugging. Any
configuration setting that would prevent the target from executing code will also prevent the
debugger from putting the code into Debug mode.

Troubleshooting First Steps

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 61

12. Incorrect brown-out voltage. Brown-out Detect voltage is greater than the operating voltage
VDD. This means the device is in Reset and cannot be debugged.

13. Incorrect connections. Review the guidelines in 3.3. Target Connections for the correct
communication connections.

14. Invalid request. The debugger cannot always perform the action requested.

6.3 General Considerations
1. There may be a problem programming in general. As a test, switch to Run mode using the icon

and program the target with the simplest application possible (for example, a program to blink
an LED). If the program will not run, then you know that something is wrong with the target
setup.

2. It is possible that the target device has been damaged in some way (for example, over current).
Development environments are notoriously hostile to components. Consider trying another
target board.

3. Application is overwriting debugger reserved resources. Check your linker scripts and map files
to ensure there is no conflict between the RAM and FLASH areas used by application and
debugger.

4. Review debugger setup to ensure proper application setup. For more information, see
4. Operation.

5. Your program speed may be set too high for your circuit. In MPLAB X IDE, go to File>Project
Properties, select ICD 5 in “Categories,” then “Program Options,” “Program Speed” and select a
slower speed from the drop-down menu. The default is “Normal.”

Figure 6-1. Program Speed Option

6. There may be certain situations where the debugger is not operating properly and firmware may
need to be downloaded or the debugger needs to be reprogrammed. See the following sections
to determine additional actions.

Troubleshooting First Steps

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 62

6.4 How to Use the Hardware Tool Emergency Boot Firmware Recovery Utility

CAUTION Notice: Only use this utility to restore hardware tool boot firmware to its factory
state. Use only if your hardware tool no longer functions on any machine.

The debugger may need to be forced into recovery boot mode (reprogrammed) in rare situations;
for example, if any of the following occurs when the debugger is connected to the computer:

• If the debugger has no LEDs lit.
• If the LEDs are cyan in color.

Important: YOU MUST USE MPLAB X IDE v6.10 OR GREATER TO USE THE EMERGENCY
RECOVERY UTILITY FOR MPLAB ICD 5.

Carefully follow the instructions found in MPLAB X IDE under the main menu options
Debug>Hardware Tool Emergency Boot Firmware Recovery.

Figure 6-2. Selecting Emergency Utility

If the procedure was successful, the recovery wizard displays a success screen. The MPLAB ICD 5
will now be operational and able to communicate with the MPLAB X IDE, showing a purple LED
color. If the procedure failed, try it again. If it fails a second time, contact Microchip Support at
support.microchip.com.

https://support.microchip.com

Frequently Asked Questions (FAQ)

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 63

7. Frequently Asked Questions (FAQ)
Answers to frequently asked questions about the MPLAB ICD 5 In-Circuit Debugger system are
covered in the following sections.

7.1 How Does It Work?
What's in the silicon that allows it to communicate with the MPLAB ICD 5 In-Circuit
Debugger?
MPLAB ICD 5 can communicate with Flash silicon via ICSP and other target interfaces. On some
devices, it communicates with a debug executive located in dedicated memory or user memory.
For legacy 8-bit PIC devices, the debug executive resides in Program memory. On other devices, it
communicates directly with the chip’s OCD module.

How is the throughput of the processor affected by having to run the debug executive?
The debug executive doesn't run while in Run mode, so there is no throughput reduction when
running your code, i.e., the debugger doesn’t ‘steal’ any cycles from the target device.

How does MPLAB X IDE interface with the MPLAB ICD 5 In-Circuit Debugger to allow more
features than older debug tools?
MPLAB ICD 5 communicates using the debug executive located in a dedicated area of memory
or using chip’s OCD. The debug executive is streamlined for more efficient communication. The
debugger contains an FPGA, large SRAM Buffers (1Mx8), and a High-Speed USB interface. The FPGA
in the debugger serves as an accelerator for interfacing with the device in-circuit debugger modules.

On traditional debuggers, the data must come out on the bus in order to perform a complex
trigger on that data. Is this also required on the MPLAB ICD 5 In-Circuit Debugger? For
example, could I halt, based on a flag going high?
Traditional debuggers use a special debugger chip (-ME) for monitoring. There is no -ME with the
MPLAB ICD 5, so there are no buses to monitor externally. With theMPLAB ICD 5, rather than using
external breakpoints, the built-in breakpoint circuitry of the debug engine is used – the buses and
breakpoint logic are monitored inside the part.

Does the MPLAB ICD 5 In-Circuit Debugger have complex breakpoints?
Yes. You can break based on a value in a data memory location. You can also do sequenced
breakpoints, where several events have to occur before it breaks. However, you can only do two
sequences. You can also do the AND condition and do PASS counts.

Will this slow down the running of the program?
There is no cycle stealing with the MPLAB ICD 5.

Is it possible to debug a dsPIC DSC device running at any speed?
The MPLAB ICD 5 is capable of debugging at any device speed as specified in the device’s data sheet.

7.2 What's Wrong?
When MPLAB ICD 5 is not working as expected or not working, please see the sections below for
help. See also 8. Error Messages.

7.2.1 My computer went into power-down/hibernate mode, and now my debugger won’t work.
What happened?
When using the debugger for prolonged periods of time, and especially as a debugger, be sure
to disable the Hibernate mode in the Power Options Dialog window of your computer’s operating
system. Go to the Hibernate tab and clear or uncheck the “Enable hibernation” check box. This will
ensure that all communication is maintained across all the USB subsystem components.

Frequently Asked Questions (FAQ)

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 64

7.2.2 Performing a Verify fails after programming the device. Is this a programming issue?

If Run Main Project is selected, the device will automatically run immediately after
programming. Therefore, if your code changes the flash memory, verification could fail. To prevent

the code from running after programming, select Hold in Reset .

7.2.3 During Native Trace, I manually halted my program and now the last trace record has been
lost. What happened?
Due to manual Halts being asynchronous, the last piece of data may be dropped. Try running and
halting again. Alternatively, use a breakpoint to halt your code.

7.2.4 I set my 16-bit device peripheral to NOT freeze on halt, but it is suddenly freezing. What's
going on?
For dsPIC30F/33F and PIC24F/H devices, a reserved bit in the peripheral control register (usually
either bit 14 or 5) is used as a Freeze bit by the debugger. If you have performed a write to the entire
register, you may have overwritten this bit (the bit is user-accessible in Debug mode). To avoid this
problem, write only to the bits you wish to change for your application (BTS, BTC) instead of to the
entire register (MOV).

7.2.5 When using a 16-bit device, an unexpected Reset occurred. How do I determine what
caused it?
Some things to consider:

• To determine a Reset source, check the RCON register.
• Handle traps/interrupts in an Interrupt Service Routine (ISR). You should include trap.c style

code, i.e.,
void __attribute__((__interrupt__)) _OscillatorFail(void);
 :
void __attribute__((__interrupt__)) _AltOscillatorFail(void);
 :
void __attribute__((__interrupt__)) _OscillatorFail(void)
 {
 INTCON1bits.OSCFAIL = 0; //Clear the trap flag
 while (1);
 }
 :
 void __attribute__((__interrupt__)) _AltOscillatorFail(void)
 {
 INTCON1bits.OSCFAIL = 0;
 while (1);
 }
 :

• Use ASSERTs. For example:
ASSERT
 (IPL==7)

Error Messages

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 65

8. Error Messages
The MPLAB ICD 5 In-Circuit Debugger produces various error messages; some are specific, some
are informational, and others can be resolved with general corrective actions. In general, read any
instructions under your error message. If those fail to fix the problem or if there are no instructions,
refer to the following sections.

8.1 Types of Error Messages
The following sections group selected error messages into logical categories and propose solutions.
The final section lists all error messages.

8.1.1 Corrupted/Outdated Installation Errors
Failed to download firmware

If the hex file exists:

• Reconnect and try again.
• If this does not work, the file may be corrupted. Reinstall MPLAB X IDE.

If the hex file does not exist:

• Reinstall MPLAB X IDE.

Unable to download debug executive

If you receive this error while attempting to debug:

1. Deselect the debugger as the debug tool.
2. Close your project and then close MPLAB X IDE.
3. Restart MPLAB X IDE and reopen your project.
4. Reselect the debugger as the debug tool and try to program the target device again.

Unable to download program executive

If you receive this error while attempting to program:

1. Deselect the debugger as the programmer.
2. Close your project and then close MPLAB X IDE.
3. Restart MPLAB X IDE and reopen your project.
4. Reselect the debugger as the programmer and try to program the target device again.

If these actions fail to fix the problem, see Corrupted Installation Actions.

8.1.2 Debug Failure Errors
The target device is not ready for debugging. Please check your Configuration bit settings and
program the device before proceeding.

You will receive this message if you try to Run before programming your device. If you receive this
message after trying to Run, or immediately after programming your device:

The device is code protected.

The device on which you are attempting to operate (read, program, blank check, or verify) is code
protected, that is, the code cannot be read or modified. Check your Configuration bits setting for
code protection (Windows > Target Memory Views > Configuration Bits).

Disable code protection, set or clear the appropriate Configuration bits in code or in the
Configuration Bits window according to the device data sheet. Then erase and reprogram the entire
device.

Error Messages

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 66

If these actions fail to fix the problem, see Debugger to Target Communication Error Actions and
Debug Failure Actions.

8.1.3 Miscellaneous Errors
ICD 5 is busy. Please wait for the current operation to finish.

1. Wait. Give the debugger time to finish any application tasks. Then try to deselect the debugger
again.

2. Select (Finish Debugger Session) to stop any running applications. Then try to deselect the
debugger again.

3. Unplug the debugger from the computer. Then try to deselect the debugger again.
4. Shut down MPLAB X IDE.

8.1.4 List of Error Messages

Table 8-1. Alphabetized List Of Error Messages
AP_VER=Algorithm Plugin Version.

AREAS_TO_PROGRAM=The following memory area(s) will be programmed:

AREAS_TO_READ=The following memory area(s) will be read:

AREAS_TO_VERIFY=The following memory area(s) will be verified:

BLANK_CHECK_COMPLETE=Blank check complete, device is blank.

BLANK_CHECKING=Blank Checking...

BOOT_CONFIG_MEMORY=boot config memory.

BOOT_VER=Boot Version.

BOOTFLASH=boot flash.

BP_CANT_B_DELETED_WHEN_RUNNING=software breakpoints cannot be removed while the target is running. The selected
breakpoint will be removed the next time the target halts.

CANT_CREATE_CONTROLLER=Unable to find the tool controller class.

CANT_FIND_FILE=Unable to locate file %s.

CANT_OP_BELOW_LVPTHRESH=The voltage level selected %f, is below the minimum erase voltage of %f. The operation
cannot continue at this voltage level.

CANT_PRESERVE_PGM_MEM=Unable to preserve program memory: Invalid range Start = %08x, End = %08x.

CANT_READ_REGISTERS=Unable to read target register(s).

CANT_READ_SERIALNUM=Unable to read the device serial number.

CANT_REMOVE_SWPS_BUSY=The ICD 5 is currently busy and cannot remove software breakpoints at this time.

CHECK_4_HIGH_VOLTAGE_VPP=CAUTION: Check that the device selected in MPLAB X IDE (%s) is the same one that is
physically attached to the debug tool. Selecting a 5V device when a 3.3V device is connected can result in damage to the
device when the debugger checks the device ID. Do you wish to continue?

CHECK_PGM_SPEED=You have set the program speed to %s. The circuit on your board may require you to slow the speed
down. Please change the setting in the tool properties to low and try the operation again.

COMM_PROTOCOL_ERROR=A communication error with the debug tool has occurred. The tool will be reset and should
re-enumerate shortly.

COMMAND_TIME_OUT=ICD 5 has timeout out waiting for a response to command %02x.

CONFIGURATION=configuration.

CONFIGURATION_MEMORY=configuration memory.

CONNECTION_FAILED=Connection Failed.

CORRUPTED_STREAMING_DATA=Invalid streaming data has been detected. Run time watch or trace data may no longer be
valid. It is recommended that you restart your debug session.

CPM_TO_TARGET_FAILED=An exception occurred during ControlPointMediator.ToTarget().

DATA_FLASH_MEMORY=Data Flash memory.

Error Messages

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 67

DATA_FLASH=data flash.

DEBUG_INFO_PGM_FAILED=Could not enter debug mode because programming the debug information failed. Invalid
combinations of config bits may cause this problem.

DEBUG_READ_INFO=Reading the device while in debug mode may take a long time due to the target oscillator speed.
Reducing the range that you'd like to read (under the ICD 5 project properties) can mitigate the situation. The abort
operation can be used to terminate the read operation if necessary.

DEVICE_ID_REVISION=Device Id Revision.

DEVICE_ID=Device Id.

DEVID_MISMATCH=Target Device ID (0x%x) is an Invalid Device ID. Please check your connections to the Target Device.

DISCONNECT_WHILE_BUSY=The tool was disconnected while it was busy.

EEDATA_MEMORY=EEData memory.

EEDATA=EEData.

EMULATION_MEMORY_READ_WRITE_ERROR=An error occurred while trying to read/write MPLAB's emulation memory:
Address=%08x.

END=end.

ENSURE_SELF_TEST_READY=Please ensure the RJ-11 cable is connected to the test board before continuing.

ENSURE_SELF_TEST_READY=Please ensure the RJ-11 cable is connected to the test board before continuing. Would you like
to continue?

ENV_ID_GROUP=Device Identification.

ERASE_COMPLETE=Erase successful.

ERASING=Erasing...

FAILED_2_PGM_DEVICE=Failed to program device.

FAILED_CREATING_COM=Unable create communications object (RI4Com).

FAILED_CREATING_DEBUGGER_MODULES=Initialization failed: Failed creating the debugger module.

FAILED_ESTABLISHING_COMMUNICATION=Unable to establish tool communications.

FAILED_GETTING_DBG_EXEC=A problem occurred while trying to load the debug executive.

FAILED_GETTING_DEVICE_INFO=Initialization failed: Failed while retrieving device database (.pic) information.

FAILED_GETTING_EMU_INFO=Initialization failed: Failed getting emulation database information.

FAILED_GETTING_HEADER_INFO=Initialization failed: Failed getting header database information.

FAILED_GETTING_PGM_EXEC=A problem occurred while trying to load the program executive.

FAILED_GETTING_TEX=Unable to obtain the ToolExecMediator.

FAILED_GETTING_TOOL_INFO=Initialization failed: Failed while retrieving tool database (.ri4) information.

FAILED_INITING_DATABASE=Initialization failed: Unable to initialize the tool database object.

FAILED_INITING_DEBUGHANDLER=Initialization failed: Unable to initialize the DebugHandler object.

FAILED_PARSING_FILE=Failed to parse firmware file: %s.

FAILED_READING_EMULATION_REGS=Failed to read emulation memory.

FAILED_READING_MPLAB_MEMORY=Unable to read %s memory from %0x08 to %0x08.

FAILED_SETTING_SHADOWS=Failed to properly set shadow registers.

FAILED_SETTING_XMIT_EVENTS=Unable to synchronize run time data semiphores.

FAILED_STEPPING=Failed while stepping the target.

FAILED_TO_GET_DEVID=Failed to get Device ID. Please make sure the target device is attached and try the operation again.

FAILED_TO_INIT_TOOL=Failed to initialize ICD 5.

FAILED_UPDATING_BP=Failed to update breakpoint:\nFile: %s\naddress: %08x.

FAILED_UPDATING_FIRMWARE=Failed to properly update the firmware.

FILE_REGISTER=file register.

FIRMWARE_DOWNLOAD_TIMEOUT=ICD 5 timeout out during the firmware download process.

FLASH_DATA_MEMORY=Flash data memory.

FLASH_DATA=flash data.

Error Messages

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 68

FPGA_VER=FPGA Version.

FRCINDEBUG_NEEDS_CLOCKSWITCHING=To use FRC in debug mode the clock switching configuration bits setting must be
enabled. Please enable clock switching and retry the requested operation.

FW_DOESNT_SUPPORT_DYNBP=The current ICD 5 firmware does not support setting run time breakpoints for the selected
device. Please download firmware version %02x.%02x.%02x or higher.

GOOD_ID_MISMATCH=Target Device ID (0x%x) is a valid Device ID but does not match the expected Device ID (0x%x) as
selected.

HALTING=Halting...

HIGH=High.

HOLDMCLR_FAILED=Hold in reset failed.

IDS_SELF_TEST_PASSED=ICD5 is functioning properly. If you are still having problems with your target circuit please check the
Target Board Considerations section of the online help.

IDS_ST_CLKREAD_ERR=Test interface PGC clock line read failure.

IDS_ST_CLKREAD_NO_TEST=Test interface PGC clock line read not tested.

IDS_ST_CLKREAD_SUCCESS=Test interface PGC clock line read succeeded.

IDS_ST_CLKWRITE_ERR=Test interface PGC clock line write failure. Please ensure that the tester is properly connected.

IDS_ST_CLKWRITE_NO_TEST=Test interface PGC clock line write not tested.

IDS_ST_CLKWRITE_SUCCESS=Test interface PGC clock line write succeeded.

IDS_ST_DATREAD_ERR=Test interface PGD data line read failure.

IDS_ST_DATREAD_NO_TEST=Test interface PGD data line read not tested.

IDS_ST_DATREAD_SUCCESS=Test interface PGD data line read succeeded.

IDS_ST_DATWRITE_ERR=Test interface PGD data line write failure.

IDS_ST_DATWRITE_NO_TEST=Test interface PGD data line write not tested.

IDS_ST_DATWRITE_SUCCESS=Test interface PGD data line write succeeded.

IDS_ST_LVP_ERR=Test interface LVP control line failure.

IDS_ST_LVP_NO_TEST=Test interface LVP control line not tested.

IDS_ST_LVP_SUCCESS=Test interface LVP control line test succeeded.

IDS_ST_MCLR_ERR=Test interface MCLR level failure.

IDS_ST_MCLR_NO_TEST=Test interface MCLR level not tested.

IDS_ST_MCLR_SUCCESS=Test interface MCLR level test succeeded.

IDS_TEST_NOT_COMPLETED=Interface test could not be completed. Please contact your local FAE/CAE to SAR the unit.

INCOMPATIBLE_FW=The ICD 5 firmware in not compatible with the current version of MPLAB X software.

INVALID_ADDRESS=The operation cannot proceed because the %s address is outside the devices address range of 0x%08x -
0x%08x.

MEM_RANGE_ERROR_BAD_END_ADDR=Invalid program range end address %s received. Please check the manual program
ranges on the debug tool's, "Memories to Program" property page.

MEM_RANGE_ERROR_BAD_START_ADDR=Invalid program range start address %s received. Please check the manual program
ranges on the debug tool's, "Memories to Program" property page.

MEM_RANGE_ERROR_END_LESSTHAN_START=Invalid program range received: end address %s < start address %s. Please
check the manual program ranges on the debug tool's, "Memories to Program" property page.

MEM_RANGE_ERROR_ENDADDR_NOT_ALIGNED=Invalid program range received: end address %s is not aligned on a proper
0x%x address boundary. Please check the manual program ranges on the debug tool's, "Memories to Program" property
page.

MEM_RANGE_ERROR_STARTADDR_NOT_ALIGNED=Invalid program range received: start address %s is not aligned on a
proper 0x%x address boundary. Please check the manual program ranges on the debug tool's, "Memories to Program"
property page.

MEM_RANGE_ERROR_UNKNOWN=An unknown error has occurred while trying to validate the user entered memory ranges.

MEM_RANGE_ERROR_WRONG_DATABASE=Unable to access data object while validating user entered memory ranges.

MEM_RANGE_OUT_OF_BOUNDS=The selected program range, %s, does not fall within the proper range for the memory area
selected. Please check the manual program ranges on the debug tool's, "Memories to Program" property page.

Error Messages

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 69

MEM_RANGE_STRING_MALFORMED=The memory range(s) entered on the, "Memories to Program" property page (%s) is not
formatted properly.

MISSING_BOOT_CONFIG_PARAMETER=Unable to find boot config start/end address in database.

MUST_SET_LVPBIT_WITH_LVP=The low voltage programming feature requires the LVP configuration bit to be enabled on the
target device. Please enable this configuration bit and try the operation again.

NEW_FIRMWARE=Now Downloading new Firmware for target device: %s

NMMR=NMMR

NO_DYNAMIC_BP_SUPPORT_AT_ALL=The current device does not support the ability to set breakpoints while the devices is
running. The breakpoint will be applied prior to the next time you run the device.

NO_PGM_HANDLER=Cannot program software breakpoints. The program handler has not been initialized.

NORMAL=Normal.

OP_FAILED_FROM_CP=The requested operation failed because the device is code protected.

OpenIDE-Module-Name=ICD 5

OPERATION_NOT_SUPPORTED=This operation is not supported for the selected device.

OUTPUTWIN_TITLE=ICD 5.

PERIPHERAL=Peripheral.

POWER_ERROR_NO_9V=The configuration is set for the tool to provide power to the target but the 9V power jack is not
detected. Please ensure the external 9V barrel jack is connected to the tool.

POWER_ERROR_NO_POWER_SRC=The configuration is set for the target board to supply its own power but no voltage has
been detected on VDD. Please ensure you have your target powered up and try again.

POWER_ERROR_POWER_SRC_CONFLICT=The configuration is set for the tool to provide power to the target but there is
voltage already detected on VDD. This is a conflict. Please ensure your target is not supplying voltage to the tool and try
again.

POWER_ERROR_SLOW_DISCHARGE= There seems to be excessive capacitance on VDD causing a slower system discharge
and shutdown. Consider minimizing overall capacitance loading or use power from your target to avoid discharge delays.

POWER_ERROR_UNKNOWN=An unknown power error has occurred.

POWER_ERROR_VDD_TOO_HIGH=The VDD voltage desired is out of range. It exceeds the maximum voltage of 5.5V.

POWER_ERROR_VDD_TOO_LOW=The VDD voltage desired is out of range. It is below the minimum voltage of 1.5V.

POWER_ERROR_VPP_TOO_HIGH=The VPP voltage desired is out of range. It exceeds the maximum voltage of 14.2V.

POWER_ERROR_VPP_TOO_LOW=The VPP voltage desired is out of range. It is below the minimum voltage of 1.5V.

PRESERVE_MEM_RANGE_ERROR_BAD_END_ADDR=Invalid preserve range end address %s received. Please check the manual
program ranges on the debug tool's, "Memories to Program" property page.

PRESERVE_MEM_RANGE_ERROR_BAD_START_ADDR=Invalid preserve range start address %s received. Please check the
manual program ranges on the debug tool's, "Memories to Program" property page.

PRESERVE_MEM_RANGE_ERROR_END_LESSTHAN_START=Invalid preserve range received: end address %s < start address %s.
Please check the manual program ranges on the debug tool's, "Memories to Program" property page.

PRESERVE_MEM_RANGE_ERROR_ENDADDR_NOT_ALIGNED=Invalid preserve range received: end address %s is not aligned
on a proper 0x%x address boundary. Please check the manual program ranges on the debug tool's, "Memories to Program"
property page.

PRESERVE_MEM_RANGE_ERROR_STARTADDR_NOT_ALIGNED=Invalid preserve range received: start address %s is not aligned
on a proper 0x%x address boundary. Please check the manual program ranges on the debug tool's, "Memories to Program"
property page.

PRESERVE_MEM_RANGE_ERROR_UNKNOWN=An unknown error has occurred while trying to validate the user entered
preserve ranges.

PRESERVE_MEM_RANGE_ERROR_WRONG_DATABASE=Unable to access data object while validating user entered memory
ranges.

PRESERVE_MEM_RANGE_MEM_NOT_SELECTED=You have selected to preserve an area of memory but have not selected to
program that area. Please check the preserved ranges on the debug tool's, "Memories to Program" property page, and make
sure that any preserved memory is also designated to be programmed.

PRESERVE_MEM_RANGE_OUT_OF_BOUNDS=The selected preserve range, %s, does not fall within the proper range for the
memory area selected. Please check the manual program ranges on the debug tool's, "Memories to Program" property
page.

Error Messages

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 70

PRESERVE_MEM_RANGE_STRING_MALFORMED=The preserve memory range(s) entered on the, "Memories to Program"
property page (%s) is not formatted properly.

PRESERVE_MEM_RANGE_WONT_BE_PROGRAMMED=Some or all of the preserve memory ranges (%s) entered on the,
"Memories to Program" property page, do not fall under the indicated program range(s) (%s) for the memory selected.
Please check the preserved ranges on the debug tool's, "Memories to Program" property page.

PROGRAM_COMPLETE=Programming/Verify complete.

PROGRAM_MEMORY=program memory.

PROGRAM=program.

PROGRAMMING_DID_NOT_COMPLETE=Programming did not complete.

READ_COMPLETE=Read complete.

READ_DID_NOT_COMPLETE=Read did not complete.

RELEASEMCLR_FAILED=Release from reset failed.

REMOVING_SWBPS_COMPLETE=Removing software breakpoints complete.

REMOVING_SWBPS=Removing software breakpoints...

RESET_FAILED=Failed to reset the device.

RESETTING=Resetting...

RUN_INTERRUPT_THREAD_SYNCH_ERROR=An internal run error has occurred. It is advised that you restart your debug
session. You may continue running but certain run time features may no longer work properly.

RUN_TARGET_FAILED=Unable to run the target device.

RUNNING=Running.

SD_RESULT_NO_ERROR=Empty Trace File result

SERIAL_NUM=Serial Number:\n

SETTING_SWBPS=Setting software breakpoints.......

STACK=stack.

START_AND_END_ADDR=start address = 0x%x, end address = 0x%x.

START=start.

TARGET_DETECTED=Target voltage detected.

TARGET_FOUND=Target device %s found.

TARGET_HALTED=Target Halted.

TARGET_NOT_READY_4_DEBUG=The target device is not ready for debugging. Please check your configuration bit settings
and program the device before proceeding. The most common causes for this failure are oscillator and/or PGC/PGD
settings.

TARGET_VDD=Target VDD:

TEST=test.

TOOL_IS_BUSY=ICD 5 is busy. Please wait for the current operation to finish.

TOOL_VDD=VDD:

TOOL_VPP=VPP:

UNABLE_TO_OBTAIN_RESET_VECTOR=ICD 5 was unable to retrieve the reset vector address. This indicates that no _reset
symbol has been defined and may prevent the device from starting up properly.

UNKNOWN_MEMTYPE=Unknown memory type.

UNLOAD_WHILE_BUSY=ICD 5 was unloaded while still busy. Please unplug and reconnect the USB cable before using ICD 5
again.

UPDATING_APP=Updating firmware application...

UPDATING_BOOTLOADER=Updating firmware bootloader...

UPDATING_FPGA=Updating firmware FPGA...

USE_LVP_PROGRAMMING=NOTE: If you would like to program this device using low voltage programming, select Cancel on
this dialog. Then go to the ICD5 node of the project properties and check the Enable Low Voltage Programming check box of
the Program Options Option Category pane (low voltage programming is not valid for debugging operations).

USERID_MEMORY=User Id Memory.

USERID=user Id.

Error Messages

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 71

VERIFY_COMPLETE=Verification successful.

VERIFY_FAILED=Verify failed.

VERSIONS=Versions.

VOLTAGES=Voltages.

WOULD_YOU_LIKE_TO_CONTINUE=Would you like to continue?

8.2 General Corrective Actions
The general corrective actions in the following sections may solve your problem.

8.2.1 Read/Write Error Actions
If you receive a read or write error:

1. Did you click Debug > Reset ? This may produce read/write errors.
2. Try the action again. It may be a one-time error.
3. Ensure that the target is powered and at the correct voltage levels for the device. See the device

data sheet for required device voltage levels.
4. Ensure that the debugger-to-target connection is correct (PGC and PGD are connected).
5. For write failures, ensure that “Erase all before Program” is checked on the Program Options for

the debugger (see section Program).
6. Ensure that the cable(s) are of the correct length.

8.2.2 Debugger to Target Communication Error Actions
If the MPLAB ICD 5 In-Circuit Debugger and the target device are not communicating with each
other:

1. Select Debug > Reset and then try the action again.
2. Ensure that the cable(s) are of the correct length.

8.2.3 Debugger to Computer Communication Error Actions
If the MPLAB ICD 5 In-Circuit Debugger and MPLAB X IDE are not communicating with each other:

1. Unplug and then plug in the debugger.
2. Reconnect to the debugger.
3. Try the operation again. It is possible the error was a one-time event.
4. The version of a pack (DPF/TP) installed in MPLAB X IDE may be incorrect for the target device.

See MPLAB X IDE documentation for information on how to install updated packs.
5. There may be an issue with the computer USB port. See section USB Port Communication Error

Actions.

8.2.4 Corrupted Installation Actions
The problem is most likely caused by a incomplete or corrupted installation of MPLAB X IDE:

1. Uninstall all versions of MPLAB X IDE from the computer.
2. Reinstall the desired MPLAB X IDE version.
3. If the problem persists, contact Microchip Support.

8.2.5 USB Port Communication Error Actions
The problem is most likely caused by a faulty or non-existent communications port:

1. Reconnect to the MPLAB ICD 5 In-Circuit Debugger.

Error Messages

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 72

2. Make sure the debugger is physically connected to the computer on the appropriate USB port.
3. Make sure the appropriate USB port has been selected in the debugger options (see section

Debugger Options Selection).
4. Make sure the USB port is not in use by another device.
5. If using a USB hub, make sure it is powered.
6. Make sure the USB drivers are loaded.

8.2.6 Debug Failure Actions
The MPLAB ICD 5 In-Circuit Debugger was unable to perform a debugging operation. There are
numerous reasons why this might occur. See section Troubleshooting.

8.2.7 Internal Error Actions
Internal errors are not expected nor should happen. They are used for internal Microchip
development.

The most likely cause is a corrupted installation (Corrupted Installation Actions).

Another likely cause is exhausted system resources:

1. Try rebooting your system to free up memory.
2. Make sure you have a reasonable amount of free space on your hard drive (and that it is not

overly fragmented).

If the problem persists, contact Microchip Support.

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 73

9. Debugger Function Summary
A summary of MPLAB® ICD 5 In-Circuit Debugger functions is provided in the following topics.

9.1 Debugger Selection and Switching
Use the Project Properties dialog to select or switch debuggers for a project. To switch you must
have more than one MPLAB® ICD 5 In-Circuit Debugger connected to your computer. MPLAB X IDE
will differentiate between the two by displaying two different serial numbers.

To select or change the debugger used for a project:

1. Open the Project Properties dialog by doing one of the following:
a. Click on the project name in the Projects window and select File>Project Properties.
b. Right click on the project name in the Projects window and select “Properties.”

2. Under “Categories,” click on “Conf: [default].”
3. Under “Hardware Tools,” find “ICD 5” and click on a serial number (SN) to select an debugger for

use in the project.

9.2 Debugger Options Selection
Set up debugger options on the debugger property pages of the Project Properties dialog.

1. Open the Project Properties dialog by doing one of the following:
a. Click the project name in the Projects window, select File>Project Properties.
b. Right click the project name in the Projects window, select “Properties.”

2. Under “Categories,” click on ICD 5.
3. Select property pages from “Options categories.” Click on an option to see its description in the

text box below it. Click to the right of an option to change it.
Note: Options displayed may be different for different devices.

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 74

Figure 9-1. Project Properties - ICD 5 Options

9.2.1 Memories to Program
Select the memories to be programmed into the target.

If “Erase All Before Program” is selected under Program Options, then all device memory will be
erased before programming. To select only certain memories to program after erase, check the
specific memory type. To preserve the value of memory of different types, check to preserve that
memory type and check the specific memory type; checking “Preserve Memory” writes the current
contents to a buffer before erase, and checking “Memory” writes the contents back into that memory
after erase, where Memory is the type of memory, such as EEPROM.

Table 9-1. Memories to Program Option Category
Auto select memories and
ranges

Allow ICD 5 to Select Memories – The debugger uses your selected device and default
settings to determine what to program.
Manually select memories and ranges – You select the type and range of memory to
program (see below).

Configuration Memory
(always programmed in
debug mode)

Check to program configuration memory in release mode. For dual partition devices, another
selection for partition 2 will be available.

Memory Check to program Memory. Types of memory include: Instruction RAM, Flash Data, Data
Flash, EEPROM, ID, Boot Flash, Auxiliary.

Memory Range(s) (hex)* The starting and ending hex address range in Memory. Types of memory include: Instruction
RAM.

Program Memory Check to program the target program memory range specified below.

Program Memory Range(s)
(hex)*

The starting and ending hex address range in program memory for programming, reading, or
verification.
Note: The address range does not apply to the Erase function. The Erase function will erase
all data on the device.

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 75

Preserve Program Memory Check to not program the target program memory range specified below.
Ensure code is NOT code protected.

Preserve Program Memory
Range(s) (hex)*

The starting and ending hex address range in target program memory to preserve when
programming, reading, or verifying.
This memory is read from the target and overlayed with existing MPLAB X IDE memory.

Preserve Memory Check to preserve Memory for reprogramming. Types of memory include: Instruction RAM,
Flash Data, Data Flash, EEPROM, ID, Boot Flash, Auxiliary.
Ensure code is NOT code protected.

Preserve Memory Range(s)
(hex)*

The starting and ending hex address range in target Memory to preserve when programming,
reading, or verifying. Types of memory include: Instruction RAM, Flash Data, Data Flash,
EEPROM, Boot Flash, Auxiliary.
This memory is read from the target and overlayed with existing MPLAB X IDE memory.
Ensure code is NOT code protected.

* If you receive a programming error due to an incorrect range, ensure the range does not exceed available/remaining
device memory.

9.2.2 Debug Options
Select debug options, if available for the project device.

Table 9-2. Debug Options Option Category
Debug startup System settings may be found under Tools>Options>Embedded>Generic Settings, but may be changed

here: Use system settings, Run, Halt at main, Halt at reset vector.

Debug reset System settings may be found under Tools>Options>Embedded>Generic Settings, but may be changed
here: Use system settings, Main, ResetVector.

Use Software
Breakpoints

Check to use software breakpoints.
Uncheck to use hardware breakpoints. See the discussion below to determine which type is best for
your application.

Use Simultaneous
Debug

Check to indicate that the project is part of a multi-core simultaneous debug session.

Table 9-3. Software vs Hardware Breakpoints
Features Software Breakpoints Hardware Breakpoints

Number of breakpoints unlimited limited

Breakpoints are written to program memory debug registers

Time to set breakpoints oscillator speed dependent, it can take minutes minimal

Skidding no yes

Note: Using software breakpoints for debug impacts device endurance. So, it is recommended that
devices used in this manner should not be used as production parts.

9.2.3 Program Options
Choose to erase all memory before programming, or to merge code.

Table 9-4. Program Options Option Category
Erase All Before
Program

Check to erase all memory before programming begins.
Unless programming new or already erased devices, it is important to have this box checked. If it is
not checked, the device is not erased and program code will be merged with the code already in the
device.

Do not erase
auxiliary memory

For devices that support auxiliary memory:
Check to not erase aux memory when programming.
Uncheck to erase aux memory when programming.

9.2.4 ICD 5 Tool Options
Set up MPLAB ICD 5 specific options.

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 76

Table 9-5. ICD 5 Tool Options Category
Programming Mode Entry Select programming mode entry type:

• Use high voltage program mode entry

• Use low voltage program mode entry

PGC Configuration Programming clock pin setup.
• none

• pull up

• pull down

PGC resistor value (kohms) If pull up or pull down is selected above, enter a resistor value from 0 to 50 kohms.

PGD Configuration Programming data pin setup.
• none

• pull up

• pull down

PGD resistor value (kohms) If pull up or pull down is selected above, enter a resistor value from 0 to 50 kohms.

9.2.5 Freeze Peripherals
Select peripherals to freeze, or not freeze, on program halt. Options available depend on device
chosen.

Table 9-6. Freeze Peripherals Option Category
Freeze Peripherals Check to freeze all peripherals on halt.

Uncheck to unfreeze all peripherals.
This options applies to PIC12/16/18 MCUs.

Peripheral Freeze Enable
Peripheral List

Check to select which peripheral(s) to freeze.
Uncheck to unfreeze all peripherals.
This option applies to AC244066.

Peripheral List Check to freeze the peripheral Peripheral on halt.
Uncheck to unfreeze the peripheral Peripheral.
This options applies to 16- and 32-bit MCUs.

PIC12/16/18 MCU Devices

To freeze/unfreeze all device peripherals on halt, check/uncheck the “Freeze Peripherals” checkbox.
If your desired peripheral does not halt, be aware that some peripherals have no freeze on halt
capability and cannot be controlled by the debugger.

dsPIC, PIC24 and PIC32 Devices

To freeze/unfreeze a peripherals on halt, check/uncheck the peripheral from the list. If you do not
see a peripheral on the list, check/uncheck “Freeze All Other Peripherals.” If your desired peripheral
does not halt, be aware that some peripherals have no freeze on halt capability and cannot be
controlled by the debugger.

9.2.6 Trace and Profiling
Depending on the device you have selected for your project, you may be able to use trace, PC
sampling/profiling or other data collection features when debugging. Enable and set up these
features as specified in the following sections.

8-Bit and 16-Bit Devices

Options available on this page depend on the trace/profiling features of the project device.

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 77

Table 9-7. Trace/Profiling Option Category
Data Collection Selection Enable/Disable data collection.

• Off - Do not collect target data.

• User Instrumented Trace.

• PC Sampling.

• Power Monitor (Target Power Sampling).

Data File Path and Name Enter or change the path and/or name of the file used to store data.
• Enter file name (path will be relative to project) – Recommended.

• Enter a path and file name (path will be absolute).

• Browse (...) to a file, select “Absolute,” select the file, and click Save (path will be absolute).

Note: Do not select “Relative” when browsing to a file or MPLAB X IDE will not be able to find the
file. When you run, you will receive a warning message that the path does not exist.

Data File Maximum Size
(bytes)

Set the maximum size of the data file.
Target power sampling will take 12 bytes or 18 bytes (with PC data) per sample.
The file size may be adjusted down to be a multiple of one of those byte sizes depending upon
the trace type selected. Other trace data types may use record byte sizes that are different from
those described above.

Data Buffer Maximum
Size (bytes)

Set the size of the data buffer, up to 54600 bytes (on board the emulator unit).
For trace/sampling data that is buffered in memory while the target is running, individual trace
or sample entry sizes vary depending upon the trace/sample type and the device and tool being
used. It is normally good to make this buffer as large as possible.
For example, the enhanced PIC16 with instruction trace uses 1 to 3 bytes for each in-memory
entry. Each of those will generate a 13-byte ICD5 instruction trace entry as well. Each such
in-memory record will normally be converted to a trace data file entry line, as detailed in the data
file size description (refer to the data file size description for trace/sampling file entry sizes).

Stall CPU When Trace
Buffer is Full

Stop execution when the trace buffer is full. Set the buffer size in the option described above.

User Instrumented Trace Items

Disable Trace Macros Check to temporarily disable trace macros or uncheck to enable trace macros.
To disable trace, remove all macros and select “Off” under “Data Collection Selection.”

Communications
Medium

Select the trace medium, if available, from the following (device-dependent): Native, I/O Port, SPI.

I/O Port Selection Specify the device port to be used for I/O port trace.
The available combinations for the selected device will be listed.

SPI Selection Specify the device SPI pins to be used for SPI trace. The available pins for the selected device will
be listed.

PC Sampling Items

Timer Selection (Not
Used by Application
Code)

Select a device timer to use to count PC samples.
Note: You will no longer be able to use this timer in your application, it will be dedicated to PC
sampling.

Note: You may select only one timer; you cannot combine two timers to get a 32-bit timer. Using
one timer of a 32-bit-timer pair will prohibit that pair from operating as a 32-bit timer.

Timer Interrupt Priority Select an interrupt priority for the timer.
Note: Select a priority that is higher than other priorities you have set in your application. If
you do not, the other priorities will preempt the sampling priority and you will not capture these
samples.

Timer Interval Enter a sampling interval.
This must be integer values (1, 2, 3, and so forth).
If you are not capturing data, you may be missing samples (given your current interval).
Try adjusting the unit selection and interval, for example, if you had 1 millisecond, try 990
microseconds.

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 78

Timer Interval Units Select a sampling interval unit:
• microseconds

• milliseconds

• seconds

• instruction cycles

32-Bit Devices

Options available on this page depend on the trace/profiling features of the project device.

Table 9-8. Trace/Profiling Option Category
Data Collection
Selection

Enable/Disable data collection.
• Off - Do not collect target data.

• Instruction Trace/Profiling.

• User Instrumented Trace.

• Power Monitor (Target Power Sampling).

Data File Path and
Name

Enter or change the path and/or name of the file used to store data.
• Enter file name (path will be relative to project) – Recommended.

• Enter a path and file name (path will be absolute).

• Browse (...) to a file, select “Absolute,” select the file, and click Save (path will be absolute).

Note: Do not select “Relative” when browsing to a file or MPLAB X IDE will not be able to find the
file. When you run, you will receive a warning message that the path does not exist.

Data File Maximum Size
(bytes)

Set the maximum size of the data file.
Each line of instruction trace data in a trace data file requires 13 bytes when using the debugger.
Target power sampling will take 12 bytes or 18 bytes (with PC data) per sample.
The file size may be adjusted down to be a multiple of one of those byte sizes depending upon
the trace type selected. Other trace data types may use record byte sizes different from those
described above.

Data Buffer Maximum
Size (bytes)

Set the size of the data buffer, up to 54600 bytes (on board the debugger unit).
For trace/sampling data that is buffered in memory while the target is running, individual trace or
sample entry sizes vary depending on the trace/sample type and the device and tool being used. It
is normally good to make this buffer as large as possible.
For example, PIC32 instruction trace takes 8 bytes per “frame” which can produce over 50 13-byte
ICD 5 instruction trace entries in a trace file.

User Instrumented Trace Items

Disable Trace Macros Check to temporarily disable trace macros or uncheck to enable trace macros.
To disable trace, remove all macros and select “Off” under “Data Collection Selection.”

Communications
Medium

Select the trace medium, if available, from the following (device-dependent): Native

9.2.7 Power
Select whether or not to power the target from the debugger.

Table 9-9. Power Option Category
Power Target Circuit from ICD 5 Check to use power from the debugger.

Uncheck to power the target from its own power supply.

Voltage Level If option above checked, select the target Vdd (2.375V - 5.5V) that the debugger will provide.

9.2.8 Clock
Enter the runtime clock (instruction) speed under this option category. This does not set the speed,
but informs the debugger of its value for runtime watch, data capture and trace.

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 79

Table 9-10. Clock Option Category
Use FRC in Debug mode
(dsPIC33E/F and PIC24E/F/H devices only)

When debugging, use the device fast internal RC (FRC) for
clocking instead of the oscillator specified for the application.
This is useful when the application clock is slow.
Checking this checkbox will let the application run at the slow
speed but debug at the faster FRC speed.
Reprogram after changing this setting.
Note: Peripherals that are not frozen will operate at the FRC
speed while debugging.

Target run-time instruction speed Enter a value for the “Speed unit” selected.
Example 1: For a PIC24 MCU and a target clock oscillator at
32 MHz (HS), instruction speed = 32 MHz/2 = 16 MIPS.
Example 2: For a PIC18F8722 MCU and a target clock
oscillator at 10 MHz (HS) making use of the PLL (x4 = 40 MHz),
instruction speed = 40 MHz/4 = 10 MIPS.

Instruction speed units Select either:
KIPS – Thousands (103) of instructions per second
MIPS – Millions (106) of instructions per second

9.2.9 Communication
Set the option(s) to use for your device and type of target communication.

Table 9-11. Communication Option Category
Interface Select the interface from the available options based on the project device.

Speed (MHz) Enter a speed based on the available range for the interface.

High Voltage Activation Mode This option displays only for AVR® devices with this option. No High Voltage - Default
setting. Simple High Voltage Pulse - The tool will try to activate the interface
by issuing a high voltage pulse. This procedure is safe if the pin is configured as
an input. User Power Toggle - In this mode the user will be prompted to toggle
power on the target device. Once the tool detects that the power returns it will
issue a high voltage pulse before the target device pin is configured, making the
activation procedure as gentle as possible. See also UPDI High-Voltage Activation
Information.

9.2.9.1 User Power Toggle Design Considerations
When using the debugger, if the power toggle rise time on Target Vdd is too slow (greater than 10
seconds) the User Power Toggle feature won't work. As an example, for the STK600 using the power
switch gives you a too slow rise time but using the VTARGET jumper gives you a fast enough rise
time.

For developers creating their own boards, ensure the Vdd rise time is less than 10 seconds.

9.2.9.2 Programming AVR Devices with UPDI
MPLAB ICD 5 supports using the high-voltage mechanism to activate the AVR Unified Program and
Debug Interface (UPDI). On low pin count AVR devices with UPDI, the UPDI pin can be configured
as GPIO or RESET by configuring the RSTPINCFG configuration bits. To do further programming, the
debugger will have to use a high voltage pulse to reactivate the UPDI interface. When using the high
voltage pulse, you must make sure that all circuits connected to the UPDI wire can tolerate a pulse of
at least 12V.

GPIO vs. UPDI Operation:

When using a high voltage pulse to reactivate the UPDI interface, the reactivation is only temporary,
but it will retain the UPDI functionality until the next reset. After the next reset, the pin will go back
to the configuration as specified by the RSTPINCFG configuration bits. To have the pin configured as
UPDI after a reset, the user will have to change the RSTPINCFG configuration bits back to UPDI.

https://microchipdeveloper.com/mplabx:avr-updi-info
https://microchipdeveloper.com/mplabx:avr-updi-info

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 80

It is possible to perform a debug session when the RSTPINCFG is configured to GPIO, but the pin will
be temporarily configured as UPDI, and the pin will not operate as a GPIO pin.

Table 9-12. SYSCFG0 RSTPINCFG[1:0] Configuration Bits
Values Function

0x0 GPIO

0x1 UPDI

0x2 RESET

0x3 Reserved

9.2.10 Tool Pack Selection
Select to use the latest tool pack or a different version to support the project device.

Table 9-13. Tool Pack Selection Option Category
Tool pack update options Use latest installed tool pack (recommended) - use the latest tool pack version installed.

Use specific tool pack - select from a list of other available tool pack versions.

Specifically selected version Click here to pop up a dialog with a list of tool pack versions to select.

9.3 Debugger Windows & Dialogs
The following topics show windows and dialogs that are used specifically for the debugger or other
related debug tools.

9.3.1 Trace Window and Related Dialogs
The trace window displays the results of a trace. This window is available for the debugger and the
simulator.

Figure 9-2. Trace Window

Right clicking in a column of the window shown above will pop up a menu with a list of functions. For
more on these functions, see the MPLAB X IDE User’s Guide/Help file, “MPLAB X IDE Windows and
Dialogs,” “Trace Window.”

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 81

9.3.2 ITM Window and Related Dialogs
SAM ITM trace produces UART-format data that supports printf-style debugging on up to 32 ports.

Figure 9-3. ITM Display

Debugger Function Summary

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 82

Figure 9-4. ITM Select Ports Dialog

Related Links
5.4. SAM ITM/SWO Trace

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 83

10. Hardware Specification
The following sections provide details about the MPLAB ICD 5 unit and related hardware.

10.1 Debugger Unit
The MPLAB ICD 5 in-circuit debugger unit is rated as:

• Class A device in a laboratory environment.
• Category C device in a home or office environment.
• Operating Temperature: 0°C - 70°C.

10.2 Power Specifications
Unit power can be provided by:
• Ethernet connection using Power over Ethernet (PoE). This can also provide power to the target

up to 1A.
• USB-C connection. This can also provide power to the target, but the amount provided will

depend on the PC host. When connected, the debugger will determine what can be provided. If
<3A is available, MPLAB X IDE will alert the user that the full target power (3A) cannot be supplied.

Related Links
3.1. Power and Self Test

10.3 Indicator Lights (LEDs)
The top of MPLAB ICD 5 unit has two light pipes butted against to each other, each illuminated by an
LED.

The expected start-up sequence for the debugger is:

1. Purple - steady on for approximately 3 seconds.
2. Blue - flashing for approximately 2 seconds while the debugger runs a power-on self-test.
3. Blue - steady on. The debugger is ready.

The following table advises how to read the indicator lights.

Table 10-1. LED and Bootloader Error Descriptions
LED 1 LED 2 Description

Normal Modes

Blue Blue Power is connected; debugger in
standby; Network ready to connect

White Blue Network connected

White, slow blink Blue MPLAB X IDE/MPLAB IPE has initiated
communication with ICD 5 over the
network

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 84

...........continued
LED 1 LED 2 Description

Red Blue Network connection failure/error

Yellow Blue Power target circuit from ICD 5 checked

Green Blue Power target circuit from ICD 5
unchecked

Green, slow blink Blue DGI connected

Purple Purple Bootloader is running

Yellow Yellow Debugger is busy

Red Red An operation has failed

Bootloader Errors

Purple Red, slow blink Problem accessing the debugger’s serial
EEPROM

Purple Red, fast blink Bootloader API commands cannot be
processed

White, fast blink White, fast blink A runtime exception occurred in the tool
firmware

10.4 PC Connection Specifications
MPLAB® ICD 5 In-Circuit Debugger can be connected to the PC (and MPLAB X IDE/MPLAB IPE) using
one of the following connection types. Connection speeds are also shown in the table.

Connection Type Connection Details Programming and
Debugging

Trace

USB Type-C® (default) HS USB 2.0 USB 2.0
up to 480 Mbps

Ethernet Direct or via network up to 100 Mbps No

Connectors available on the MPLAB ICD 5 unit for communication are described in the following
sections.

10.4.1 USB Type-C® Connector (J1) and Cable
A USB Type-C connector and cable are provided for USB 2.0 communication between the debugger
and a computer. It is recommended that you use the cable that comes with the kit to avoid
communication issues.

10.4.2 Ethernet Connector (J6) and Cable
The 8-pin RJ-45 type connector and a standard Ethernet CAT5e/CAT6 cable enable Ethernet
communications between the MPLAB ICD 5 unit the PC (and MPLAB X IDE/MPLAB IPE). The
connector has two built-in LEDs that specify LAN activity. An Ethernet cable that does not have a
anti-snag boot is preferred for best fit with the connector.

Note: Ethernet cable not provided with MPLAB ICD 5 kit.

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 85

Figure 10-1. Ethernet Connector on MPLAB ICD 5

Table 10-2. Ethernet Connector Pinout
Pin Number Function

1 TX+

2 TX-

3 RX+

4 EGND

5 EGND

6 RX-

7 EGND

8 EGND

EGND: Enclosure ground

Table 10-3. Connector LEDs
LED Location LED Color LED Function

Top left Green LAN ACT

Top right Yellow LAN LINK

10.5 8-pin Communication Hardware
For full debugger communication with a target, connect the included RJ-45 cable into the debugger
modular RJ-45 jack at one end and an RJ-45 modular connector at the target end. Alternately plug
the cable into the Debugger Adapter Board to have access to many device legacy connections. For
details see 3.3 Target Connections.

For details on the 8-pin RJ-45 modular connector and modular cable, see the following sections.

10.5.1 Modular Connector - RJ-45
The ICD Tool uses an RJ-45 modular connector and cable to communicate with a target.

The modular connector pins are always numbered in the same order regardless of connector
orientation.

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 86

Figure 10-2. Modular Connector - RJ-45

Table 10-4. Modular Connector Orientations
RJ-45 Jack (at ICD Tool) RJ-45* Connector (at Target)

* For information about connecting to an RJ-11 at the target, see Connecting an RJ-11 Type Cable to an RJ-45 Jack on the
Debugger.

Pin numbering can be seen in the following diagram. Although the connectors are oriented
differently on the tool and on the target, pin 1 is always pin 1 with relation to the connector.

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 87

Figure 10-3. Modular Connectors

10.5.2 Modular Cable - RJ-45
The ICD Tool uses an RJ-45 modular connector and cable to communicate with the target.

The modular cable plug pins are always numbered in the same order regardless of the plug
orientation.

Figure 10-4. Modular (RJ-45) Cable Transparent Plug

The cable is reverse wiring based on the plugs view (see figure below.)

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 88

Figure 10-5. Reverse Wiring Cable

Pin numbering can be seen in the following diagram. Although the plugs are oriented differently at
the tool and at the target, pin 1 is always pin 1 with relation to the plug.

Figure 10-6. Modular Connectors and Cable

10.6 Communication Hardware
For standard debugger communication with a target, use an adapter with the RJ-11 connector.

10.6.1 Connecting an RJ-11 Type Cable to an RJ-45 Jack on the Debugger
The MPLAB ICD 5 In-Circuit Debugger has an RJ-45 connector for communication to the target.
Connect the RJ-11 type cable into the RJ-45 connector by simply inserting it into the center of the
RJ-45 connector.

Refer to the figure below for the pinouts for this connection.

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 89

Figure 10-7. RJ-45 Socket to RJ-11 Connector Pinout

Pin RJ-45 Function Pin RJ-11

1 TMS EJTAG Test Mode Select

2 Reserved 1

3 PGC (ICSPCLK) Standard Com
Clock/TCK (JTAG Test
Clock)

2 PGC (ICSPCLK)

4 PGD (ICSPDAT) Standard Com
Data/TDO (JTAG Test
Data Output)

3 PGD (ICSPDAT)

5 GND Ground 4 GND

6 VDD_TGT Power on target 5 VDD_TGT

7 VPP Power 6 VPP

8 TDI JTAG Test Data Input

10.6.2 Standard Communication
The main interface to the target processor is via standard communication. It contains the
connections to the high voltage (VPP), VDD sense lines, as well as clock and data connections required
for programming and connecting with the target devices.

The VPP high-voltage lines can produce a variable voltage that can swing from 0-14V to satisfy the
voltage requirements of the specific emulation processor.

The VDD sense connection draws very little current from the target processor. The actual power
comes from the MPLAB ICD 5 In-Circuit Debugger system, as the VDD sense line is used as a
reference only to track the target voltage. The VDD connection is isolated with an optical switch.

The clock and data connections are interfaces with the following characteristics:

• Clock and data signals are in high-impedance mode (even when no power is applied to the
MPLAB ICD 5 In-Circuit Debugger system).

• Clock and data signals are protected from high voltages caused by faulty target systems, or
improper connections.

• Clock and data signals are protected from high current caused from electrical shorts in faulty
target systems.

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 90

Figure 10-8. 6-Pin Standard Pinout

1

2

3

4

5

6

Pin Name Function

1 VPP Power
2 VDD_TGT Power on target
3 GND Ground
4 PGD (ICSPDAT) Standard Com Data
5 PGC (ICSPCLK) Standard Com Clock
6 - Reserved

Bottom of

Standard Socket

Target Board

Table 10-5. Electrical Logic Table
Logic Inputs VIH = VDD x 0.7V (min.)

VIL = VDD x 0.3V (max.)

Logic Outputs VDD = 5V VDD = 3V VDD = 2.3V VDD = 1.65V

VOH = 3.8V min. VOH = 2.4V min. VOH = 1.9V min. VOH = 1.2V min.

VOL = 0.55V max. VOL = 0.55V max. VOL = 0.3V max. VOL = 0.45V max.

10.6.3 Modular Cable and Connector
For standard communication, a modular cable connects the debugger and the target application.
The specifications for this cable and its connectors are listed below.

10.6.3.1 Modular Connector Specification
• Manufacturer, Part Number – AMP Incorporated, 555165-1
• Distributor, Part Number – Digi-Key, A9031ND

The following table shows how the modular connector pins, for an application, correspond to the
microcontroller pins. This configuration provides full in-circuit debugger functionality.

Figure 10-9. Modular Connector Pinout of Target Board

Modular
Connector Pin

Microcontroller
Pin

6 Reserved
5 RB6
4 RB7
3 Ground
2 VDD Target
1 VPP 1

6

Bottom View of Modular Connector
Pinout on Target Board

1 6

Front View of Modular
Connector on Target Board

10.6.3.2 Modular Plug Specification
• Manufacturer, Part Number – AMP Incorporated, 5-554710-3

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 91

• Distributor, Part Number – Digi-Key, A9117ND

10.6.3.3 Modular Cable Specification
Manufacturer, Part Number – Microchip Technology, 07-00024. The length of this cable (L) is 6
inches. It is not recommended that you use a modular cable longer than 6 inches to avoid potential
communication problems.

Figure 10-10. Modular Cable

Pin 1

L

Pin 6

6 inches

10.7 Recovery Specifications
The MPLAB ICD 5 unit can be placed in Recovery mode - device reset and flash erase - using a paper
clip or similar tool through a hole in the bottom of the unit to activate the hardware reset switch (see
image below).

The unit also can be placed in Recovery mode using software from the Hardware Tool Emergency
Boot Firmware Recovery.

Figure 10-11. Location of Recovery Switch

10.8 Target Board Considerations
The target board should be powered according to the requirements of the selected device and the
application.

Stresses above those listed under "Absolute Maximum Ratings" in the Electrical Characteristics
chapter of the device’s data sheet may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at those or any other conditions, above those indicated
in the operation listings of this specification, is not implied. Exposure to maximum rating conditions
for extended periods may affect device reliability.

The debugger does sense target voltage. There is a 182K ohm load on VDD_TGT.

Hardware Specification

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 92

Depending on the type of debugger-to-target communication that is used, there are some
considerations for target board circuitry:

• Target Connection Circuitry
• Circuits That Will Prevent the Debugger From Functioning

Revision History

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 93

11. Revision History
11.1 Revision A (May 2023)

Initial release of this document.

Support

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 94

12. Support
Please refer to the following sections for support issues.

12.1 Warranty Registration
Go to www.microchip.com/mysoftware to register your tool online. If you do not already have a
myMicrochip account, you can register for an account at that link. If you already have an account,
sign in and click on Register Hardware Tool.

Registering your tool online entitles you to receive new product updates. Interim software releases
are available at the Microchip website.

12.2 myMicrochip Personalized Notification Service
Microchip's personal notification service helps keep customers current on their Microchip products
of interest. Subscribers will receive e-mail notification whenever there are changes, updates,
revisions or errata related to a specified product family or development tool.

To begin the registration process and select your preferences to receive personalized notifications,
go to:

www.microchip.com/pcn

A FAQ and registration details are available on the webpage.

http://www.microchip.com/mysoftware
https://www.microchip.com/pcn

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 95

Microchip Information
The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to
make files and information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests,
online discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip
products. Subscribers will receive email notification whenever there are changes, updates, revisions
or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are
also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 96

Product Identification System
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales
office.



PART NO. X /XX XXX

PatternPackageTemperature
Range

Device

 
 

[X](1)

Tape and Reel
Option

-

Device: PIC16F18313, PIC16LF18313, PIC16F18323, PIC16LF18323

Tape and Reel Option: Blank = Standard packaging (tube or tray)

T = Tape and Reel(1)

Temperature Range: I = -40°C to +85°C (Industrial)

E = -40°C to +125°C (Extended)

Package:(2) JQ = UQFN

P = PDIP

ST = TSSOP

SL = SOIC-14

SN = SOIC-8

RF = UDFN

Pattern: QTP, SQTP, Code or Special Requirements (blank otherwise)

Examples:

• PIC16LF18313- I/P Industrial temperature, PDIP package
• PIC16F18313- E/SS Extended temperature, SSOP package

Notes: 
1. Tape and Reel identifier only appears in the catalog part number description. This identifier is

used for ordering purposes and is not printed on the device package. Check with your Microchip
Sales Office for package availability with the Tape and Reel option.

2. Small form-factor packaging options may be available. Please check www.microchip.com/
packaging for small-form factor package availability, or contact your local Sales Office.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within

operating specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the

code protection features of Microchip product is strictly prohibited and may violate the Digital
Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

Legal Notice
This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information
in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for

http://www.microchip.com/packaging
http://www.microchip.com/packaging

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 97

additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR
ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer,
LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec,
Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge,
ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium,
TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,
Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic
Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial
Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker,
Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified
logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-
ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI,
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC,
USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary
of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 98

© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-2459-2

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit
www.microchip.com/quality.

http://www.microchip.com/quality

Worldwide Sales and Service

 User Guide
© 2023 Microchip Technology Inc. and its subsidiaries

DS-50003529A - 99

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

www.microchip.com/support

Web Address:

www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614

Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA

Tel: 774-760-0087

Fax: 774-760-0088

Chicago

Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit

Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN

Tel: 317-773-8323

Fax: 317-773-5453

Tel: 317-536-2380

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110

Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980

Fax: 905-695-2078

Australia - Sydney

Tel: 61-2-9868-6733

China - Beijing

Tel: 86-10-8569-7000

China - Chengdu

Tel: 86-28-8665-5511

China - Chongqing

Tel: 86-23-8980-9588

China - Dongguan

Tel: 86-769-8702-9880

China - Guangzhou

Tel: 86-20-8755-8029

China - Hangzhou

Tel: 86-571-8792-8115

China - Hong Kong SAR

Tel: 852-2943-5100

China - Nanjing

Tel: 86-25-8473-2460

China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai

Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200

China - Suzhou

Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300

China - Xian

Tel: 86-29-8833-7252

China - Xiamen

Tel: 86-592-2388138

China - Zhuhai

Tel: 86-756-3210040

India - Bangalore

Tel: 91-80-3090-4444

India - New Delhi

Tel: 91-11-4160-8631

India - Pune

Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur

Tel: 60-3-7651-7906

Malaysia - Penang

Tel: 60-4-227-8870

Philippines - Manila

Tel: 63-2-634-9065

Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366

Taiwan - Kaohsiung

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok

Tel: 66-2-694-1351

Vietnam - Ho Chi Minh

Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4485-5910

Fax: 45-4485-2829

Finland - Espoo

Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-8931-9700

Germany - Haan

Tel: 49-2129-3766400

Germany - Heilbronn

Tel: 49-7131-72400

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra’anana

Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611

Fax: 39-0331-466781

Italy - Padova

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Norway - Trondheim

Tel: 47-72884388

Poland - Warsaw

Tel: 48-22-3325737

Romania - Bucharest

Tel: 40-21-407-87-50

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Gothenberg

Tel: 46-31-704-60-40

Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham

Tel: 44-118-921-5800

Fax: 44-118-921-5820

http://www.microchip.com/support
http://www.microchip.com

	Notice to Development Tools Customers
	Table of Contents
	1. Preface
	1.1. Conventions Used in This Guide
	1.2. Recommended Reading

	2. About the Debugger
	2.1. Advantages
	2.2. Components
	2.3. Block Diagram
	2.4. Using MPLAB® ICD 5 with MPLAB X IDE and MPLAB IPE

	3. Connections
	3.1. Power and Self Test
	3.2. PC Connections
	3.2.1. USB Default Connection
	3.2.2. Ethernet - Modes
	3.2.2.1. Ethernet Wired/DHCP/APIPA
	3.2.2.2. Ethernet Static IP

	3.2.3. Ethernet - Setup and Tool Discovery

	3.3. Target Connections
	3.3.1. Connecting the Debugger to an RJ-45 Target via an RJ-45 Type Cable
	3.3.2. Target Connection Pinouts
	3.3.3. Debugger Adapter Board
	3.3.3.1. Adapter Board Pinout

	3.3.4. SAM MCUs - JTAG/SWD Interfaces
	3.3.4.1. JTAG Physical Interface
	3.3.4.1.1. Connecting to a SAM JTAG Target
	3.3.4.1.2. SAM JTAG Pinout (Cortex®-M debug connector)

	3.3.4.2. SAM SWD Interface
	3.3.4.2.1. Connecting to a SAM SWD Target
	3.3.4.2.2. SAM SWD Pinout

	3.3.5. AVR Connections
	3.3.5.1. JTAG Physical Interface
	3.3.5.2. Connecting to a AVR JTAG Target
	3.3.5.3. AVR JTAG Pinout
	3.3.5.4. AVR SPI Physical Interface
	3.3.5.4.1. Connecting to an AVR SPI Target
	3.3.5.4.2. AVR SPI Pinout

	3.3.5.5. AVR PDI
	3.3.5.5.1. Connecting to an AVR PDI Target
	3.3.5.5.2. AVR PDI Pinout

	3.3.5.6. AVR UPDI
	3.3.5.6.1. UPDI and /RESET
	3.3.5.6.2. Connecting to an AVR UPDI Target
	3.3.5.6.3. AVR UPDI Pinout

	3.3.5.7. AVR TPI
	3.3.5.7.1. Connecting to an AVR TPI Target
	3.3.5.7.2. AVR TPI Pinout

	3.3.5.8. AVR debugWIRE
	3.3.5.8.1. AVR Connecting to debugWIRE
	3.3.5.8.2. AVR debugWIRE Pinout

	3.3.6. PIC32M Connections
	3.3.6.1. Connecting to a PIC32M EJTAG Target
	3.3.6.2. PIC32M EJTAG Pinout - 4-Wire JTAG

	3.3.7. PIC MCUs - ICSP Connection
	3.3.7.1. ICSP Target Connection
	3.3.7.2. ICSP Target Connection Circuitry

	4. Operation
	4.1. MPLAB X IDE Debugging
	4.2. SAM and PIC32C Arm Devices - On-Chip Debugging
	4.3. AVR Devices - On-Chip Debugging (OCD)
	4.3.1. AVR Device Interfaces
	4.3.1.1. AVR E/D OCD - Features
	4.3.1.2. tinyAVR OCD Features
	4.3.1.2.1. TinyX-OCD (UPDI) Special Considerations
	4.3.1.2.2. AVR devices with TPI

	4.3.1.3. megaAVR OCD Features
	4.3.1.3.1. megaAVR® Special Considerations

	4.3.1.4. AVR XMEGA OCD Features
	4.3.1.4.1. AVR® XMEGA® Special Considerations

	4.3.1.5. debugWIRE OCD Features
	4.3.1.5.1. debugWIRE Special Considerations
	4.3.1.5.2. debugWIRE Software Breakpoints
	4.3.1.5.3. Understanding debugWIRE and the DWEN Fuse

	4.3.1.6. Advanced Debugging (AVR® JTAG/debugWIRE devices)

	4.3.2. PIC32M MCU - On-Chip Debugging

	4.4. PIC MCU/dsPIC DSC - On-Chip Debugging
	4.4.1. Basic Debug Features
	4.4.1.1. Start and Stop Emulation
	4.4.1.2. View Processor Memory and Files
	4.4.1.3. Use Breakpoints
	4.4.1.3.1. Breakpoint Resources
	4.4.1.3.2. Hardware or Software Breakpoint Selection

	4.4.1.4. Use the Stopwatch
	4.4.1.5. Set Freeze Peripherals

	4.4.2. ICSP Debugging
	4.4.2.1. ICSP Circuits That Will Prevent a Debug Tool From Functioning
	4.4.2.2. Sequence of Operations Leading to Debugging
	4.4.2.3. Debugging Details
	4.4.2.4. Requirements for Debugging
	4.4.2.5. Resources Used by the Debugger

	4.4.3. Programming

	5. Debugger Features
	5.1. USB CDC Virtual COM Port
	5.2. Data Gateway Interface
	5.2.1. Interfaces
	5.2.1.1. Timestamp
	5.2.1.2. UART Interface
	5.2.1.3. Power Interface

	5.3. CI/CD Support
	5.4. SAM ITM/SWO Trace
	5.4.1. How ITM Trace Works
	5.4.2. How SWO Works with ITM Trace
	5.4.3. Requirements for ITM/SWO Trace
	5.4.4. Hardware Setup
	5.4.5. Set Up ITM in MPLAB X IDE
	5.4.5.1. Create a Project in MPLAB X IDE
	5.4.5.2. Use CMSIS ITM Functions
	5.4.5.3. Setup the Clock
	5.4.5.4. Setup ITM Trace
	5.4.5.5. Additional Initialization File

	5.4.6. Viewing ITM Data

	5.5. SAM (ARM) - Trace and Profiling
	5.5.1. ARM Cortex-M4 Processor - Trace and Profiling
	5.5.2. SAM D5x/E5x - ETB Connection

	5.6. Debugger Polling
	5.6.1. Requirements
	5.6.2. Operation

	5.7. Power Monitor
	5.7.1. About Power Monitoring
	5.7.2. MPLAB X IDE Setup
	5.7.3. MPLAB Data Visualizer Displays

	6. Troubleshooting First Steps
	6.1. Some Questions to Answer First
	6.2. Top Reasons Why You Can't Debug
	6.3. General Considerations
	6.4. How to Use the Hardware Tool Emergency Boot Firmware Recovery Utility

	7. Frequently Asked Questions (FAQ)
	7.1. How Does It Work?
	7.2. What's Wrong?
	7.2.1. My computer went into power-down/hibernate mode, and now my debugger won’t work. What happened?
	7.2.2. Performing a Verify fails after programming the device. Is this a programming issue?
	7.2.3. During Native Trace, I manually halted my program and now the last trace record has been lost. What happened?
	7.2.4. I set my 16-bit device peripheral to NOT freeze on halt, but it is suddenly freezing. What's going on?
	7.2.5. When using a 16-bit device, an unexpected Reset occurred. How do I determine what caused it?

	8. Error Messages
	8.1. Types of Error Messages
	8.1.1. Corrupted/Outdated Installation Errors
	8.1.2. Debug Failure Errors
	8.1.3. Miscellaneous Errors
	8.1.4. List of Error Messages

	8.2. General Corrective Actions
	8.2.1. Read/Write Error Actions
	8.2.2. Debugger to Target Communication Error Actions
	8.2.3. Debugger to Computer Communication Error Actions
	8.2.4. Corrupted Installation Actions
	8.2.5. USB Port Communication Error Actions
	8.2.6. Debug Failure Actions
	8.2.7. Internal Error Actions

	9. Debugger Function Summary
	9.1. Debugger Selection and Switching
	9.2. Debugger Options Selection
	9.2.1. Memories to Program
	9.2.2. Debug Options
	9.2.3. Program Options
	9.2.4. ICD 5 Tool Options
	9.2.5. Freeze Peripherals
	9.2.6. Trace and Profiling
	9.2.7. Power
	9.2.8. Clock
	9.2.9. Communication
	9.2.9.1. User Power Toggle Design Considerations
	9.2.9.2. Programming AVR Devices with UPDI

	9.2.10. Tool Pack Selection

	9.3. Debugger Windows & Dialogs
	9.3.1. Trace Window and Related Dialogs
	9.3.2. ITM Window and Related Dialogs

	10. Hardware Specification
	10.1. Debugger Unit
	10.2. Power Specifications
	10.3. Indicator Lights (LEDs)
	10.4. PC Connection Specifications
	10.4.1. USB Type-C® Connector (J1) and Cable
	10.4.2. Ethernet Connector (J6) and Cable

	10.5. 8-pin Communication Hardware
	10.5.1. Modular Connector - RJ-45
	10.5.2. Modular Cable - RJ-45

	10.6. Communication Hardware
	10.6.1. Connecting an RJ-11 Type Cable to an RJ-45 Jack on the Debugger
	10.6.2. Standard Communication
	10.6.3. Modular Cable and Connector
	10.6.3.1. Modular Connector Specification
	10.6.3.2. Modular Plug Specification
	10.6.3.3. Modular Cable Specification

	10.7. Recovery Specifications
	10.8. Target Board Considerations

	11. Revision History
	11.1. Revision A (May 2023)

	12. Support
	12.1. Warranty Registration
	12.2. myMicrochip Personalized Notification Service

	Microchip Information
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Product Identification System
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

