

FEATURES

- UL 60950 recognised
- 4:1 Wide range voltage input
- Operating temperature range -40°C to 105°C with derating
- 1kVDC Isolation "Hi Pot Test"
- 3.3V, 5V & 12V outputs
- No electrolytic capacitors
- Continuous short circuit protection

PRODUCT OVERVIEW

The NCS1 series of DC/DC converters offers a single output voltage from input voltage ranges of 4.5-18V and 9-36V. The NCS1 is housed in an industry standard package with a standard pinout.

Applications include telecommunications, battery powered systems, process control and distributed power systems.

NCS1 Series

Isolated 1W 4:1 Input Single Output DC/DC Converters

SELECTION GUIDE

Order Code	Input Voltage	Output Voltage	Output Current		iency 1V Input.		ency nput.	Ripple and Noise		lsolation apacitance	MTTF ¹
	Nom.			Min.	Тур.	Min.	Тур.	Тур.	Max.	S	
	V	V	mA	%	%	%	%	mVp/p	mVp/p	pF	kHrs
NCS1S1203SC	12	3.3	303	73	77	71	75	24	70	24	1020
NCS1S1205SC	12	5	200	76	79	74	77	25	50	30	915
NCS1S1212SC	12	12	83	75	78	75	79	40	120	35	1130
NCS1S2403SC	24	3.3	303	76	78.5	73	76	35	70	28	1217
NCS1S2405SC	24	5	200	79	82	77	80	27	50	42	1022
NCS1S2412SC	24	12	83	80	83	77	80	28	120	42	943

INPUT CHARACTERISTICS							
Parameter	Conditions	Conditions		Тур.	Max.	Units	
Voltago rango	12V input types		4.5	4.5 12 18		V	
Voltage range	24V input types		9 24		36		
Input current	NCS1S12XX	5V input voltage		0.26			
	NC51512XX	12V input voltage		0.1			
	NOC1C04///	12V input voltage	voltage	0.1		A	
	NCS1S24XX	24V input voltage		0.05			
Input reflected ripple current	NCS1S12XX			5	30	mAnn	
	NCS1S24XX			5	15	mA p-p	

OUTPUT CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Rated power	All output types			1	W		
Minimal load to meet datasheet specification		10			%		
Voltage set point accuracy	All output types		±1	±2	%		
Line regulation	Low line to high line			±0.5	%		
Load regulation	All output types			0.5	%		
	Peak deviation (12.5-37.5% & 37.5-12.5% swing)			5	%V _{out}		
Transient response	Settling time (within 5% V _{out} Nom.)		2		ms		

ISOLATION CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Isolation test voltage	Flash tested for 1 second	1000			VDC		
Resistance	Viso = 1kVDC	1			GΩ		

GENERAL CHARACTERISTICS								
Parameter	Conditions	Min.	Тур.	Max.	Units			
Switching frequency		100		400	kHz			
Control nin input	Module on, pin unconnected or open collector floati	ng						
Control pin input	Module off			0.8	V			

1 Calculated using MIL-HDBK-217 FN2, parts stress method with nominal input voltage at full load.

All specifications typical at TA=25°C, nominal input voltage and rated output current unless otherwise specified.

www.murata-ps.com

All enquiries: www.murata-ps.com/support

NCS1 Series

Isolated 1W 4:1 Input Single Output DC/DC Converters

Parameter	Conditions	Min.	Тур.	Max.	Units	
Operation		-40		105		
Storage		-50		125	°C	
Case temperature rise above ambient	100% Load, Nom V _{IN} , Still Air		15	22		
Short-circuit protection (for SELV input voltages) Continuous				uo		
Control pin input voltage	,		18V Max			
	onds (to JEDEC JESD22-B106 ISS C)		18V Max 260°C			
Control pin input voltage	onds (to JEDEC JESD22-B106 ISS C)					

APPLICATION NOTES

Maximum Output Capacitance

Maximum output capacitance should not exceed:

Output Voltage	Maximum Load Capacitance
V	μF
3.3	470
5	470
12	220

Start-up times

Typical start up times for this series, with a typical input voltage rise time of 2.2µs and output capacitance of 10µF, are shown in the table below. The product series will start into the maximum output capacitance with increased start times.

Part No.	Start-up times		
Fait NO.	ms		
NCS1S1203SC	6		
NCS1S1205SC	9		
NCS1S1212SC	20		
NCS1S2403SC	12		
NCS1S2405SC	7		
NCS1S2412SC	12		

Control Pin

The NCS1 converters have a shutdown feature which enables the user to put the converter into a low power state. The control pin connects directly to the base of an internal transistor, and the switch off mechanism for the NCS1 works by forward biasing this NPN transistor. If the pin is left open (high impedance), the converter will be ON (there is no allowed low state for this pin), but once a control voltage is applied with sufficient drive current, the converter will be switched OFF. A suitable application circuit is shown below.

NCS1 Series

Isolated 1W 4:1 Input Single Output DC/DC Converters

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NCS1 series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1kVDC for 1 second.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

The NCS1 has been recognized by Underwriters Laboratory for functional insulation, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NCS1 series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further

insulation system of physical spacing or barriers.

SAFETY APPROVAL

The NCS1 series has been recognized by Underwriters Laboratory (UL) to UL 60950 for functional insulation to a maximum case temperature of 105°C. File number E151252 applies.

The NCS1 Series of converters are not internally fused so to meet the requirements of UL 60950 an anti-surge input line fuse should always be used with ratings as defined below. NCS1S12xxSC: 1A

NCS1S24xxSC: 0.5A

All fuses should be UL approved and rated to at least the maximum allowable DC input voltage.

RoHS COMPLIANCE INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature of 260°C for 10 seconds. The pin termination finish on this product series is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The series is backward compatible with Sn/Pb soldering systems.

CHARACTERISATION TEST METHODS

Ripple & Noise Characterisation Method

Ripple and noise measurements are performed with the following test configuration.

C1	1µF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter					
C2	10μ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than $100 \text{ m}\Omega$ at 100 kHz					
C3	100nF multilayer ceramic capacitor, general purpose					
R1	450Ω resistor, carbon film, \pm 1% tolerance					
R2	50Ω BNC termination					
T1	3T of the coax cable through a ferrite toroid					
RLOAD	Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires					
Measured val	ues are multiplied by 10 to obtain the specified values.					
erential Mode	PNoise Test Schematic					

www.murata-ps.com

All enquiries: www.murata-ps.com/support

NCS1 Series

Isolated 1W 4:1 Input Single Output DC/DC Converters

All enquiries: www.murata-ps.com/support KDC_NCS1.D01 Page 4 of 8

NCS1 Series

Isolated 1W 4:1 Input Single Output DC/DC Converters

NCS1 Series

Isolated 1W 4:1 Input Single Output DC/DC Converters

EMC FILTERING AND SPECTRA

FILTERING

The module includes a basic level of filtering, the following table shows the additional input capacitor and input inductor typically required to meet EN 55022 Curve A Quasi-Peak EMC limit, as shown in the following plots.

Part Number	Capacitor	Inductor	Common Mode Choke
NCS1S1203SC	330nF	500µH	
NCS1S1205SC	330nF	500µH	
NCS1S1212SC	2.2µF	2.2mH	
NCS1S2403SC	330nF	500µH	700µH
NCS1S2405SC	330nF	500µH	
NCS1S2412SC	330nF	500µH	

NCS1 Series

Isolated 1W 4:1 Input Single Output DC/DC Converters

NCS1 Series

Isolated 1W 4:1 Input Single Output DC/DC Converters

Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. @ 2015 Murata Power Solutions, Inc.

All enquiries: www.murata-ps.com/support

www.murata-ps.com/support

KDC_NCS1.D01 Page 8 of 8