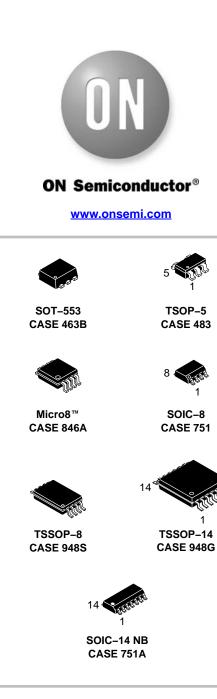
# **Operational Amplifier, Railto-Rail Output, 3 MHz BW**

The NCx2007x series operational amplifiers provide rail-to-rail output operation, 3 MHz bandwidth, and are available in single, dual, and quad configurations. Rail-to-rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3 MHz bandwidth. The NCx2007x can operate on supply voltages as low as 2.7 V over the temperature range of  $-40^{\circ}$ C to 125°C. At a 2.7 V supply, the high bandwidth provides a slew rate of 2.8 V/µs while only consuming 405 µA of quiescent current per channel. The wide supply range allows the NCx2007x to run on supply voltages as high as 36 V, making it ideal for a broad range of applications. Since this is a CMOS device, high input impedance and low bias currents make it ideal for interfacing to a wide variety of signal sensors. The NCx2007x devices are available in a variety of compact packages. Automotive qualified options are available under the NCV prefix.

### Features

- Rail-To-Rail Output
- Wide Supply Range: 2.7 V to 36 V
- Wide Bandwidth: 3 MHz typical at  $V_S = 2.7 V$
- High Slew Rate: 2.8 V/ $\mu$ s typical at V<sub>S</sub> = 2.7 V
- Low Supply Current: 405  $\mu$ A per channel at V<sub>S</sub> = 2.7 V
- Low Input Bias Current: 5 pA typical
- Wide Temperature Range: -40°C to 125°C
- Available in a variety of packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


### Applications

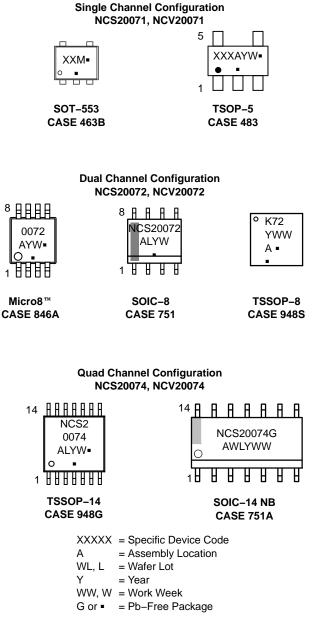
- Current Sensing
- Signal Conditioning
- Automotive

#### **End Products**

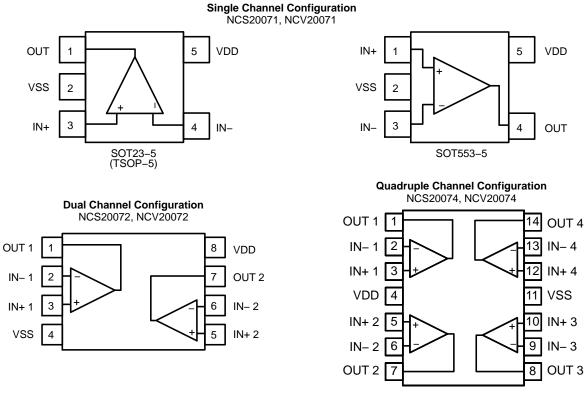
- Notebook Computers
- Portable Instruments
- Power Supplies

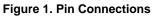
This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.




#### **DEVICE MARKING INFORMATION**

See general marking information in the device marking section on page 2 of this data sheet.


### **ORDERING INFORMATION**


See detailed ordering and shipping information on page 4 of this data sheet.

### MARKING DIAGRAMS



(Note: Microdot may be in either location)





#### **ORDERING INFORMATION**

| Device                                 | Configuration | Automotive | Marking      | Package                     | Shipping <sup>†</sup> |
|----------------------------------------|---------------|------------|--------------|-----------------------------|-----------------------|
| NCS20071SN2T1G<br>(In Development)**   |               |            | TBD          | TSOP-5<br>(Pb-Free)         | 3000 / Tape and Reel  |
| NCS20071XV53T2G<br>(In Development)**  | 0 set         | No         | TBD          | SOT553–5<br>(Pb–Free)       | 4000 / Tape and Reel  |
| NCV20071SN2T1G*<br>(In Development)**  | - Single      | No. 5      | TBD          | TSOP–5<br>(Pb–Free)         | 3000 / Tape and Reel  |
| NCV20071XV53T2G*<br>(In Development)** |               | Yes        | TBD          | SOT553–5<br>(Pb–Free)       | 4000 / Tape and Reel  |
| NCS20072DMR2G                          |               |            | 0072         | Micro8 (MSOP8)<br>(Pb–Free) | 4000 / Tape and Reel  |
| NCS20072DR2G                           | 7             | No         | NCS20072     | SOIC-8<br>(Pb-Free)         | 2500 / Tape and Reel  |
| NCS20072DTBR2G                         |               |            | K72          | TSSOP-8<br>(Pb-Free)        | 2500 / Tape and Reel  |
| NCV20072DMR2G*                         | — Dual        |            | 0072         | Micro8 (MSOP8)<br>(Pb–Free) | 4000 / Tape and Reel  |
| NCV20072DR2G*                          |               | Yes        | NCS20072     | SOIC-8<br>(Pb-Free)         | 2500 / Tape and Reel  |
| NCV20072DTBR2G*                        | 7             |            | K72          | TSSOP–8<br>(Pb–Free)        | 2500 / Tape and Reel  |
| NCS20074DR2G                           |               |            | NCS20074     | SOIC-14<br>(Pb-Free)        | 2500 / Tape and Reel  |
| NCS20074DTBR2G                         |               | No         | NCS2<br>0074 | TSSOP-14<br>(Pb-Free)       | 2500 / Tape and Reel  |
| NCV20074DR2G*                          | Quad          | , v        | NCS20074     | SOIC-14<br>(Pb-Free)        | 2500 / Tape and Reel  |
| NCV20074DTBR2G*                        |               | Yes        | NCS2<br>0074 | TSSOP-14<br>(Pb-Free)       | 2500 / Tape and Reel  |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. \*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

\*\*Contact local sales office for availability.

### ABSOLUTE MAXIMUM RATINGS (Note 1)

|                                                   | Rating                                                                                                                                                            | Symbol                  | Limit                                        | Unit |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------|------|--|
| Supply Voltage (V <sub>DD</sub> – V <sub>SS</sub> | ) (Note 4)                                                                                                                                                        | V <sub>S</sub>          | 40                                           | V    |  |
| Input Voltage                                     |                                                                                                                                                                   | V <sub>CM</sub>         | $V_{SS}$ – 0.2 to $V_{DD}$ + 0.2             | V    |  |
| Differential Input Voltage (N                     | lote 2)                                                                                                                                                           | V <sub>ID</sub>         | ±V <sub>s</sub>                              | V    |  |
| Maximum Input Current                             | I <sub>IN</sub> ±10                                                                                                                                               |                         |                                              |      |  |
| Maximum Output Current (                          | Note 3)                                                                                                                                                           | Ι <sub>Ο</sub>          | ±100                                         | mA   |  |
| Continuous Total Power Dis                        | ssipation (Note 4)                                                                                                                                                | PD                      | 200                                          | mW   |  |
| Maximum Junction Temper                           | ature                                                                                                                                                             | TJ                      | T <sub>J</sub> 150                           |      |  |
| Storage Temperature Rang                          | e                                                                                                                                                                 | T <sub>STG</sub>        | -65 to 150                                   | °C   |  |
| Mounting Temperature (Infr                        | ared or Convection – 20 sec)                                                                                                                                      | T <sub>mount</sub>      | 260                                          | °C   |  |
| ESD Capability (Note 5)                           | Human Body Model<br>Machine Model – NCx20071<br>Machine Model – NCx20072, NCx20074<br>Charged Device Model – NCx20071/NCx20072<br>Charged Device Model – NCx20074 | HBM<br>MM<br>CDM<br>CDM | 2000<br>200<br>150<br>2000 (C6)<br>1000 (C6) | V    |  |
| Latch–Up Current (Note 6)                         |                                                                                                                                                                   | Ι <sub>LU</sub>         | 100                                          | mA   |  |
| Moisture Sensitivity Level (                      | Note 7)                                                                                                                                                           | MSL                     | Level 1                                      |      |  |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

- 2. Maximum input current must be limited to ±10 mA. Series connected resistors of at least 500 Ω on both inputs may be used to limit the maximum input current to ±10 mA.
- 3. Total power dissipation must be limited to prevent the junction temperature from exceeding the 150°C limit.
- 4. Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability. Shorting output to either VDD or VSS will adversely affect reliability.
- 5. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per ANSI/ANSI/ESDA/JEDEC JS-001-2010 (AEC-Q100-002) ESD Machine Model tested per JESD22-A115 (AEC-Q100-003) ESD Charged Device Model tested per ANSI/ESD S5.3.1-2009 (AEC-Q100-011)
- 6. Latch-up Current tested per JEDEC standard: JESD78 (AEC-Q100-004)
- 7. Moisture Sensitivity Level tested per IPC/JEDEC standard: J-STD-020A

### THERMAL INFORMATION

| Parameter           | Symbol          | Package         | Single Layer<br>Board (Note 8) | Multi–Layer<br>Board (Note 9) | Unit |
|---------------------|-----------------|-----------------|--------------------------------|-------------------------------|------|
|                     |                 | SOT23-5 / TSOP5 |                                |                               |      |
|                     |                 | SOT553-5        |                                | 178                           |      |
|                     | θ <sub>JA</sub> | Micro8 / MSOP8  | 236                            | 167                           |      |
| Junction-to-Ambient |                 | SOIC-8          | 190                            | 131                           | °C/W |
|                     |                 | TSSOP-8         | 253                            | 194                           |      |
|                     |                 | SOIC-14         | 142                            | 101                           |      |
|                     |                 | TSSOP-14        | 179                            | 128                           |      |

8. Values based on a 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm<sup>2</sup> copper area

9. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm<sup>2</sup> copper area

#### **OPERATING RANGES**

| Parameter                                | Symbol          | Min             | Max                    | Unit |
|------------------------------------------|-----------------|-----------------|------------------------|------|
| Operating Supply Voltage (Single Supply) | VS              | 2.7             | 36                     | V    |
| Operating Supply Voltage (Split Supply)  | VS              | ±1.35           | ±18                    | V    |
| Differential Input Voltage (Note 10)     | V <sub>ID</sub> |                 | Vs                     | V    |
| Input Common Mode Voltage Range          | V <sub>CM</sub> | V <sub>SS</sub> | V <sub>DD</sub> – 1.35 | V    |
| Ambient Temperature                      | T <sub>A</sub>  | -40             | 125                    | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

10. Maximum input current must be limited to ±10 mA. See Absolute Maximum Ratings for more information.

### ELECTRICAL CHARACTERISTICS AT $V_S = 2.7 V$

 $T_A = 25^{\circ}C$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$ . All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range,  $T_A = -40^{\circ}C$  to  $125^{\circ}C$ . (Notes 11, 12)

| Parameter                      | Symbol                     | Cond                                                                       | itions     | Min | Тур | Max  | Unit  |
|--------------------------------|----------------------------|----------------------------------------------------------------------------|------------|-----|-----|------|-------|
| INPUT CHARACTERISTICS          |                            |                                                                            |            |     |     | -    | -     |
| Innut Offeet Veltege           | M                          |                                                                            |            |     | 1.3 | ±3   | mV    |
| Input Offset Voltage           | V <sub>OS</sub>            |                                                                            |            |     |     | ±4   | mV    |
| Offset Voltage Drift           | $\Delta V_{OS} / \Delta T$ | $T_A = 25^{\circ}C$                                                        | C to 125°C |     | 2   |      | μV/°C |
| Innut Rice Current (Note 12)   |                            |                                                                            |            |     | 5   | 200  | - 0   |
| Input Bias Current (Note 12)   | I <sub>IB</sub>            |                                                                            |            |     |     | 1500 | рА    |
|                                |                            | NCx20072                                                                   |            |     | 2   | 75   |       |
| Input Offact Current (Note 12) |                            | NCX2                                                                       | 20072      |     |     | 500  | pА    |
| Input Offset Current (Note 12) | los                        | NOv                                                                        | 0074       |     | 2   | 75   |       |
|                                |                            | NCx20074                                                                   |            |     |     | 200  |       |
| Channel Constation             | NCx20072                   | NCx20072                                                                   |            | 100 |     | dB   |       |
| Channel Separation             | XTLK                       | DC                                                                         | NCx20074   |     | 115 |      | uБ    |
| Differential Input Resistance  | R <sub>ID</sub>            |                                                                            |            |     | 50  |      | GΩ    |
| Common Mode Input Resistance   | R <sub>IN</sub>            |                                                                            |            |     | 5   |      | GΩ    |
| Differential Input Capacitance | C <sub>ID</sub>            |                                                                            |            |     | 1.5 |      | pF    |
| Common Mode Input Capacitance  | C <sub>CM</sub>            |                                                                            |            |     | 3.5 |      | pF    |
|                                |                            | $V_{CM} = V_{SS} + 0.2 \text{ V to}$                                       | NO:00070   | 90  | 110 |      | dB    |
| O                              |                            | $V_{CM} = V_{SS} + 0.2 V$ to<br>$V_{DD} - 1.35 V$                          | NCx20072   | 69  |     |      |       |
| Common Mode Rejection Ratio    | CMRR                       | V <sub>CM</sub> = V <sub>SS</sub> to V <sub>DD</sub> –<br>1.35 V (Note 13) | NCx20074   | 90  | 110 |      | dB    |
|                                |                            |                                                                            |            | 69  |     |      |       |

#### **OUTPUT CHARACTERISTICS**

| Open Loop Voltage Gain              | A                |                                          | 96 | 118   |      | dB  |
|-------------------------------------|------------------|------------------------------------------|----|-------|------|-----|
| Open Loop voltage Gain              | A <sub>VOL</sub> |                                          | 86 |       |      | uВ  |
| Output Current Capability (Note 14) |                  | Op amp sinking current                   |    | 70    |      | ~^^ |
|                                     | ι <sub>Ο</sub>   | Op amp sourcing current                  |    | 50    |      | mA  |
|                                     | V <sub>OH</sub>  | Voltage output output from positive roll |    | 0.006 | 0.15 | v   |
| Output Voltage High                 |                  | Voltage output swing from positive rail  |    |       | 0.22 |     |
|                                     |                  | Voltage output output from pagetive roll |    | 0.005 | 0.15 | v   |
| Output Voltage Low                  | V <sub>OL</sub>  | Voltage output swing from negative rail  |    |       | 0.22 |     |

#### AC CHARACTERISTICS

| Unity Gain Bandwidth    | UGBW           | C <sub>L</sub> = 25 pF                                      |                        |  | 3   |  | MHz  |
|-------------------------|----------------|-------------------------------------------------------------|------------------------|--|-----|--|------|
| Slew Rate at Unity Gain | SR             | $C_L$ = 20 pF, $R_L$ = 2 k $\Omega$                         |                        |  | 2.8 |  | V/µs |
| Phase Margin            | φm             | C <sub>L</sub> = 25 pF                                      |                        |  | 50  |  | 0    |
| Gain Margin             | A <sub>m</sub> | C <sub>L</sub> =                                            | C <sub>L</sub> = 25 pF |  | 14  |  | dB   |
|                         |                | V <sub>O</sub> = 1 Vpp,<br>Gain = 1, C <sub>L</sub> = 20 pF | Settling time to 0.1%  |  | 0.6 |  | μs   |
| Settling Time           | t <sub>S</sub> |                                                             | Settling time to 0.01% |  | 1.2 |  |      |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

11. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

12. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

13. Effective for the NCx20074 until FPCN 20949 is implemented. After the FPCN is implemented, the NCx20074 condition will change to  $V_{CM} = V_{SS} + 0.2$  V to  $V_{DD} - 1.35$  V.

#### ELECTRICAL CHARACTERISTICS AT V<sub>S</sub> = 2.7 V

 $T_A = 25^{\circ}C$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid-supply}$  unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range,  $T_A = -40^{\circ}C$  to  $125^{\circ}C$ . (Notes 11, 12)

| Parameter                            | Symbol         | Conditions                            |  | Тур  | Max | Unit               |
|--------------------------------------|----------------|---------------------------------------|--|------|-----|--------------------|
| NOISE CHARACTERISTICS                |                |                                       |  |      |     |                    |
| Total Harmonic Distortion plus Noise | THD+N          | $V_{IN} = 0.5 Vpp, f = 1 kHz, Av = 1$ |  | 0.05 |     | %                  |
| Janut Deferred Veltere Naise         |                | f = 1 kHz                             |  | 30   |     | nV/√ <del>Hz</del> |
| Input Referred Voltage Noise         | e <sub>n</sub> | f = 10 kHz                            |  | 20   |     | nv/vHz             |
| Input Referred Current Noise         | i <sub>n</sub> | f = 1 kHz                             |  | 0.25 |     | fA/√Hz             |

| Power Supply Rejection Ratio   | PSRR                | R No Load            |     | 135 |     | dB |  |
|--------------------------------|---------------------|----------------------|-----|-----|-----|----|--|
| Fower Supply Rejection Ratio   | FORK                | NU LUAU              | 100 |     |     | uв |  |
| Power Supply Quiescent Current | v Quiessent Current | Per channel, no load |     | 405 | 525 |    |  |
| Power Supply Quiescent Current | IDD                 | Fer channel, no load |     |     | 625 | μΑ |  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

11. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

Symbol

12. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

13. Effective for the NCx20074 until FPCN 20949 is implemented. After the FPCN is implemented, the NCx20074 condition will change to VCM  $= V_{SS} + 0.2 V$  to  $V_{DD} - 1.35 V$ .

14. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

Conditions

Min Typ Max Unit

Parameter

ſ

**ELECTRICAL CHARACTERISTICS AT V<sub>S</sub> = 5 V**   $T_A = 25^{\circ}C$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$ . All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range,  $T_A = -40^{\circ}C$  to  $125^{\circ}C$ . (Notes 15, 16)

| Falailletei                    | Symbol                     |                    | multions      | IVIIII | тур | IVIAX | Unit       |
|--------------------------------|----------------------------|--------------------|---------------|--------|-----|-------|------------|
| INPUT CHARACTERISTICS          |                            |                    |               |        |     |       |            |
|                                |                            |                    |               |        | 1.3 | ±3    | mV         |
| Input Offset Voltage           | V <sub>OS</sub>            |                    |               |        |     | ±4    | mV         |
| Offset Voltage Drift           | $\Delta V_{OS} / \Delta T$ | T <sub>A</sub> = 2 | 5°C to 125 °C |        | 2   |       | μV/°C      |
| Innut Diag Current (Nate 16)   |                            |                    |               |        | 5   | 200   | <b>n</b> A |
| Input Bias Current (Note 16)   | I <sub>IB</sub>            |                    |               |        |     | 1500  | рА         |
|                                |                            |                    | Cx20072       |        | 2   | 75    | рА         |
| nout Offect Current (Note 16)  |                            | NC220072           |               |        |     | 500   |            |
| Input Offset Current (Note 16) | l <sub>os</sub>            | NCx20074           |               |        | 2   | 75    |            |
|                                |                            |                    |               |        |     | 200   |            |
| Ohannal Constitut              | VTLK                       | DC                 | NCx20072      |        | 100 |       | ٩D         |
| Channel Separation             | XTLK                       | DC                 | NCx20074      |        | 115 |       | dB         |
| Differential Input Resistance  | R <sub>ID</sub>            |                    | •             |        | 50  |       | GΩ         |
| Common Mode Input Resistance   | R <sub>IN</sub>            |                    |               |        | 5   |       | GΩ         |
| Differential Input Capacitance | C <sub>ID</sub>            |                    |               |        | 1.5 |       | pF         |
| Common Mode Input Capacitance  | C <sub>CM</sub>            |                    |               |        | 3.5 |       | pF         |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

15. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

16. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

17. Effective for the NCx20074 until FPCN 20949 is implemented. After the FPCN is implemented, the NCx20074 condition will change to VCM  $= V_{SS} + 0.2 V$  to  $V_{DD} - 1.35 V$ .

### ELECTRICAL CHARACTERISTICS AT $V_S = 5 V$

 $T_A = 25^{\circ}C$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$ . All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range,  $T_A = -40^{\circ}C$  to  $125^{\circ}C$ . (Notes 15, 16)

| Parameter                            | Symbol           | Condi                                                                      | tions                   | Min | Тур   | Max  | Unit     |
|--------------------------------------|------------------|----------------------------------------------------------------------------|-------------------------|-----|-------|------|----------|
| INPUT CHARACTERISTICS                |                  |                                                                            |                         |     |       |      |          |
|                                      |                  | $V_{CM} = V_{SS} + 0.2 V$ to                                               | 10,00070                | 102 | 125   |      |          |
|                                      | 01100            | V <sub>DD</sub> – 1.35 V                                                   | NCx20072                | 80  |       |      | dB       |
| Common Mode Rejection Ratio          | CMRR             | $V_{CM} = V_{SS}$ to $V_{DD} =$                                            | 10 00074                | 102 | 125   |      |          |
|                                      |                  | V <sub>CM</sub> = V <sub>SS</sub> to V <sub>DD</sub> –<br>1.35 V (Note 17) | NCx20074                | 80  |       |      | dB       |
| OUTPUT CHARACTERISTICS               |                  |                                                                            |                         |     |       |      | -        |
|                                      | •                |                                                                            |                         | 96  | 120   |      | JD       |
| Open Loop Voltage Gain               | A <sub>VOL</sub> |                                                                            |                         | 86  |       |      | dB       |
|                                      |                  | Op amp sinl                                                                | king current            |     | 50    |      |          |
| Output Current Capability (Note 18)  | lo               | Op amp sourcing current                                                    |                         |     | 60    |      | mA       |
| Outrut Valence Llink                 | M                |                                                                            |                         |     | 0.013 | 0.20 | V        |
| Output Voltage High                  | V <sub>OH</sub>  | Voltage output swin                                                        | ig from positive rail   |     |       | 0.25 | V        |
| Output Mallana Laur                  |                  | Malta na antro tanta ant                                                   | - factor and the second |     | 0.01  | 0.10 |          |
| Output Voltage Low                   | V <sub>OL</sub>  | Voltage output swing from negative rail                                    |                         |     |       | 0.15 | V        |
| AC CHARACTERISTICS                   |                  |                                                                            |                         |     |       |      |          |
| Unity Gain Bandwidth                 | UGBW             | C <sub>L</sub> = 25 pF                                                     |                         |     | 3.2   |      | MHz      |
| Slew Rate at Unity Gain              | SR               | $C_{L} = 20 \text{ pF},$                                                   | $R_L = 2 k\Omega$       |     | 2.7   |      | V/μs     |
| Phase Margin                         | φm               | C <sub>L</sub> = 2                                                         | 25 pF                   |     | 50    |      | 0        |
| Gain Margin                          | A <sub>m</sub>   | C <sub>L</sub> = 2                                                         | 25 pF                   |     | 14    |      | dB       |
| Cattling Time                        |                  | V <sub>O</sub> = 3 Vpp,                                                    | Settling time to 0.1%   |     | 1.2   |      |          |
| Settling Time                        | t <sub>S</sub>   |                                                                            | Settling time to 0.01%  |     | 5.6   |      | μS       |
| NOISE CHARACTERISTICS                |                  |                                                                            |                         |     |       |      |          |
| Total Harmonic Distortion plus Noise | THD+N            | V <sub>IN</sub> = 2.5 Vpp, f                                               | = 1 kHz, Av = 1         |     | 0.009 |      | %        |
| Innut Deferred Veltere Naise         | _                | f = 1                                                                      | kHz                     |     | 30    |      | *)///II= |
| Input Referred Voltage Noise         | e <sub>n</sub>   | f = 10                                                                     | kHz                     |     | 20    |      | nV/√Hz   |
| Input Referred Current Noise         | i <sub>n</sub>   | f = 1                                                                      | kHz                     |     | 0.25  |      | fA/√Hz   |
| SUPPLY CHARACTERISTICS               |                  |                                                                            |                         |     |       |      |          |
| Dowor Cupply Deigsting Datis         |                  | NI- 1                                                                      | aad                     | 114 | 135   |      | dD       |
| Power Supply Rejection Ratio         | PSRR             | No L                                                                       | .0a0                    | 100 |       |      | dB       |
|                                      |                  |                                                                            | al and land             |     | 410   | 530  |          |
| Power Supply Quiescent Current       | I <sub>DD</sub>  | Per channe                                                                 | ei, no load             |     |       | 630  | μΑ       |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

15. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

16. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

17. Effective for the NCx20074 until FPCN 20949 is implemented. After the FPCN is implemented, the NCx20074 condition will change to  $V_{CM} = V_{SS} + 0.2 \text{ V}$  to  $V_{DD} - 1.35 \text{ V}$ .

### ELECTRICAL CHARACTERISTICS AT $V_S = 10 V$

 $T_A = 25^{\circ}C$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid-supply}$  unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range,  $T_A = -40^{\circ}C$  to  $125^{\circ}C$ . (Notes 19, 20)

| Parameter                      | Symbol                     | Cond                                                                       | itions     | Min | Тур | Max  | Unit  |  |
|--------------------------------|----------------------------|----------------------------------------------------------------------------|------------|-----|-----|------|-------|--|
| INPUT CHARACTERISTICS          | •                          | •                                                                          |            |     |     |      |       |  |
| Innut Offeet Veltege           | M                          |                                                                            |            |     | 1.3 | ±3   | mV    |  |
| Input Offset Voltage           | V <sub>OS</sub>            |                                                                            |            |     |     | ±4   | mV    |  |
| Offset Voltage Drift           | $\Delta V_{OS} / \Delta T$ | $T_A = 25^{\circ}C$                                                        | C to 125°C |     | 2   |      | μV/°C |  |
| Input Bias Current (Note 20)   | l                          |                                                                            |            |     | 5   | 200  | рА    |  |
| Input bias Current (Note 20)   | I <sub>IB</sub>            |                                                                            |            |     |     | 1500 | РА    |  |
|                                |                            | NCx20072                                                                   |            |     | 2   | 75   |       |  |
| Input Offset Current (Note 20) | 1                          | INCX2                                                                      | 10720072   |     |     | 500  | рА    |  |
| input Onset Guiterit (Note 20) | l <sub>OS</sub>            | NCx20074                                                                   |            |     | 2   | 75   |       |  |
|                                |                            |                                                                            |            |     |     | 200  |       |  |
| Channel Constation             | XTLK                       | DC                                                                         | NCx20072   |     | 100 | dP   | dD    |  |
| Channel Separation             | AILK                       | DC                                                                         | NCx20074   |     | 115 |      | dB    |  |
| Differential Input Resistance  | R <sub>ID</sub>            |                                                                            |            |     | 50  |      | GΩ    |  |
| Common Mode Input Resistance   | R <sub>IN</sub>            |                                                                            |            |     | 5   |      | GΩ    |  |
| Differential Input Capacitance | C <sub>ID</sub>            |                                                                            |            |     | 1.5 |      | pF    |  |
| Common Mode Input Capacitance  | C <sub>CM</sub>            |                                                                            |            |     | 3.5 |      | pF    |  |
|                                |                            | $V_{CM} = V_{SS} + 0.2 \text{ V to}$                                       | NO:00070   | 110 | 130 |      | dB    |  |
| Common Made Deiestien Detie    | CMRR                       | V <sub>DD</sub> – 1.35 V                                                   | NCx20072   | 87  |     |      |       |  |
| Common Mode Rejection Ratio    |                            | V <sub>CM</sub> = V <sub>SS</sub> to V <sub>DD</sub> -<br>1.35 V (Note 21) | NCx20074   | 110 | 130 |      | dB    |  |
|                                |                            |                                                                            |            | 87  |     |      |       |  |

#### **OUTPUT CHARACTERISTICS**

| Open Loop Voltage Gain              | A                |                                          | 98 | 120   |      | dB  |
|-------------------------------------|------------------|------------------------------------------|----|-------|------|-----|
| Open Loop voltage Gain              | A <sub>VOL</sub> |                                          | 88 |       |      | uВ  |
| Output Output Conshility (Note 22)  |                  | Op amp sinking current                   |    | 50    |      | ~ ^ |
| Output Current Capability (Note 22) | IO               | Op amp sourcing current                  |    | 65    |      | mA  |
|                                     | M                |                                          |    | 0.023 | 0.08 | V   |
| Output Voltage High                 | V <sub>OH</sub>  | Voltage output swing from positive rail  |    |       | 0.10 | v   |
|                                     | M                | Voltage output output from pagetive roll |    | 0.022 | 0.3  | V   |
| Output Voltage Low                  | V <sub>OL</sub>  | Voltage output swing from negative rail  |    |       | 0.35 | v   |

#### AC CHARACTERISTICS

| Unity Gain Bandwidth    | UGBW           | C <sub>L</sub> = 25 pF                                 |                        | 3.2 | MHz  |
|-------------------------|----------------|--------------------------------------------------------|------------------------|-----|------|
| Slew Rate at Unity Gain | SR             | $C_L = 20 \text{ pF}, R_L = 2 \text{ k}\Omega$         |                        | 2.2 | V/μs |
| Phase Margin            | φm             | C <sub>L</sub> =                                       | 25 pF                  | 50  | 0    |
| Gain Margin             | A <sub>m</sub> | C <sub>L</sub> =                                       | 25 pF                  | 14  | dB   |
| Cottling Time           |                | V <sub>O</sub> = 8.5 Vpp,                              | Settling time to 0.1%  | 3.4 |      |
| Settling Time           | t <sub>S</sub> | $V_{O} = 8.5 Vpp,$<br>Gain = 1, C <sub>L</sub> = 20 pF | Settling time to 0.01% | 6.8 | μs   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

19. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

20. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

21. Effective for the NCx20074 until FPCN 20949 is implemented. After the FPCN is implemented, the NCx20074 condition will change to  $V_{CM} = V_{SS} + 0.2 \text{ V}$  to  $V_{DD} - 1.35 \text{ V}$ .

#### ELECTRICAL CHARACTERISTICS AT V<sub>S</sub> = 10 V

 $T_A = 25^{\circ}C$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid-supply}$  unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range,  $T_A = -40^{\circ}C$  to  $125^{\circ}C$ . (Notes 19, 20)

| Symbol         | Conditions                                   |                                                                                                     | Тур                                                                                                 | Max                                                                                                                          | Unit                                                                                                                         |
|----------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                |                                              |                                                                                                     |                                                                                                     |                                                                                                                              |                                                                                                                              |
| THD+N          | V <sub>IN</sub> = 7.5 Vpp, f = 1 kHz, Av = 1 |                                                                                                     | 0.004                                                                                               |                                                                                                                              | %                                                                                                                            |
|                | f = 1 kHz                                    |                                                                                                     | 30                                                                                                  |                                                                                                                              |                                                                                                                              |
| e <sub>n</sub> | f = 10 kHz                                   |                                                                                                     | 20                                                                                                  |                                                                                                                              | nV/√Hz                                                                                                                       |
| i <sub>n</sub> | f = 1 kHz                                    |                                                                                                     | 0.25                                                                                                |                                                                                                                              | fA/√Hz                                                                                                                       |
|                | THD+N<br>e <sub>n</sub>                      | THD+N $V_{IN} = 7.5$ Vpp, f = 1 kHz, Av = 1<br>$e_n = \frac{f = 1 \text{ kHz}}{f = 10 \text{ kHz}}$ | THD+N $V_{IN} = 7.5$ Vpp, f = 1 kHz, Av = 1<br>$e_n = \frac{f = 1 \text{ kHz}}{f = 10 \text{ kHz}}$ | THD+N $V_{IN} = 7.5$ Vpp, f = 1 kHz, Av = 1    0.004 $e_n$ f = 1 kHz    30      f = 10 kHz    20      i    f = 1 kHz    0.25 | THD+N $V_{IN} = 7.5$ Vpp, f = 1 kHz, Av = 1    0.004 $e_n$ f = 1 kHz    30      f = 10 kHz    20      i    f = 1 kHz    0.25 |

| Power Supply Rejection Ratio   | PSRR | No Load              | 114 | 135 |     | dB |
|--------------------------------|------|----------------------|-----|-----|-----|----|
| Power Supply Rejection Ratio   | FORK | NO LUAU              | 100 |     |     | uВ |
| Power Supply Quiescent Current | I    | Per channel, no load |     | 416 | 540 | ۵  |
| Power Supply Quiescent Current | IDD  | rei channel, no load |     |     | 640 | μΑ |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

19. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

20. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

21. Effective for the NCx20074 until FPCN 20949 is implemented. After the FPCN is implemented, the NCx20074 condition will change to VCM  $= V_{SS} + 0.2 V$  to  $V_{DD} - 1.35 V$ .

22. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

#### ELECTRICAL CHARACTERISTICS AT V<sub>S</sub> = 36 V

 $T_A = 25^{\circ}C$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$ . All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range,  $T_A = -40^{\circ}C$  to 125°C. (Notes 23, 24)

| Parameter                      | Symbol                     | Conditions |               | Min | Тур | Max  | Unit       |
|--------------------------------|----------------------------|------------|---------------|-----|-----|------|------------|
| INPUT CHARACTERISTICS          |                            |            |               |     |     |      |            |
| lagest Offeret ) /altage       |                            |            |               |     | 1.3 | ±3   | mV         |
| Input Offset Voltage           | V <sub>OS</sub>            |            |               |     |     | ±4   | mV         |
| Offset Voltage Drift           | $\Delta V_{OS} / \Delta T$ | $T_A = 2$  | 25°C to 125°C |     | 2   |      | μV/°C      |
|                                |                            |            |               |     | 5   | 200  |            |
| Input Bias Current (Note 24)   | I <sub>IB</sub>            | Ν          | ICx20072      |     |     | 2000 | pА         |
|                                |                            | Ν          | NCx20074      |     |     | 1500 |            |
|                                |                            | NCx20072   |               |     | 2   | 75   |            |
| lanut Offact Current (Nata 24) |                            | N          | ICX20072      |     |     | 1000 | <b>~</b> ^ |
| Input Offset Current (Note 24) | los                        | N          | 10            |     | 2   | 75   | рА         |
|                                |                            | IN         | ICx20074      |     |     | 200  |            |
|                                | VTUK                       | 50         | NCx20072      |     | 100 |      | 10         |
| Channel Separation             | XTLK                       | DC         | NCx20074      |     | 115 |      | dB         |
| Differential Input Resistance  | R <sub>ID</sub>            |            |               |     | 50  |      | GΩ         |
| Common Mode Input Resistance   | R <sub>IN</sub>            |            |               |     | 5   |      | GΩ         |
| Differential Input Capacitance | C <sub>ID</sub>            |            |               |     | 1.5 |      | pF         |
| Common Mode Input Capacitance  | C <sub>CM</sub>            |            |               |     | 3.5 |      | pF         |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

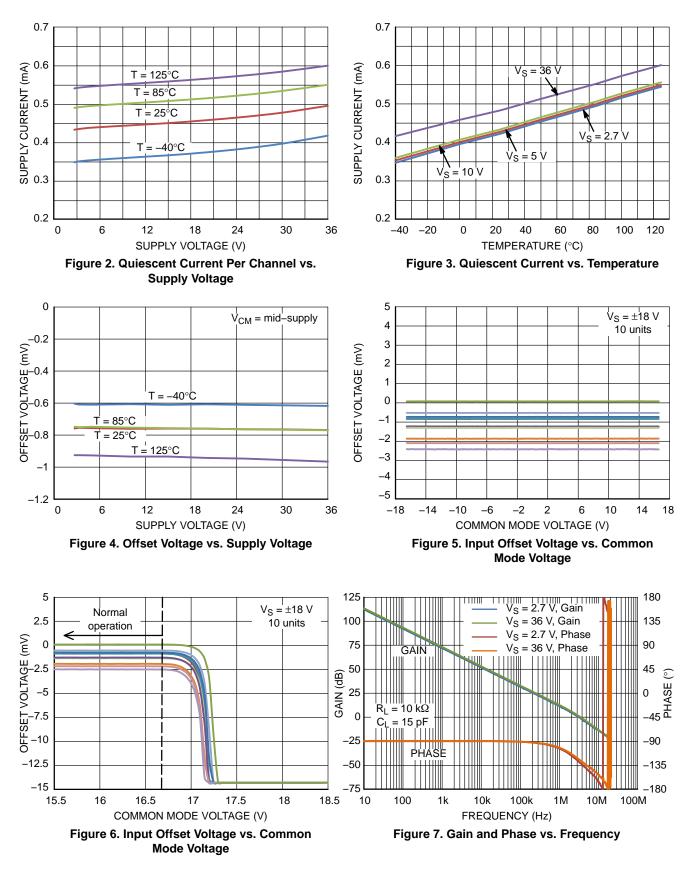
23. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

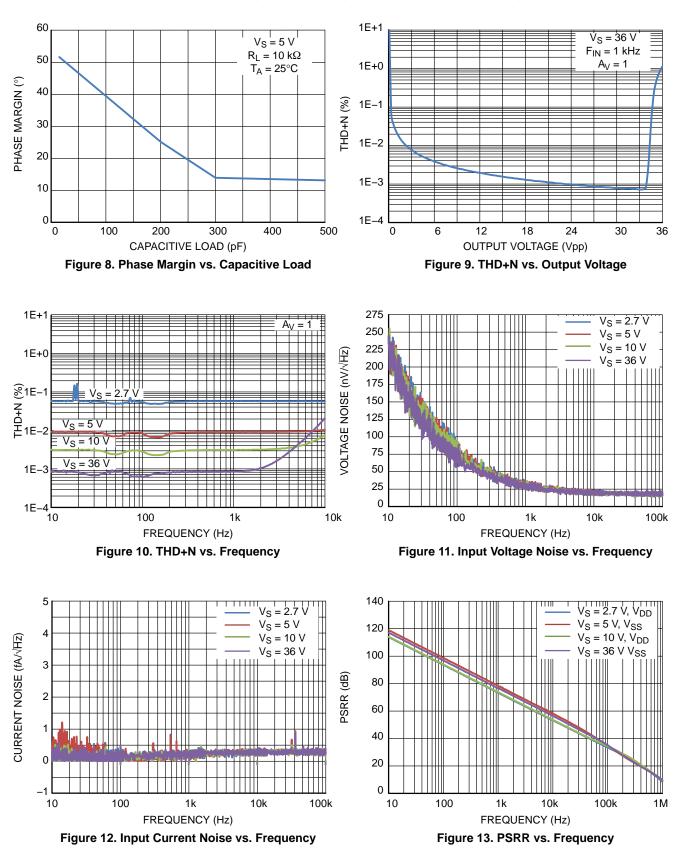
24. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

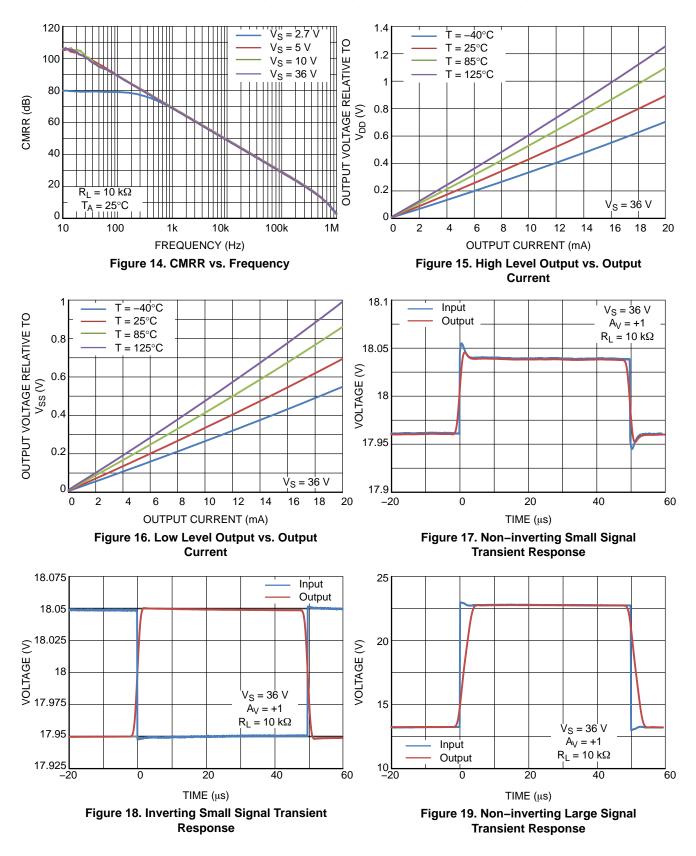
25. Effective for the NCx20074 until FPCN 20949 is implemented. After the FPCN is implemented, the NCx20074 condition will change to VCM = V<sub>SS</sub> + 0.2 V to V<sub>DD</sub> - 1.35 V.

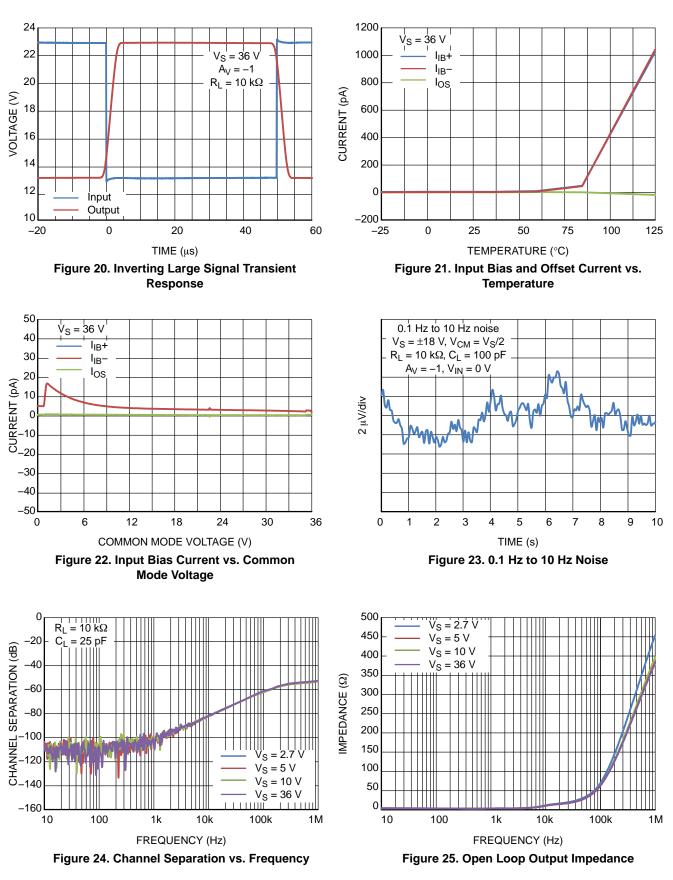
### ELECTRICAL CHARACTERISTICS AT $V_S = 36 V$

 $T_A = 25^{\circ}C$ ;  $R_L \ge 10 \text{ k}\Omega$ ;  $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$ . All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range,  $T_A = -40^{\circ}C$  to 125°C. (Notes 23, 24)


| Parameter                            | Symbol                                                      | Cond                                              | itions                 | Min | Тур   | Max  | Unit     |
|--------------------------------------|-------------------------------------------------------------|---------------------------------------------------|------------------------|-----|-------|------|----------|
| INPUT CHARACTERISTICS                |                                                             |                                                   |                        |     |       |      |          |
|                                      |                                                             | $V_{CM} = V_{SS} + 0.2 V to$                      |                        | 120 | 145   |      |          |
|                                      | 01/25                                                       | $V_{CM} = V_{SS} + 0.2 V$ to<br>$V_{DD} - 1.35 V$ | NCx20072               | 95  |       |      |          |
| Common Mode Rejection Ratio          | CMRR                                                        | $V_{CM} = V_{SS}$ to $V_{DD}$ –                   | NO 00074               | 120 | 145   |      | dB       |
|                                      |                                                             | 1.35 V (Note 25)                                  | NCx20074               | 95  |       |      |          |
| OUTPUT CHARACTERISTICS               |                                                             |                                                   |                        |     |       |      |          |
| Onen Leen Maltana Cain               | ٨                                                           |                                                   |                        |     | 120   |      |          |
| Open Loop Voltage Gain               | A <sub>VOL</sub>                                            |                                                   |                        | 88  |       |      | dB       |
| Output Output Oppohility (Nata 20)   |                                                             | Op amp sin                                        | Op amp sinking current |     | 50    |      |          |
| Output Current Capability (Note 26)  | Ι <sub>Ο</sub>                                              | Op amp sou                                        | rcing current          |     | 65    |      | mA       |
|                                      |                                                             |                                                   |                        |     | 0.074 | 0.10 |          |
| Output Voltage High                  | V <sub>OH</sub>                                             | Voltage output swing<br>from positive rail        | NCx20072               |     |       | 0.15 | V        |
|                                      |                                                             |                                                   | NCx20074               |     |       | 0.12 | <u> </u> |
| Output Voltage Low                   | M.                                                          | Voltago output swir                               | a from pogativo rail   |     | 0.065 | 0.3  | v        |
| Output Voltage Low                   | V <sub>OL</sub>                                             | voltage output swir                               | ng from negative rail  |     |       | 0.35 | v        |
| AC CHARACTERISTICS                   |                                                             |                                                   |                        |     |       |      |          |
| Unity Gain Bandwidth                 | UGBW                                                        | C <sub>L</sub> =                                  | 25 pF                  |     | 3.2   |      | MHz      |
| Slew Rate at Unity Gain              | SR                                                          | C <sub>L</sub> = 20 pF                            | $R_{L} = 2 k\Omega$    |     | 2.4   |      | V/µs     |
| Phase Margin                         | φm                                                          | C <sub>L</sub> =                                  | 25 pF                  |     | 50    |      | 0        |
| Gain Margin                          | A <sub>m</sub>                                              | C <sub>L</sub> =                                  | 25 pF                  |     | 14    |      | dB       |
| Cattling Time                        |                                                             | V <sub>O</sub> = 10 Vpp,                          | Settling time to 0.1%  |     | 3.2   |      |          |
| Settling Time                        | t <sub>S</sub>                                              | Gain = 1, $C_L$ = 20 pF                           | Settling time to 0.01% |     | 6.8   |      | μS       |
| NOISE CHARACTERISTICS                |                                                             |                                                   |                        |     |       |      |          |
| Total Harmonic Distortion plus Noise | THD+N                                                       | V <sub>IN</sub> = 28.5 Vpp,                       | f = 1 kHz, Av = 1      |     | 0.001 |      | %        |
| Input Referred Voltage Noise         | 0                                                           | f = 1                                             | kHz                    |     | 30    |      | nV/√Hz   |
| Input Releffed Voltage Noise         | e <sub>n</sub>                                              | f = 10                                            | ) kHz                  |     | 20    |      | 110/3112 |
| Input Referred Current Noise         | i <sub>n</sub>                                              | f = 1                                             | kHz                    |     | 0.25  |      | fA/√Hz   |
| SUPPLY CHARACTERISTICS               |                                                             |                                                   |                        |     |       |      |          |
| Dower Supply Dejection Datio         |                                                             | No.                                               | aad                    | 114 | 135   |      | ٩D       |
| Power Supply Rejection Ratio         | PSRR                                                        |                                                   | _oad                   | 100 |       |      | dB       |
|                                      |                                                             |                                                   | NCv20070               |     | 465   | 570  |          |
|                                      |                                                             | NCx20072                                          |                        |     | 700   |      |          |
| Power Supply Quiescent Current       | oply Quiescent Current I <sub>DD</sub> Per channel, no load |                                                   | NCv20074               |     | 465   | 600  | μΑ       |
|                                      |                                                             | NCx20074                                          |                        |     | 700   |      |          |


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


23. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.


24. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

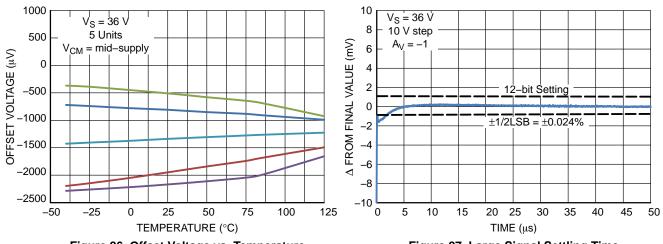
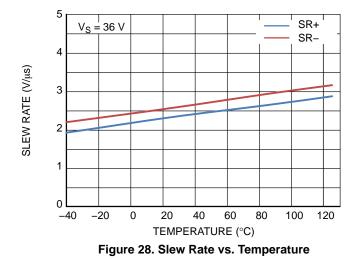
25. Effective for the NCx20074 until FPCN 20949 is implemented. After the FPCN is implemented, the NCx20074 condition will change to  $V_{CM} = V_{SS} + 0.2 \text{ V to } V_{DD} - 1.35 \text{ V}.$ 

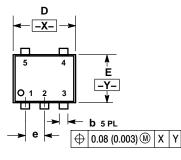


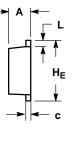






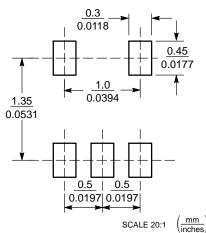


Figure 26. Offset Voltage vs. Temperature


Figure 27. Large Signal Settling Time



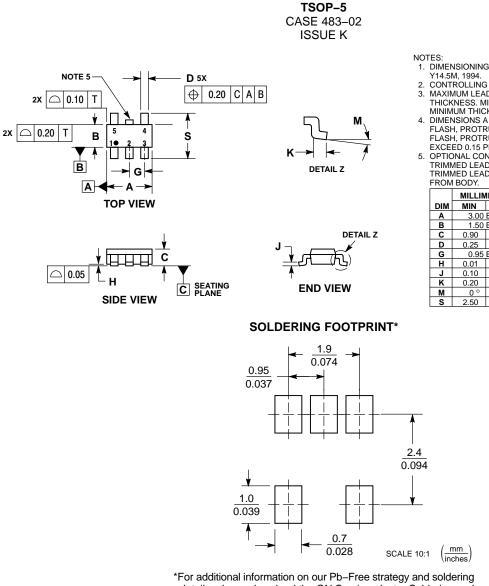
### PACKAGE DIMENSIONS

SOT-553, 5 LEAD CASE 463B ISSUE C






NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. INCHES


|     | MILLIMETERS |          |      | INCHES |           |       |  |
|-----|-------------|----------|------|--------|-----------|-------|--|
| DIM | MIN         | NOM      | MAX  | MIN    | NOM       | MAX   |  |
| Α   | 0.50        | 0.55     | 0.60 | 0.020  | 0.022     | 0.024 |  |
| b   | 0.17        | 0.22     | 0.27 | 0.007  | 0.009     | 0.011 |  |
| С   | 0.08        | 0.13     | 0.18 | 0.003  | 0.005     | 0.007 |  |
| D   | 1.55        | 1.60     | 1.65 | 0.061  | 0.063     | 0.065 |  |
| Е   | 1.15        | 1.20     | 1.25 | 0.045  | 0.047     | 0.049 |  |
| е   |             | 0.50 BSC |      |        | 0.020 BSC | )     |  |
| L   | 0.10        | 0.20     | 0.30 | 0.004  | 0.008     | 0.012 |  |
| HE  | 1.55        | 1.60     | 1.65 | 0.061  | 0.063     | 0.065 |  |

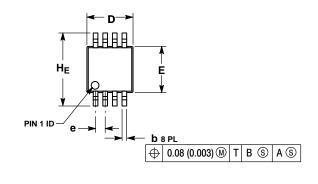
RECOMMENDED SOLDERING FOOTPRINT\*

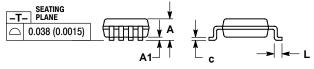


\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

### PACKAGE DIMENSIONS




details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

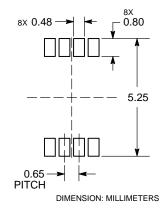

- CONTROLLING DIMENSION: MILLIMETERS.
  MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
  DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
  OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

| THOM BOBIN |        |             |  |  |  |  |  |
|------------|--------|-------------|--|--|--|--|--|
|            | MILLIN | MILLIMETERS |  |  |  |  |  |
| DIM        | MIN    | MAX         |  |  |  |  |  |
| Α          | 3.00   | BSC         |  |  |  |  |  |
| В          | 1.50   | BSC         |  |  |  |  |  |
| С          | 0.90   | 1.10        |  |  |  |  |  |
| D          | 0.25   | 0.50        |  |  |  |  |  |
| G          | 0.95   | BSC         |  |  |  |  |  |
| Н          | 0.01   | 0.10        |  |  |  |  |  |
| J          | 0.10   | 0.26        |  |  |  |  |  |
| ĸ          | 0.20   | 0.60        |  |  |  |  |  |
| М          | 0 °    | 10 °        |  |  |  |  |  |
| S          | 2.50   | 3.00        |  |  |  |  |  |

### PACKAGE DIMENSIONS

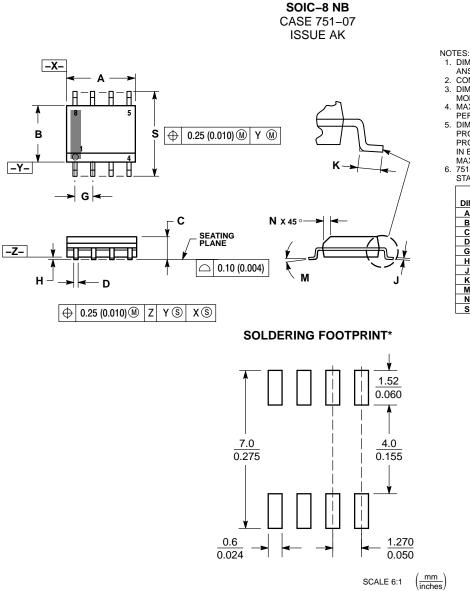
Micro8<sup>™</sup> CASE 846A-02 **ISSUE J** 






NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 1. 2.

- 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS ON GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
   DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
   846A-01 OBSOLETE, NEW STANDARD 846A-02.


|     | MILLIMETERS |          |      | INCHES    |       |       |
|-----|-------------|----------|------|-----------|-------|-------|
| DIM | MIN         | NOM      | MAX  | MIN       | NOM   | MAX   |
| Α   |             |          | 1.10 |           | 1     | 0.043 |
| A1  | 0.05        | 0.08     | 0.15 | 0.002     | 0.003 | 0.006 |
| b   | 0.25        | 0.33     | 0.40 | 0.010     | 0.013 | 0.016 |
| С   | 0.13        | 0.18     | 0.23 | 0.005     | 0.007 | 0.009 |
| D   | 2.90        | 3.00     | 3.10 | 0.114     | 0.118 | 0.122 |
| Е   | 2.90        | 3.00     | 3.10 | 0.114     | 0.118 | 0.122 |
| е   |             | 0.65 BSC |      | 0.026 BSC |       |       |
| L   | 0.40        | 0.55     | 0.70 | 0.016     | 0.021 | 0.028 |
| HE  | 4.75        | 4.90     | 5.05 | 0.187     | 0.193 | 0.199 |

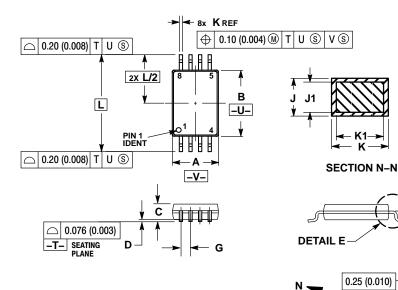
RECOMMENDED SOLDERING FOOTPRINT\*



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

### PACKAGE DIMENSIONS




\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- NOTES:
  DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  CONTROLLING DIMENSION: MILLIMETER.
  DIMENSION A AND B DO NOT INCLUDE MOLEON DEOTRICON
- MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 4. PER SIDE.
- PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

| 01/11 |        |        |       |       |  |  |  |  |  |
|-------|--------|--------|-------|-------|--|--|--|--|--|
|       | MILLIN | IETERS | INC   | HES   |  |  |  |  |  |
| DIM   | MIN    | MAX    | MIN   | MAX   |  |  |  |  |  |
| Α     | 4.80   | 5.00   | 0.189 | 0.197 |  |  |  |  |  |
| В     | 3.80   | 4.00   | 0.150 | 0.157 |  |  |  |  |  |
| С     | 1.35   | 1.75   | 0.053 | 0.069 |  |  |  |  |  |
| D     | 0.33   | 0.51   | 0.013 | 0.020 |  |  |  |  |  |
| G     | 1.27   | 7 BSC  | 0.05  | 0 BSC |  |  |  |  |  |
| Н     | 0.10   | 0.25   | 0.004 | 0.010 |  |  |  |  |  |
| J     | 0.19   | 0.25   | 0.007 | 0.010 |  |  |  |  |  |
| ĸ     | 0.40   | 1.27   | 0.016 | 0.050 |  |  |  |  |  |
| М     | 0 °    | 8 °    | 0 °   | 8 °   |  |  |  |  |  |
| N     | 0.25   | 0.50   | 0.010 | 0.020 |  |  |  |  |  |
| S     | 5.80   | 6.20   | 0.228 | 0.244 |  |  |  |  |  |

### PACKAGE DIMENSIONS

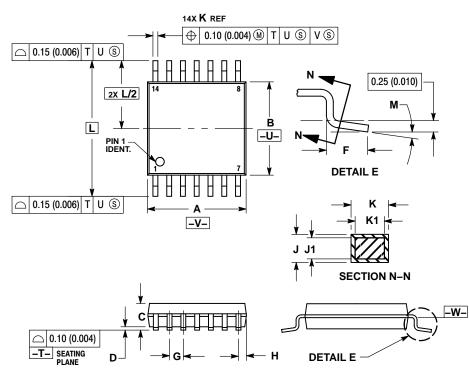




-W-

N

F DETAIL E

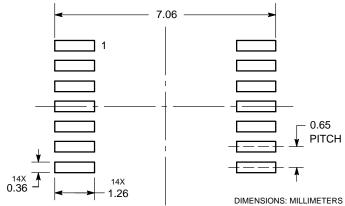

Ν

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH. OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- UNENSION B DOES NOT INCLUDE INTERLEAD
  FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
- PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

|     | MILLIN | IETERS | INC       | HES   |
|-----|--------|--------|-----------|-------|
| DIM | MIN    | MAX    | MIN       | MAX   |
| Α   | 2.90   | 3.10   | 0.114     | 0.122 |
| В   | 4.30   | 4.50   | 0.169     | 0.177 |
| С   |        | 1.10   |           | 0.043 |
| D   | 0.05   | 0.15   | 0.002     | 0.006 |
| F   | 0.50   | 0.70   | 0.020     | 0.028 |
| G   | 0.65   | BSC    | 0.026 BSC |       |
| J   | 0.09   | 0.20   | 0.004     | 0.008 |
| J1  | 0.09   | 0.16   | 0.004     | 0.006 |
| ĸ   | 0.19   | 0.30   | 0.007     | 0.012 |
| K1  | 0.19   | 0.25   | 0.007     | 0.010 |
| L   | 6.40   |        | 0.252     |       |
| М   | 0°     | 8°     | 0°        | 8 °   |

### PACKAGE DIMENSIONS

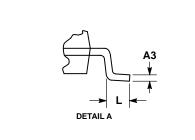
TSSOP-14 CASE 948G ISSUE B




NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
   CONTROLLING DIMENSION: MILLIMETER.
- CONTROLLING DIMENSION: MILLIMETER.
  DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT DUCTOR OF A DOALD TO THE DUCK OF T
- KOLD I LEAST OK OGO PER SIDE.
  L
  DIMENSION B DOES NOT INCLUDE
  INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION.
- NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

|     | MILLIN | IETERS | INC       | HES   |  |
|-----|--------|--------|-----------|-------|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |
| Α   | 4.90   | 5.10   | 0.193     | 0.200 |  |
| В   | 4.30   | 4.50   | 0.169     | 0.177 |  |
| С   |        | 1.20   |           | 0.047 |  |
| D   | 0.05   | 0.15   | 0.002     | 0.006 |  |
| F   | 0.50   | 0.75   | 0.020     | 0.030 |  |
| G   | 0.65   | BSC    | 0.026 BSC |       |  |
| Н   | 0.50   | 0.60   | 0.020     | 0.024 |  |
| J   | 0.09   | 0.20   | 0.004     | 0.008 |  |
| J1  | 0.09   | 0.16   | 0.004     | 0.006 |  |
| κ   | 0.19   | 0.30   | 0.007     | 0.012 |  |
| K1  | 0.19   | 0.25   | 0.007     | 0.010 |  |
| L   | 6.40   |        | 0.252     | 2 BSC |  |
| Μ   | 0 °    | 8 °    | 0 °       | 8 °   |  |


**SOLDERING FOOTPRINT\*** 



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



SOIC-14 NB CASE 751A-03 ISSUE L



h

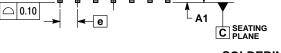
м

5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE MILLIMETERS INCHES DIM MIN MAX MIN MAX 1.35 1.75 0.054 0.068 Α A1 0.10 0.25 0.004 0.010 0.19 0.25 0.008 0.010 0.49 0.014 0.019 A3 b 0.35 D 8.55 8.75 0.337 0.344 4.00 0.150 0.157 Е 3.80 1 27 BSC 0.050 BSC е 5.806.200.2280.2440.250.500.0100.019 н h 0.40 1.25 0.016 0.049 Ω Ω

MOLD PROTRUSIONS

 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

4. DIMENSIONS D AND E DO NOT INCLUDE


CONTROLLING DIMENSION: MILLIMETERS.

3. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.

NOTES:

2

DETAIL A



D

┝┥┝

Н

BM

н

⊕ 0.25 M

С

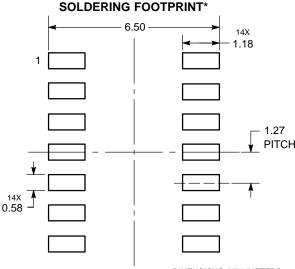
Δ

В

F

0.25 M C A S B S

HIa


Н

13X b

 $\oplus$ 

7

Н



DIMENSIONS: MILLIMETERS

\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hauthorized use, even if such claim alleges that ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regardi

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative