

2回路入り単電源用オペアンプ

概要

NJM2904 は、単電源動作が可能な高性能演算増幅器が 2 回路 集積されています。単電源でも 0V からの入力電圧から動作し電源 電圧も 3V ~ 32V と広範囲の動作が可能です。

電装に使用する場合、仕様に関し営業担当に問い合わせ願います。

外 形

NJM2904D

NJM2904M

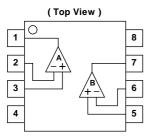
NJM2904E

NJM2904V

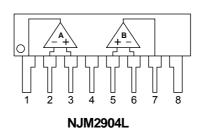
NJM2904RB1

NJM2904L

特徴

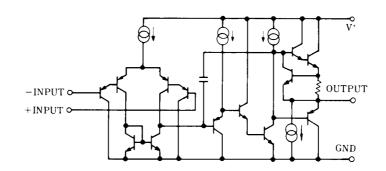

単電源

広動作電源電圧 (+3V~+32V) 低消費電流 (0.7mA typ.) スルーレート (0.5V/µs typ.)


バイポーラ構造

外形 DIP8, DMP8, EMP8, SSOP8, TVSP8, SIP8

端子配列


NJM2904D, NJM2904M NJM2904E, NJM2904V NJM2904RB1

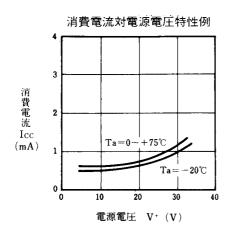
ピン配置

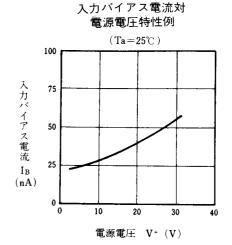
- 1. A OUTPUT
- 2. A -INPUT
- 3. A +INPUT
- 4. GND
- 5. B +INPUT
- 6. B -INPUT
- 7. B OUTPUT
- 8. V⁺

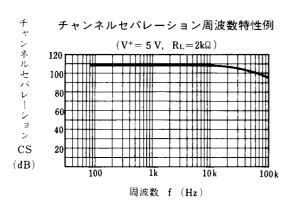
等価回路図 (下図の回路が2回路はいっています)

NJM2904

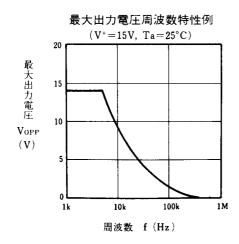
絶対最大定格 (Ta=25°C)

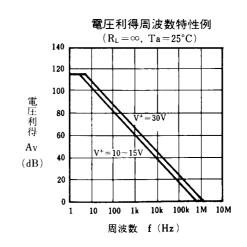

項目				記号	定格	単 位
電	源	電	圧	V+(V+/V-)	32(または± 16)	V
差	動入	力	電圧	V_{ID}	32	V
同	相入	力	電圧	V_{IC}	-0.3~+32	V
消	費	電	力	P_{D}	(D タイプ) 500 (M タイプ) 300 (E タイプ) 300 (V タイプ) 250 (RB1 タイプ) 320 (L タイプ) 800	mW
動	作	温	度	T_{opr}	-40 ~ + 85	°C
保	存	温	度	T_{stg}	-50 ~ + 125	°C

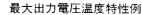

⁽注)出力 接地間の出力短絡は、電源電圧 15V 以下の場合に限って連続を保証します。

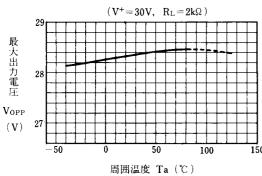

電気的特性 (V*=5V,Ta=25°C)

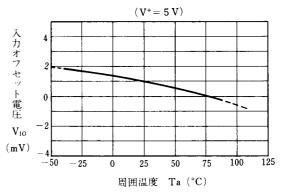
項目	記号	条件	最 小	標準	最 大	単 位
入力オフセット電圧	V _{IO}	$R_s=0\Omega$	-	2	7	mV
入力オフセット電流	I _{IO}		-	5	50	nA
入力バイアス電流	I _B		-	25	250	nA
電 圧 利 得	A_V	R _L ≥2kΩ	-	100	-	dB
最大出力電圧	V_{OPP}	$R_L=2k\Omega$	3.5	-	-	V
同相 入力電圧範囲	V_{ICM}		0~3.5	-	-	V
同相信号除去比	CMR		-	85	-	dB
電源電圧除去比	SVR		-	100	-	dB
出力流出電流	I _{SOURCE}	$V_{IN}^{+}=1V, V_{IN}^{-}=0V$	20	30	-	mA
出力流入電流	I _{SINK}	$V_{IN}^{+}=0V, V_{IN}^{-}=1V$	8	20	-	mA
チャンネルセパレーション	CS	f=1k~20kHz 入力換算	-	120	-	dB
消費電流	I_{∞}	R _L =∞	-	0.7	1.2	mA
ス ル ー レ ー ト	SR	V+/V-=±15V	-	0.5	-	V/µs
利 得 帯 域 幅 積	GB	V ⁺ /V ⁻ =±15V	-	0.6	-	MHz


特性例

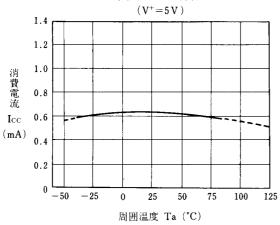


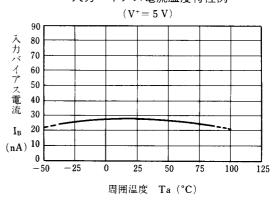


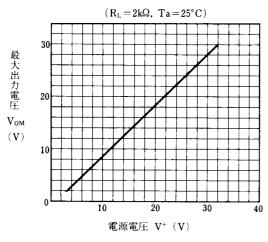


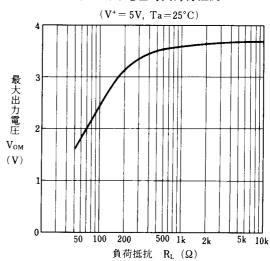


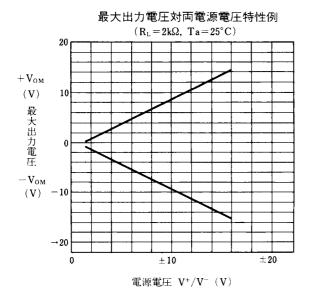
特性例

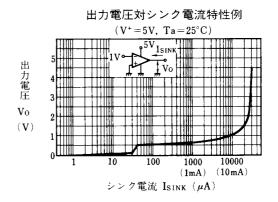


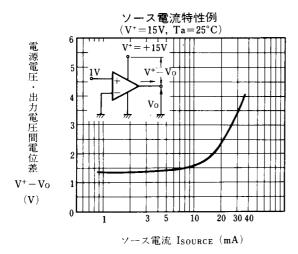

入力オフセット電圧温度特性例


消費電流温度特性例

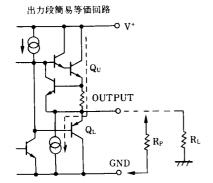

入力バイアス電流温度特性例


最大出力電圧対単電源電圧特性例

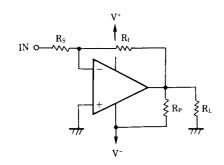


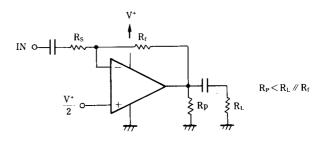

最大出力電圧対負荷特性例

特性例



使用上の注意


クロスオーバー歪の改善



NJM2904 は、デザイン上、静止状態 (無入力、無出力) において、 Q」は 定電流 (破線) でバイアスされていますが、 Q は OFF しています。

両電源モードで使用しますと、Q_LがONする瞬間クロスオーバー歪が発生します。オーディオ信号などの増幅器に使用した場合、歪のみならず、見かけ上周波数帯域が著しく狭くなる場合があります。

NJM2904 を両電源モードで使用する場合は、負荷電流(帰還電流分も含む)より大きい電流を常時 Q_j に流す様、出力と GND 端子間にプルダウン抵抗 R_p を接続して下さい。

<注意事項>

このデータブックの掲載内容の正確さには 万全を期しておりますが、掲載内容について 何らかの活がな保証を行うものではありません。とくに応用回路については、製品の代表 的な応用例を説明するためのものです。また、 工業所有権その他の権利の実施権の許諾を伴 うものではなく、第三者の権利を侵害しない ことを保証するものでもありません。