

VOLTAGE COMPARATOR

■ GENERAL DESCRIPTION

The NJM319 is precision high-speed dual comparator fabricated on a single monolithic chip. It is designed to operate over a wide range of supply voltages down to single 5V logic and ground. The uncommitted collector of the output stage makes the NJM319 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25mA.

■ PACKAGE OUTLINE

NJM319D

NJM319M

■ FEATURES

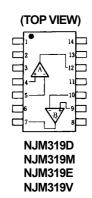
 Operating Voltage $(+5V\sim+36V)$

Single Supply Operation

• Response Time (80ns typ.)

 Output Current (25mA@Sink Current)

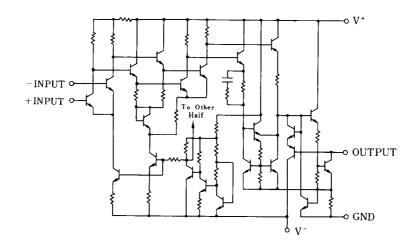
DIP14, DMP14, EMP4, SSOP14 Package Outline


Bipolar Technology

NJM319E

NJM319V

■ PIN CONFIGURATION



PIN FUNCTION

8. B GND 1. NC 2. NC 9. B +INPUT 3. A GND 10. B -INPUT 11. V[†] 4. A +INPUT 5. A -INPUT 12. A OUTPUT 6. V 13. NC

14. NC 7. B OUTPUT

■ EQUIVALENT CIRCUIT (1/2 Shown)

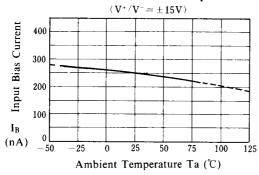
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

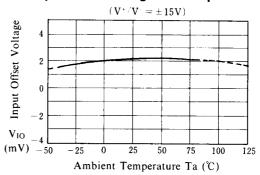
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	36	V
Input Voltage	V _{IC}	± 15 (note1)	V
Differential Input Voltage	V_{ID}	±5 (note2)	V
Power Dissipation	P _D	(DIP14) 500 (DMP14) 300 (EMP14) 300 (SSOP14) 300	mW
Output to Negative Supply Voltage	ΔV_{O-N}	36	V
GND to Negative Supply Voltage	ΔV_{G-N}	25	V
GND to Positive Supply Voltage	ΔV_{G-P}	18	V
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

 $(\ note1\)\ For\ supply\ voltage\ less\ than\ \pm 15V, the\ absolute\ maximum\ input\ voltage\ is\ equal\ to\ the\ supply\ voltage.$

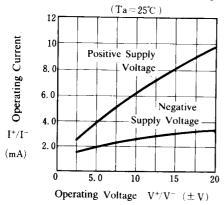
(note2) Do not apply voltage more than 5V at the point between +INPUT and -INPUT.

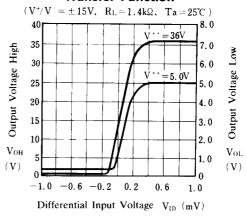

■ ELECTRICAL CHARACTERISTICS

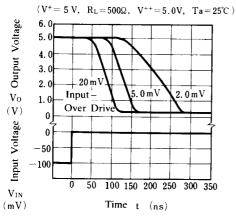
 $(Ta=25^{\circ}C,V^{+}/V=\pm 15V)$

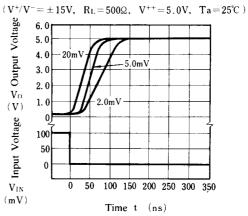

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _s ≤5kΩ	-	2.0	8.0	mV
Input Offset Current	I _{IO}		-	80	200	nA
Input Bias Current	I_{B}		-	250	1000	nA
Voltage Gain	A_{V}		78	92	-	dB
Response Time	t _R	V _{IN} :100mV Step Input 5mV Over Drive	-	80	-	ns
Saturation Voltage	V_{SAT}	V _{IN} ≤-10mV,I _{SINK} =25mA	-	0.75	1.5	V
Output Leakage Current	I _{LEAK}	V _{IN} ≥10mV,V=GND=0V,V _{OUT} =35V	-	0.2	10	μA
Positive Supply Current	I ⁺ 1	V ⁺ =5V,V ⁻ =0V		4.3	-	mA
Positive Supply Current	I ⁺ 2			8	12.5	mA
Negative Supply Current	Γ		-	3	5	mA

■ TYPICAL CHARACTERISTICS

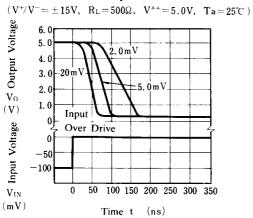

Input Bias Current vs. Temperature


Input Offset Voltage vs. Temperature

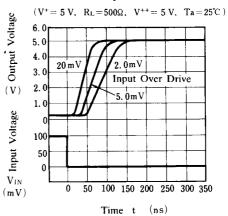

Operating Current vs. Operating Voltage


Transfer Function

Response Time for Various Input Overdrives

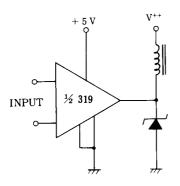


Response Time for Various Input Overdrives

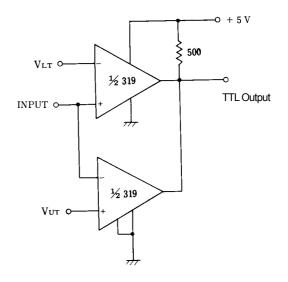


■ TYPICAL CHARACTERISTICS

Response Time for Various Input Overdrives



Response Time for Various Input Overdrives



■ TYPICAL APPLICATIONS

Relay Driver

Window Detector

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or premission of any right including the industrial rights.