TACT Switch™ 6.2mm Square with Middle-travel (Surface Mount Type)

SKRA Series

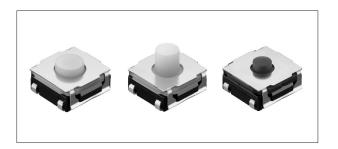
Detector

Push

Slide

Rotary

Encoders


Power Dual-in-line Package Type TACT Switch™ Custom-**Products**

Sharp Feeling

Feeling Snap-in Type

Surface **Mount Type** Radial Type

Rubber stem helps to achieve travel of 0.3 to 0.55mm & over travel.

Product Line

Product No.	Operating force	Operating direction	Travel (mm)	Rating (max.)	Rating (min.)	Operating life (5mA 5V DC)	Initial contact resistance	Stem color	Minimum order unit (pcs.)
SKRAAUE010	0.6N		0.35			5,000,000cycles		Green	
SKRAAKE010	2.45N		0.3	50mA 12V DC	10 <i>μ</i> A 1V DC	100,000cycles	100mΩ max.	White	3,000
SKRAALE010	3.92N	Vertical	0.35						
SKRAAME010	1.96N		0.5					Blue	1,400
SKRAAQE010	3.43N		0.55					ыие	1,400

Packing Specifications

Taping Unit:mm Reel size ø380

	Number	r of packag	es(pcs.)	B 1 1141	Tape	Export package	
Series	1 reel	1 case /Japan / export packing		Real width W(mm)	width (mm)	measurements (mm)	
SKRAAK SKRAAL SKRAAU	3,000	30,000	30,000	13.5	12	401×401×214	
SKRAAM SKRAAQ	1,400	11,200	11,200	17.5	16	401 ^ 401 ^ 214	

Dimensions	Unit:mm
Style	PC board land dimensions (Viewed from switch mounting face)
6.3 6.2	

- 1. Please place purchase orders per minimum order unit N (integer).
- 2. For ϕ 330mm diameter reel requirements, please contact us.

Circuit Diagram

Refer to P.334 for soldering conditions.

List of Varieties

Sharp Feeling Type

311	arp Fe	anny i	ype						1					
	Series		SKRN	SKSE	SPEE	SKSF	SKSG	SKRK	SKRP	SKQM	SKQY	SKRA	SKHM	
Photo			:0;	STATE OF THE PARTY			Or.							
	Туре						Su	rface mo	unt					
Features		Double action			Compact size Low-profile	High operation force Compact size	Compact size High operation force Low-profile Compact size		Middle travel	_				
dire Ver		tical	• -		_	•	•	•	•	•	•	•	•	
Operating direction	Horiz	ontal	_	•	•							_		
				5.9	4	2.8	3	3.9	4.2	6	6.1		6.2	
	nsions m)	D	□6	2.87	5	2.4	2.7	2.9	3.2	3.5	3.7	□6.2	6.5	
		Н	0.9	3	1.22	0.65	1.4	1.5	2.5	4.3	2.5	3.4	3.1	
foi	ation rce erage	1N 5N		relevant pa		•	1	\$	1	1	1	1	1	
Travel (mm)			See the relevant pages for espective product descriptions			0.12	0.13 0.2 0.25 See the relevant pages for respective product descriptions		0.25					
Grou	ınd terr	minal	•	_		_	- • -		•	_	•			
Operating temperature range		-30°C to	o +85℃	-10°C to +60°C	-30°C to +85°C									
Automotive use		_				0	_	•	•	•	0	_		
Insulation resistance			Ω min. / DC	10MΩ min. 100V DC			100M Ω min. 100V DC							
Electrical performance		tage oof	250V AC for 1min.		100V AC	for 1min.				250V AC	for 1min.			
	Vibra	ation	10 to 55 to 10Hz/min., the amplitude is 1.5mm for all the frequencies, in the 3 direction of X, Y and Z for 2hours respectively											
Durability	Lifet	time	Shall be in accordance with individual specifications.											
Envi	Cold $-30\pm2^{\circ}\text{C}$ for 96h $-40\pm2^{\circ}\text{C}$ for 96h $-30\pm2^{\circ}\text{C}$ for 96h													
Environmental performance	Dry	heat	80±2℃	for 96h	85±2℃ for 96h		80±2℃ for 96h							
ental nce	Damp	heat	60±2°0 95%RH	C, 90 to for 96h	40±2℃, 90 to 95%RH for 96h									
	Page		306	307	102	308	309	310	311	312	313	314	315	

W: Width. The most outer dimension excluding terminal portion.

D : Depth. The most outer dimension excluding terminal portion.

H: Height. The minimum dimension if there are variances.

- TACT Switch™ Soldering Conditions
 TACT Switch™ Cautions
 334

Notes

- 1. The automotive operating temperature range to be individually discussed upon request.
- 2. ○marks in "Available for automotive use" indicate that some of the series products can work at the operating temperature range from -40°C to +85°C, ●marks in "Available for automotive use" indicate that all of the series products can work at the operating temperature range from -40°C to +85°C.

Detector

Push

Slide

Rotary

Encoders

Power

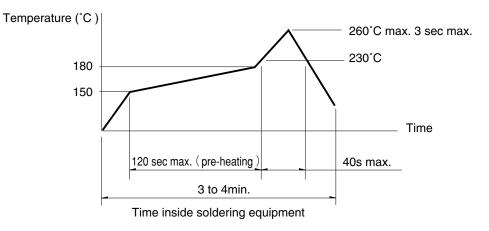
Dual-in-line Package Type

TACT Switch™

Custom-Products

Sharp Feeling Soft Feeling Snap-in Type Surface

Mount Type
Radial
Type


Soldering Conditions

Condition for Reflow

Available for Surface Mount Type.

- 1. Heating method: Double heating method with infrared heater.
- 2. Temperature measurement: Thermocouple 0.1 to 0.2ϕ CA (K) or CC (T) at solder joints (copper foil surface). A heat resistive tape should be used to fix thermocouple.

3. Temperature profile

Notes

- 1. The above temperature shall be measured of the top of switch. There are cases where the PC board's temperature greatly differs from that of the switch, depending on the material, size, thickness of PC boards and others. The above-stated conditions shall also apply to switch surface temperatures.
- 2. Soldering conditions differ depending on reflow soldering machines. Prior verification of soldering condition is highly recommended.

Conditions for Auto-dip Available for Snap-in Type and Radial Type (Except, SKHL, SKQJ, SKQK, SKEG series)

Items	Condition					
Flux built-up	Mounting surface should not be exposed to fluk					
Preheating temperature	Ambient temperature of the soldered surface of PC board. 100°C max.					
Preheating time	60s max.					
Soldering temperature	260°C max.					
Duration of immersion	5s max.					
Number of soldering	2times max.					

■ Manual Soldering (Except SKRT Series)

Items	Condition
Soldering temperature	350°Cmax.
Duration of soldering	3s max.
Capacity of soldering iron	60W max.

Sharp Feeling Soft Feeling Snap-in Type Surface Mount Type Radial Type

Detector

Push

Slide

Rotary

Encoders

Power

Dual-in-line Package Type

TACT Switch™

Custom-

Products

Notes

- Consult with us for availability of TACT Switch[™] washing.
- 2. Prevent flux penetration from the top side of the TACT Switch $^{\text{TM}}$.
- 3. Switch terminals and a PC board should not be coated with flux prior to soldering.
- 4. The second soldering should be done after the switch is stable with normal temperature.
- 5. Use the flux with a specific gravity of min 0.81. (EC-19S-8 by TAMURA Corporation, or equivalents.)