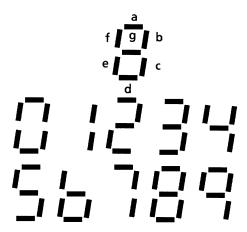
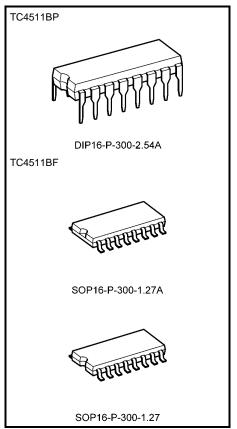

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC4511BP,TC4511BF


TC4511B BCD-to-Seven Segment Latch/Decoder/Driver

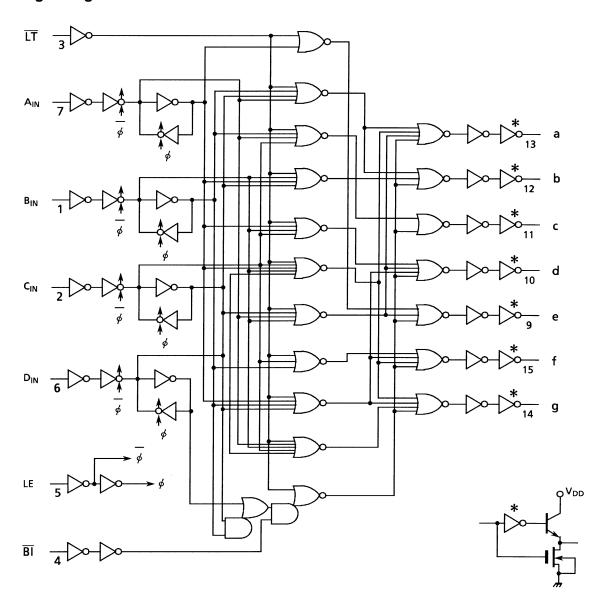

TC4511B is decoder which converts the input of BCD code into the 7 segment display element driving signal and the output has complementary connection of NPN bipolar transistor and N-channel MOS FET. Therefore, not only capability of directly driving cathode common type LED, this has capability of driving various display elements with simple interface circuits. \overline{LT} input and \overline{BI} input are to force all the outputs to be "H" (illuminated) and "L" (not illuminated) respectively regardless of BCD input. As the latch controlled by common LE input is inserted in each of four input lines, static display of dynamic information can be achieved. When an invalid BCD input, "10" or higher is applied, all the outputs become "L" (not illuminated).

Pin Assignment

Display

Weight

DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) SOP16-P-300-1.27 : 0.18 g (typ.)


Truth Table

Inputs					Outputs					Display				
LE	BI	ĪΤ	D	С	В	Α	а	b	С	d	е	f	g	Mode
*	*	L	*	*	*	*	Н	Н	Н	Н	Н	Н	Н	8
*	L	Н	*	*	*	*	L	L	L	L	L	L	L	Blank
L	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0
L	Н	Н	L	L	L	Н	L	Н	Н	L	L	L	L	1
L	Н	Н	L	L	Н	L	Н	Н	L	Н	Н	L	Н	2
L	Н	Н	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	3
L	Н	Н	L	Н	L	L	L	Н	Н	L	L	Н	Н	4
L	Н	Н	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	5
L	Н	Н	Ь	Ι	Н	L	L	L	Ι	Н	Ι	Ι	Ι	6
L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	L	L	L	7
L	Н	Н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
L	Н	Н	Н	L	L	Н	Н	Н	Н	L	L	Н	Н	9
L	Н	Н	Ι	Ш	Н	L	Ш	L	Ш	L	Ш	Ш	Ш	Blank
L	Н	Н	Н	L	Н	Н	L	L	L	L	L	L	L	Blank
L	Н	Н	Н	Н	*	*	L	L	L	L	L	L	L	Blank
Н	Н	Н	*	*	*	*	ΔΔ							

^{*:} Don't care

 $[\]Delta\Delta$: Depends upon the BCD code previously applied when LE "L"

Logic Diagram

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
DC supply voltage	V_{DD}	V _{SS} - 0.5~V _{SS} + 20	V
Input voltage	V _{IN}	V _{SS} - 0.5~V _{DD} + 0.5	V
Output voltage	V _{OUT}	V _{SS} - 0.5~V _{DD} + 0.5	V
DC input current	I _{IN}	±10	mA
Output high current	I _{OH}	–50	mA
Power dissipation	PD	300 (DIP)/180 (SOIC)	mW
Operating temperature range	T _{opr}	-40~85	°C
Storage temperature range	T _{stg}	-65~150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Recommended Operating Conditions (V_{SS} = 0 V) (Note)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
DC supply voltage	V_{DD}	_	3	_	18	V
Input voltage	V_{IN}		0		V_{DD}	V

Note: The recommended operating conditions are required to ensure the normal operation of the device.

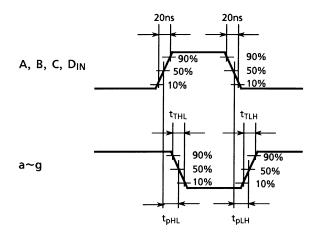
Unused inputs must be tied to either VCC or GND.

4

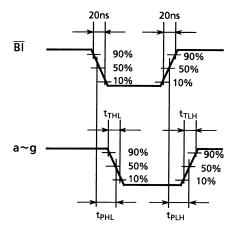
Static Electrical Characteristics ($V_{SS} = 0 V$)

TOSHIBA

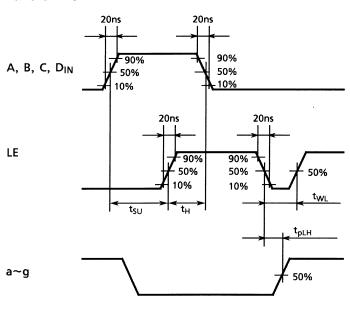
01		Sym-	Test Condition		-40°C		25°C			85°C		I India	
Charac	teristics	bol		V _{DD} (V)	Min	Max	Min	Тур.	Max	Min	Max	Unit	
				5	4.1	_	4.1	4.41	_	4.2	_		
High-level output voltage		V _{OH}	I _{OUT} < 1 μA	10	9.1	_	9.1	9.41	_	9.2	_	V	
			$V_{IN} = V_{SS}, V_{DD}$	15	14.1	_	14.1	14.41	_	14.2	_		
			1	5	_	0.05	_	0.00	0.05	_	0.05		
Low-level voltage	output	V _{OL}	I _{OUT} < 1 μA	10	_	0.05	_	0.00	0.05	_	0.05	V	
3-			$V_{IN} = V_{SS}, V_{DD}$	15	_	0.05	_	0.00	0.05	_	0.05		
			I _{OH} = 0 mA		4.10	_	4.10	4.41	_	4.20	_		
			$I_{OH} = 10 \text{ mA}$	5	3.90	_	3.90	4.25	_	3.90	_		
			$I_{OH} = 20 \text{ mA}$		3.55	_	3.55	4.19	_	3.30	_		
			$V_{IN} = V_{DD}, V_{SS}$										
			I _{OH} = 0 mA		9.10	_	9.10	9.41	_	9.20	_		
Outrot bin	de contra ana	.,	$I_{OH} = 10 \text{ mA}$	10	9.00	_	9.00	9.25	_	9.00	_		
Output hig	n voitage	Vон	I _{OH} = 20 mA		8.70	_	8.70	9.20	_	8.40	_	V	
			$V_{IN} = V_{DD}, V_{SS}$										
			I _{OH} = 0 mA		14.10	_	14.10	14.41		14.20	_		
			$I_{OH} = 10 \text{ mA}$	15	14.00	_	14.00	14.26	_	14.00	_		
			I _{OH} = 20 mA		13.75	_	13.75	14.21	_	13.50	_		
			$V_{IN} = V_{DD}, V_{SS}$										
			V _{OUT} = 0.4 V	5	0.61	_	0.51	1.2	_	0.42	_	mΛ	
0			V _{OUT} = 0.5 V	10	1.5	_	1.3	3.2	_	1.1	_		
Output low	v voitage	l _{OL}	V _{OUT} = 1.5 V	15	4.0	_	3.4	12.0	_	2.8	_	mA	
			$V_{IN} = V_{DD}, V_{SS}$								Max		
			V _{OUT} = 0.5 V, 4.5 V	5	3.5	_	3.5	2.75		3.5	_		
			V _{OUT} = 1.0 V, 9.0 V	10	7.0	_	7.0	5.50	_	7.0	_		
Input high	voltage	V _{IH}	V _{OUT} = 1.5 V, 13.5 V	15	11.0	_	11.0	8.25	_	11.0	_	V	
			I _{OUT} < 1 μA								Max		
			V _{OUT} = 0.5 V, 4.5 V	5	_	1.5	_	2.25	1.5	_	1.5		
		.,	V _{OUT} = 1.0 V, 9.0 V	10	_	3.0	_	4.5	3.0	_	3.0	.,	
Input low voltage		V_{IL}	V _{OUT} = 1.5 V, 13.5 V	15	_	4.0	_	6.75	4.0	_	4.0	V	
			I _{OUT} < 1 μA										
Input	"H" level	I _{IН}	V _{IH} = 18 V	18	_	0.3	_	10 ⁻⁵	0.3	_	1.0	^	
current	"L" level	I _{IL}	V _{IL} = 0 V	18	_	-0.3	_	-10 ⁻⁵	-0.3	_	-1.0	μΑ	
	-		V V	5	_	5	_	0.005	5	_	150		
Quiescent current	supply	I _{DD}	$V_{IN} = V_{SS}, V_{DD}$	10	_	10		0.010	10	_	300	μА	
current			(Note)	15	_	20	_	0.015	20	_	600		

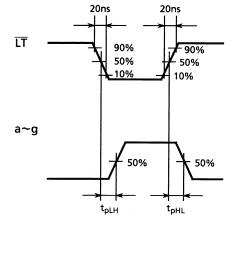

Note: All valid input combinations.

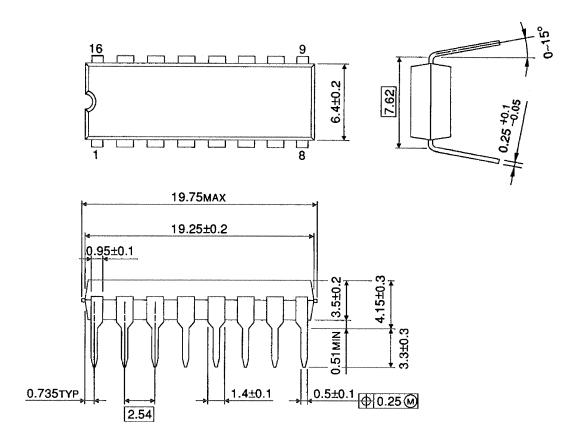
Dynamic Electrical Characteristics (Ta = 25°C, V_{SS} = 0 V, C_L = 50 pF, R_L = 10 k Ω)


		Test Condition					
Characteristics	Symbol		V _{DD} (V)	Min	Тур.	Max	Unit
			5	_	25	80	
Output transition time	t _{TLH}	_	10	_	15	60	ns
(low to high)			15	_	15	50	
0			5	_	70	200	
Output transition time	t _{THL}	_	10	_	35	100	ns
(high to low)			15	_	30	80	
Drop anotion dolou time			5	_	200	1040	
Propagation delay time (DATA-OUT)	t _{pLH}	_	10	_	90	420	ns
(DATA-OOT)			15	_	65	300	
Propagation delay time			5	_	230	1040	
(DATA-OUT)	t _{pHL}	_	10	_	110	420	ns
(DATA-001)			15	_	80	300	
Propagation delay time			5	_	75	640	
(BI -OUT)	t _{pLH}	_	10	_	45	260	ns
(5) (6)			15	_	35	200	
Propagation delay time			5	_	90	640	
(BI -OUT)	t _{pHL}	_	10	_	50	260	ns
(3. 33.)			15	_	45	45 200 60 300	
Propagation delay time			5	_	60	300	
(LT -OUT)	t _{pLH}	_	10	_	40	150	ns
,			15		35	100	
Propagation delay time			5	_	75	300	
(LT -OUT)	t _{pHL}	_	10	_	45	150	ns
. ,			15	_	35	100	
Propagation delay time			5	_	180	600	
(LE-OUT)	t _{pLH}	_	10	_	90	300	ns
			15		65	250	
Propagation delay time			5	_	230	600	
(LE-OUT)	t _{pHL}	_	10	_	110	300	ns
			15		85	250	
Min pulse time			5	_	40	300	
(LE)	t _{WL}	_	10	_	20	150	ns
			15		15	120	
Min set-up time	4		5	_	35 15	150 70	
(DATA-LE)	t _{SU}	_	10 15		15 10	40	ns
			5			0	
Min hold time	t _H	_	10			0	ns
(DATA-LE)	Ч	— -	15			0	113
Input capacitance	C _{IN}		1 .0		5	7.5	pF
при сараснансе	CIN				J	1.0	PΓ

Waveform for Measurement of Dynamic Characteristics

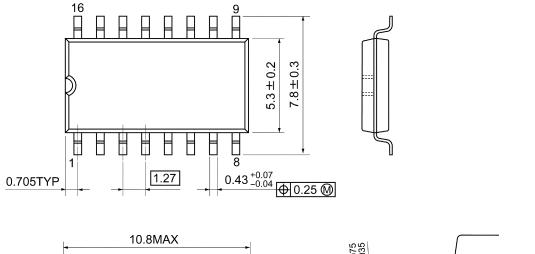

Waveform 1

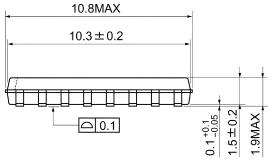

Waveform 2

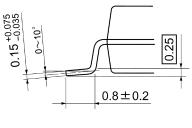

Waveform 3

Waveform 4

Package Dimensions

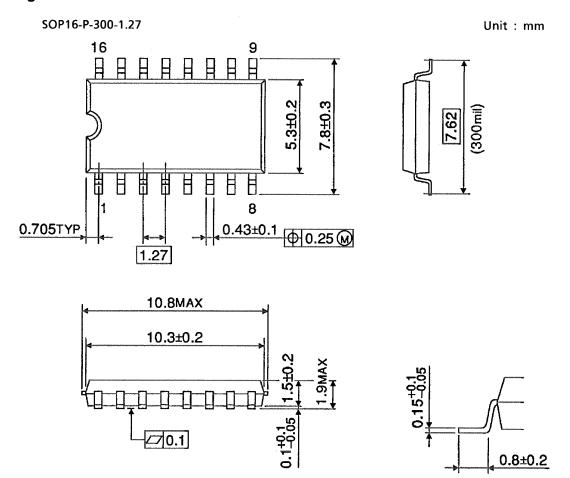



Weight: 1.00 g (typ.)


Package Dimensions

SOP16-P-300-1.27A

Unit: mm



Weight: 0.18 g (typ.)

Package Dimensions

Weight: 0.18 g (typ.)

Note: Lead (Pb)-Free Packages

DIP16-P-300-2.54A SOP16-P-300-1.27A

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_c
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E