TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC4520BP,TC4520BF,TC4520BFN

TC4520B Dual Binary Up Counter

TC4520B is up counters of 4 bit binary.
Since both of TC4520B contain two independent circuits of counters with the same functions in one package, counting or frequency division of two BCD digits or eight binary bits can be achived with one IC. The counters can be reset to " 0 " (Q0~Q3 = "L") by giving "H" level signal to RESET input regardless of other inputs.

The counting condition is changed by the rising edge of CLOCK input if ENABLE = "H" or by the falling edge of ENABLE if CLOCK = "L".

Pin Assignment

Note: xxxFN (JEDEC SOP) is not available in Japan.

DIP16-P-300-2.54A
TC4520BF

SOP16-P-300-1.27A

SOP16-P-300-1.27
TC4520BFN

SOL16-P-150-1.27
Weight
DIP16-P-300-2.54A $: 1.00 \mathrm{~g}$ (typ.)
SOP16-P-300-1.27A $: 0.18 \mathrm{~g}$ (typ.)
SOP16-P-300-1.27 : 0.18 g (typ.)
SOL16-P-150-1.27 : 0.13 g (typ.)

Logic Diagram

Timing Chart

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
DC supply voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-0.5 \sim \mathrm{~V}_{\mathrm{SS}}+20$	V
Input voltage	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\mathrm{SS}}-0.5 \sim \mathrm{~V}_{\mathrm{DD}}+0.5$	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{SS}}-0.5 \sim \mathrm{~V}_{\mathrm{DD}}+0.5$	V
DC input current	I_{IN}	± 10	mA
Power dissipation	P_{D}	$300(\mathrm{DIP}) / 180(\mathrm{SOIC})$	mW
Operating temperature range	$\mathrm{T}_{\mathrm{Opr}}$	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\mathrm{Stg}}$	$-65 \sim 150$	${ }^{\circ} \mathrm{C}$

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Recommended Operating Conditions ($\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$) (Note)

Characteristics	Symbol	Test Condition	Min	Typ.	Max
Unit					
DC supply voltage	V_{DD}	-	3	-	18
Input voltage	V_{IN}	-	0	-	V_{DD}

Note: The recommended operating conditions are required to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Static Electrical Characteristics (Vss $=0 \mathrm{~V}$)

Characteristics	Symbol	Test Condition		$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Unit
			$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ (\mathrm{~V}) \end{gathered}$	Min	Max	Min	Typ.	Max	Min	Max	
High-level output voltage	V_{OH}	$\left\lvert\, \begin{aligned} & \|\mathrm{IOUT}\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}} \end{aligned}\right.$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5.00 \\ 10.00 \\ 15.00 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	V
Low-level output voltage	V ${ }_{\text {OL }}$	$\left\lvert\, \begin{aligned} & \|\mathrm{IOUT}\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}} \end{aligned}\right.$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
Output high current	IOH	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OH}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OH}}=9.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OH}}=13.5 \mathrm{~V} \\ \hline \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{array}$	$\begin{gathered} 5 \\ 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} -0.61 \\ -2.5 \\ -1.5 \\ -4.0 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} -0.51 \\ -2.1 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{aligned} & -1.0 \\ & -4.0 \\ & -2.2 \\ & -9.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} -0.42 \\ -1.7 \\ -1.1 \\ -2.8 \end{gathered}$		mA
Output low current	IOL	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OL}}=1.5 \mathrm{~V} \\ \hline \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{array}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 0.61 \\ 1.5 \\ 4.0 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 1.2 \\ 3.2 \\ 12.0 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 0.42 \\ 1.1 \\ 2.8 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	mA
Input high voltage	V_{IH}	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V}, 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, 13.5 \mathrm{~V} \\ & \hline\left\|\mathrm{I}_{\text {OUT }}\right\|<1 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{gathered} 2.75 \\ 5.5 \\ 8.25 \end{gathered}$	- - -	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	- - -	V
Input low voltage	V_{IL}	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}, 4.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V}, 9.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}, 13.5 \mathrm{~V} \\ \hline\left\|\mathrm{I}_{\text {OUT }}\right\|<1 \mu \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 2.25 \\ 4.5 \\ 6.75 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V
Input \quad "H" level	I_{H}	$\mathrm{V}_{\mathrm{IH}}=18 \mathrm{~V}$	18	-	0.1	-	10^{-5}	0.1	-	1.0	
current "L" level	IIL	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	18	-	-0.1	-	-10^{-5}	-0.1	-	-1.0	
Quiescent supply current	IDD	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}}$ (Note)	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	— —	$\begin{gathered} 5 \\ 10 \\ 20 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 20 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$

Note: All valid input combinations.

Dynamic Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$)

Characteristics	Symbol	Test Condition		Min	Typ.	Max	Unit		
			$V_{\text {DD }}(\mathrm{V})$						
Output transition time (low to high)	${ }_{\text {t }}^{\text {tin }}$	-	5	-	70	200	ns		
			10	-	35	100			
			15	-	30	80			
Output transition time (high to low)	${ }_{\text {t }}^{\text {THL }}$	-	5	-	70	200	ns		
			10	-	35	100			
			15	-	30	80			
Propagation delay time (CLOCK, ENABLE-Q)	$\begin{aligned} & \mathrm{tpLH}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	-	5	-	160	560	ns		
			10	-	75	230			
				-	60				
Propagation delay time (RESET-Q)	$\mathrm{t}_{\mathrm{pHL}}$	-	5	-	110	560	ns		
			10	-	55	230			
			15	-	40	160			
Max clock frequency	${ }^{\text {t }}$ L	-	5	1.5	6	-	MHz		
			10	3	14	-			
			15	4	18	-			
Max clock input rise/fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{r} C L} \\ & \mathrm{t}_{\mathrm{f} C \mathrm{~L}} \end{aligned}$	-	5	No limit			$\mu \mathrm{S}$		
			10						
			15						
Max input rise/fall time (ENABLE)	t_{f}	-	5	No limit			$\mu \mathrm{S}$		
			10						
			15						
Min clock pulse width	tw	-	5	-	30	200	ns		
			10	-	15	100			
			15	-	10	70			
Min pulse width (ENABLE)	tw	-	5	-	35	250	ns		
			10	-	20	110			
			15	-	15	80			
Min pulse width (RESET)	twh	-	5	-	45	250	ns		
			10	-	20	110			
			15	-	15	80			
Min removal time (RESET-CLOCK, ENABLE)	trem	-	5	-	-	0	ns		
			10	-	-	0			
					-				
Input capacitance	$\mathrm{Cl}_{\text {IN }}$	-		-	5	7.5	pF		

Waveforms for Measurement of Dynamic Characteristics

Waveform 1

Waveform 2

Application Circuit

(1) Ripple carry counter

(2) Ripple carry counter

Package Dimensions

DIP16-P-300-2.54A

Unit : mm

Weight: 1.00 g (typ.)

Package Dimensions

SOP16-P-300-1.27A

Unit: mm

Weight: 0.18 g (typ.)

Package Dimensions

Unit : mm

Weight: 0.18 g (typ.)

Package Dimensions (Note)

SOL16-P-150-1.27

Note: This package is not available in Japan.
Weight: 0.13 g (typ.)

Note: Lead (Pb)-Free Packages
DIP16-P-300-2.54A SOP16-P-300-1.27A SOL16-P-150-1.27

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

