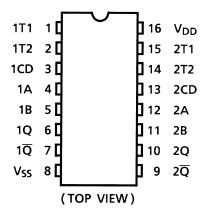
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

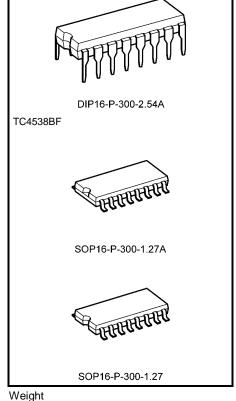
TC4538BP,TC4538BF

TC4538BP/TC4538BF Dual Precision


Retriggerable/Resettable Monostable Multivibrator

The TC4538BP/BF is the retriggerable/resettable monostable multivibrator and the trigger operation can be made at either the leading or trailing edge by 2 inputs of A and B. Since the output monostable pulse width is decided by time constant of the external resistor (Rx) and the external capacitor (Cx), it becomes possible to set a broad range of output pulse widths.

Features


• $t_{WOUT} = 10 \text{ ms} \pm 5\% \text{ (at } R_X = 100 \text{ k}\Omega \text{ CX} = 0.1 \text{ }\mu\text{F}, \text{ VDD} = 10 \text{ V)}$

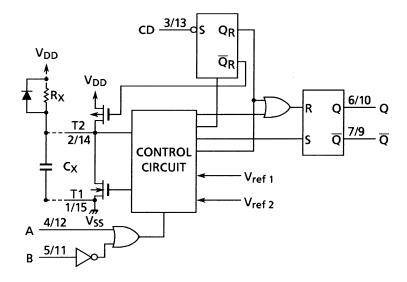
Pin Assignment

Truth Table (Note)

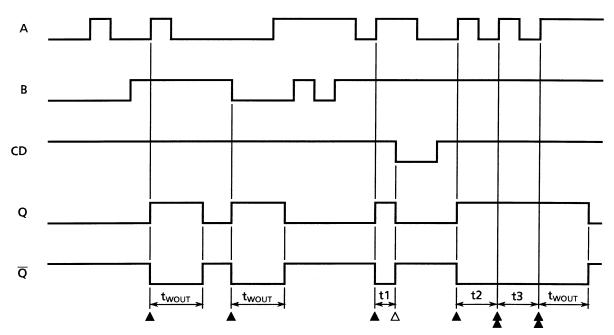
Inputs			Out	puts	Note		
Α	В	CD	Q	IØ	Note		
\Box	Н	Н	П	П	Output Enable		
\Box	L	Н	L	Н	Inhibit		
Н	7	Н	L	Н	Inhibit		
L	7_	Н	Л	Ţ	Output Enable		
*	*	L	L	Н	Inhibit		

TC4538BP

DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) SOP16-P-300-1.27 : 0.18 g (typ.)


*: Don't care

Note: In the case of using only one circuit, CD should be tied to GND, T_2 , T_1 , Q, \overline{Q} should be tied to OPEN, and the other inputs should be tied to V_{CC} or GND.


2006-02-01

Logic Diagram

1/2 TC4538BP/BF

Timing Chart

▲: TRIGGER

★: RETRIGGER

∆: RESET

 $t_{WOUT} = C_{X} \cdot R_{X}$

2

 $t1 \cdot t2 \cdot t3$; $t1 \cdot t2 \cdot t3 < t_{WOUT}$

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
DC supply voltage	V_{DD}	V_{SS} – 0.5 to V_{SS} + 20	V
Input voltage	V _{IN}	$V_{SS} - 0.5$ to $V_{DD} + 0.5$	٧
Output voltage	V _{OUT}	$V_{SS} - 0.5$ to $V_{DD} + 0.5$	٧
DC input current	I _{IN}	±10	mA
Power dissipation	P _D	300 (DIP)/180 (SOIC)	mW
Operating temperature range	T _{opr}	-40 to 85	°C
Storage temperature range	T _{stg}	-65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Recommended Operating Conditions (V_{SS} = 0 V) (Note)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
DC supply voltage	V_{DD}	_	3	_	18	V
Input voltage	V _{IN}	_	0	_	V_{DD}	٧
External resistance	R _X	_	5	_	1000	kΩ
External capacitance	CX		No limits		μF	

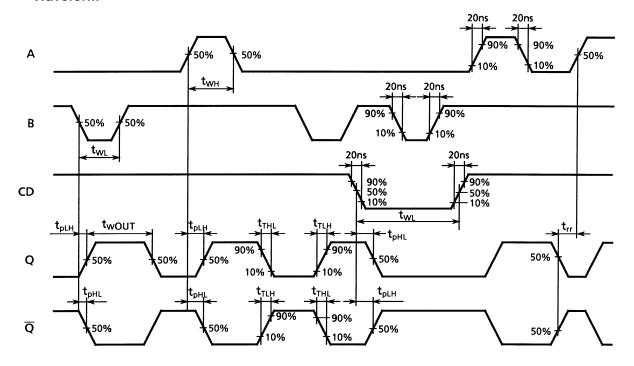
Note: The recommended operating conditions are required to ensure the normal operation of the device.
Unused inputs must be tied to either VCC or GND.

Static Electrical Characteristics ($V_{SS} = 0 V$)

Characteristics		Sym-	Test Condition		-40°C		25°C			85°C			
Charac	teristics	bol		V _{DD} (V)	Min	Max	Min	Тур.	Max	Min	Max	Unit	
High-level output voltage		V _{OH}	I _{OUT} < 1 μΑ	5	4.95	_	4.95	5.00	_	4.95	_		
				10	9.95	_	9.95	10.00	_	9.95	_	V	
			$V_{IN} = V_{SS}, V_{DD}$	15	14.95		14.95	15.00	_	14.95			
			I _{OUT} < 1 μA	5	_	0.05		0.00	0.05	_	0.05		
Low-level voltage	output	V_{OL}	$V_{IN} = V_{SS}, V_{DD}$	10	_	0.05	_	0.00	0.05	_	0.05	V	
			VIIV — V 55, V DD	15	_	0.05	_	0.00	0.05	_	0.05		
			$V_{OH} = 4.6 \text{ V}$	5	-0.61	_	-0.51	-1.0	_	-0.42	_		
			$V_{OH} = 2.5 \text{ V}$	5	-2.50	_	-2.10	-4.0	_	-1.70	_	mA	
Output hig	gh current	I _{OH}	V _{OH} = 9.5 V	10	-1.50	_	-1.30	-2.2	_	-1.10	_		
			V _{OH} = 13.5 V	15	-4.00	_	-3.40	-9.0	_	-2.80	_		
			$V_{IN} = V_{SS}, V_{DD}$										
		l _{OL}	$V_{OL} = 0.4 V$	5	0.61	_	0.51	1.5	_	0.42	_	mA	
Output lov	w current		$V_{OL} = 0.5 V$	10	1.50	_	1.30	3.8	_	1.10	_		
Output lov	v current		V _{OL} = 1.5 V	15	4.00	_	3.40	15.0	_	2.80	_		
			$V_{IN}=V_{SS},V_{DD}$										
		V _{IH}	$V_{OUT} = 0.5 \text{ V}, 4.5 \text{ V}$	5	3.5	_	3.5	2.75	_	3.5	_	V	
Input high	voltage		$V_{OUT} = 1.0 \text{ V}, 9.0 \text{ V}$	10	7.0	_	7.0	5.50	_	7.0	_		
input nign	vollage		V _{OUT} = 1.5 V, 13.5 V	15	11.0	_	11.0	8.25	_	11.0	_		
			I _{OUT} < 1 μA										
			$V_{OUT} = 0.5 \text{ V}, 4.5 \text{ V}$	5	_	1.5		2.25	1.5	_	1.5		
Input low y	Input low voltage		$V_{OUT} = 1.0 \text{ V}, 9.0 \text{ V}$	10	_	3.0		4.50	3.0	_	3.0	V	
input low			V _{OUT} = 1.5 V, 13.5 V	15	_	4.0	_	6.75	4.0	_	4.0		
			$ I_{OUT} < 1 \mu A$										
Input	"H" level	I _{IH}	V _{IH} = 18 V	18	_	0.1	_	10 ⁻⁵	0.1	_	1.0	μА	
current	"L" level	I _{IL}	$V_{IL} = 0 V$	18	_	-0.1		-10^{-5}	-0.1	_	-1.0	μΑ	
			Mar. Maa M	5	_	5		0.005	5	_	150		
Quiescent current	Quiescent supply current		$V_{IN} = V_{SS}, V_{DD}$ (Note)	10	_	10	_	0.010	10	_	300	μА	
			(14016)	15	—	20		0.015	20	_	600		

4

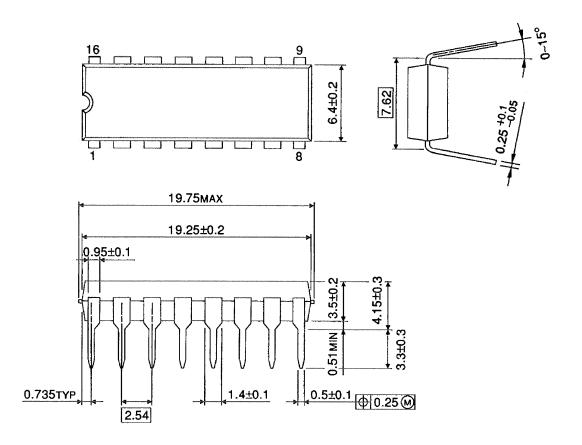
Note: All valid input combinations.


Dynamic Electrical Characteristics (Ta = 25°C, V_{SS} = 0 V, C_L = 50 pF)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit	
Criaracteristics	Symbol		V _{DD} (V)	IVIIII	τyp.	IVIAX	Offit
Output transition time			5	_	80	200	
(low to high)	t _{TLH}	_	10	_	50	100	ns
(low to flight)			15	_	40	80	
Output transition time			5	_	80	200	
(high to low)	t _{THL}	_	10	_	50	100	ns
(ingilite ion)			15	_	40	80	
Propagation delay time	t _{pLH}		5	_	380	760	
$(A, B-Q, \overline{Q})$	t _{pHL}	_	10	_	150	300	ns
(,, = \),	чрпс		15	_	100	220	
Propagation delay time	t _{pLH}		5	_	280	560	
$(CD-Q, \overline{Q})$	t _{pHL}	_	10	_	110	250	ns
	PILE		15	_	75	190	
Min input pulse width	t _{WH}		5	_	60	120	
(A, B)	t _{WL}	_	10	_	30	60	ns
			15		25	50	
Min pulse width			5	_	95	190	
(CD)	t _{WL}	_	10	_	45	90	ns
			15		35	70	
	t _{rr}		5	_	0	_	
Min retrigger time		_	10	_	0	_	ns
			15		0	_	
		$R_X = 100 \text{ k}\Omega$	5 10	_	206 204	_	
		$C_X = 0.002 \ \mu F$	15	_	204	_	μS
			5	9.30	9.95	10.40	
Output pulse width	t _{wOUT}	$R_X = 100 \text{ k}\Omega$	10	9.50	10.00	10.40	ms
Culput pulse width	^L WOUT	$C_X = 0.1 \mu F$	15	9.55	10.05	10.65	1113
			5		0.98		
		$R_X = 100 \text{ k}\Omega$	10	_	1.00	_	s
		$C_X = 10 \mu F$	15	_	1.01	_	
	n Δt_{wOUT}		5	_	±1	_	
Pulse width match between circuits in		$\frac{t_{WOUT}(Q2) - t_{W}(Q1)}{t_{WOUT}(Q1)} \times 100$	10	_	±1	_	%
the same package		τ _{wOUT} (Q1)	15	_	±1	_	
Input capacitance	C _{IN}	_		_	5	7.5	pF

5 2006-02-01

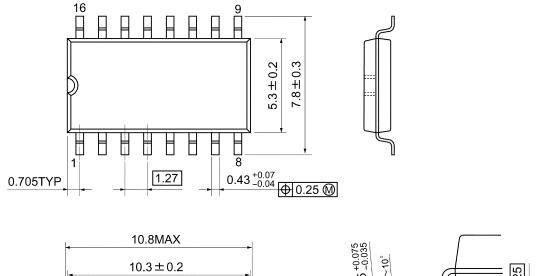
Waveform for Measurement of Dynamic Characteristics

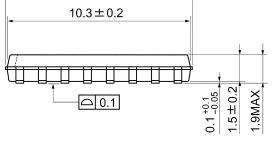

Waveform

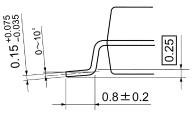
6 2006-02-01

Package Dimensions

TOSHIBA

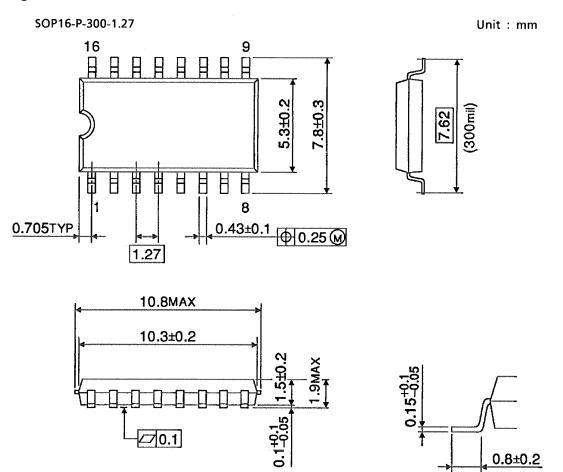

Weight: 1.00 g (typ.)


7 2006-02-01


Package Dimensions

SOP16-P-300-1.27A

Unit: mm



Weight: 0.18 g (typ.)

Package Dimensions

Weight: 0.18 g (typ.)

Note: Lead (Pb)-Free Packages

DIP16-P-300-2.54A SOP16-P-300-1.27A

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
- conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A

 The TOSHIBA products listed in this document are intended for usage in general electronics applications
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others. 021023_C

10

• The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E