TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74AC161P,TC74AC161F,TC74AC161FN,TC74AC161FT TC74AC163P,TC74AC163F,TC74AC163FN,TC74AC163FT

Synchronous Presettable 4-Bit Binary Counter
TC74AC161P/F/FN/FT Asynchronous Clear
TC74AC163P/F/FN/FT Synchronous Clear

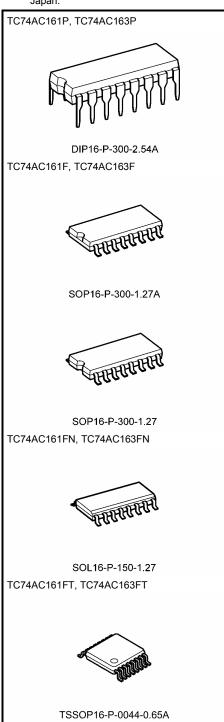
The TC74AC161 and 163 are advanced high speed CMOS SYNCHRONOUS PRESETTABLE COUNTERs fabricated with silicon gate and double-layer metal wiring C²MOS technology.

They achieve the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The CK input is active on the rising edge. Both \overline{LOAD} and \overline{CLR} inputs are active on low logic level.

Presetting of these IC's is synchronous to the rising edge of CK. The clear function of the TC74AC163 is synchronous to CK, while the TC74AC161 are cleared asynchronously.

Two enable inputs (ENP and ENT) and CARRY OUTPUT are provided to enable easy cascading of counters, which facilitates easy implementation of n-bit counters without using external gates.

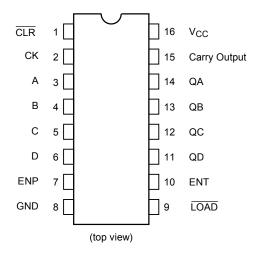

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

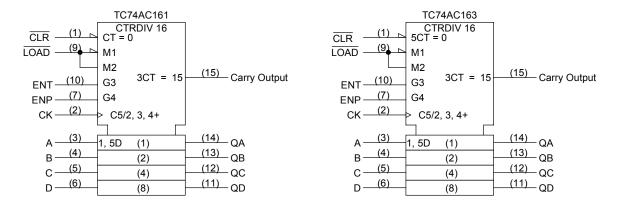
- High speed: $f_{max} = 170 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: ICC = $8 \mu A$ (max) at Ta = 25°C
- High noise immunity: VNIH = VNIL = 28% VCC (min)
- Symmetrical output impedance: |IOH| = IOL = 24 mA (min)

 Capability of driving 50 Ω transmission lines.
- Balanced propagation delays: tpLH ≃ tpHL
- Wide operating voltage range: VCC (opr) = 2 to 5.5 V
- Pin and function compatible with 74F161/163

Note: xxxFN (JEDEC SOP) is not available in Japan.



Weight

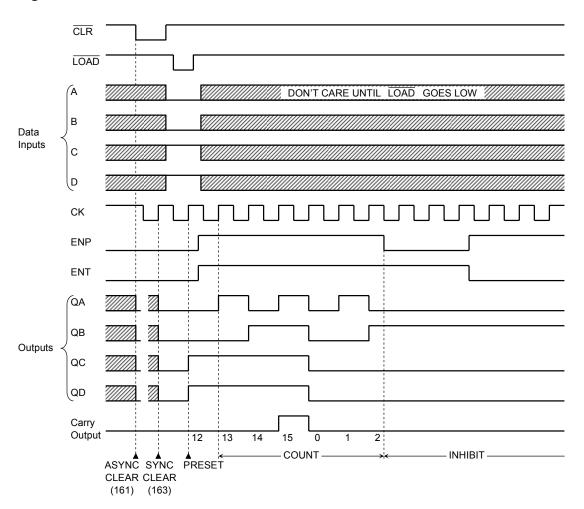

DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) SOP16-P-300-1.27 : 0.18 g (typ.) SOL16-P-150-1.27 : 0.13 g (typ.) TSSOP16-P-0044-0.65A : 0.06 g (typ.)

Pin Assignment

IEC Logic Symbol

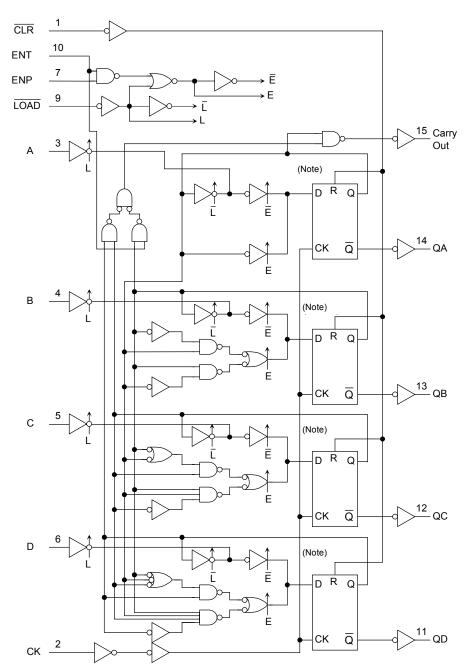
Truth Table (Note)

	Inputs						Outputs					
CLR (161)	CLR (163)	LOAD	ENP	ENT	CK (161)	CK (163)	QA	QB	QC	QD	Function	
L	L	Х	Х	Х	Х		L L L L			L	Reset to "0"	
Н	Н	L	Х	Х			A B C D			D	Preset Data	
Н	Н	Н	Х	L			No Change				No Count	
Н	Н	Н	L	Х				No CI	No Count			
Н	Н	Н	Н	Н			Count Up				Count	
Н	Х	Х	Х	Х	\neg	\rightarrow	No Change				No Count	


Note: X: Don't care

A, B, C, D: Logic level of data inputs

Carry: Carry = ENT·QA·QB·QC·QD



Timing Chart

System Diagram

Note: Truth table of internal F/F

	TC	C74AC1	61		TC74AC163						
D	CK	R	Q	Q	D	CK	R	Q	ΙQ		
Х	Х	Н	L	Н	Х		Н	L	Н		
L		L	L	Н	L		L	L	Н		
Н		L	Н	L	Н		L	Н	L		
Х	\neg	L	No CI	nange	Х	\Box	L	No CI	nange		

X: Don't care

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	−0.5 to 7.0	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	lok	±50	mA
DC output current	I _{OUT}	±50	mA
DC V _{CC} /ground current	I _{CC}	±125	mA
Power dissipation	P _D	500 (DIP) (Note 2)/180 (SOP/TSSOP)	mW
Storage temperature	T _{stg}	−65 to 150	°C

Note1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C should be applied up to 300 mW.

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0 to 5.5	V	
Input voltage	V _{IN}	0 to V _{CC}	V	
Output voltage	V _{OUT}	0 to V _{CC}	V	
Operating temperature	T _{opr}	−40 to 85	°C	
Input rise and fall time	dt/dV	0 to 100 (V_{CC} = 3.3 ± 0.3 V)	ns/V	
input rise and fail time	ui/u v	0 to 20 ($V_{CC} = 5 \pm 0.5 \text{ V}$)	115/ V	

Note: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol					7	Ta = 25°C			Ta = -40 to 85°C	
Sharadionolide	Cymbol				V _{CC} (V)	Min	Тур.	Max	Min	Max	Unit
					2.0	1.50	_	_	1.50	_	
High-level input voltage	V_{IH}		_		3.0	2.10	_	_	2.10	_	V
					5.5	3.85	_	_	3.85	_	
					2.0	_	_	0.50	_	0.50	
Low-level input voltage	V _{IL}		_		3.0	_	_	0.90	_	0.90	V
					5.5	_	_	1.65	_	1.65	
					2.0	1.9	2.0	_	1.9	_	
	Voн		I _{OH} = -50 μA		3.0	2.9	2.9 3.0 — 2.9	_			
High-level output		V _{IN} = V _{IH} or			4.5	4.4	4.5	_	4.4	-	V
voltage		VIL	I _{OH} = -4 mA		3.0	2.58	_	_	2.48	_	
			I _{OH} = −24 mA		4.5	3.94	_	_	3.80	_	
			I _{OH} = -75 mA	(Note)	5.5	_	_	_	3.85	_	
					2.0	_	0.0	0.1	_	0.1	
			I _{OL} = 50 μA		3.0	_	0.0	0.1	_	0.1	
Low-level output	V _{OL}	V _{IN} = V _{IH} or			4.5	_	0.0	0.1	_	0.1	V
voltage	VOL.	VIL	I _{OL} = 12 mA		3.0	_	_	0.36	_	0.44	·
			I _{OL} = 24 mA		4.5	_	_	0.36	_	0.44	
			I _{OL} = 75 mA	(Note)	5.5	_	_	_	_	1.65	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		5.5	-	_	±0.1	_	±1.0	μΑ	
Quiescent supply current	I _{CC}	V _{IN} = V _C	_C or GND		5.5	_	_	8.0	_	80.0	μΑ

Note: This spec indicates the capability of driving 50 Ω transmission lines.

One output should be tested at a time for a 10 ms maximum duration.

Timing Requirements (input: $t_r = t_f = 3 \text{ ns}$)

Characteristics		Symbol	Test Condition	Ta = 25°C	Ta = -40 to 85°C	Unit		
				V _{CC} (V)	Limit Limit			
Minimum pulse width		t _{w (L)}	Figure 1	3.3 ± 0.3	7.0	7.0	20	
(CK)		t _{w (H)}	Figure 1	5.0 ± 0.5	5.0	5.0	ns	
Minimum pulse width			Figure 4	3.3 ± 0.3	7.0	7.0		
(CLR)	(Note 1)	t _{w (L)}	Figure 4	5.0 ± 0.5	5.0	5.0	ns	
Minimum set-up time			Figure 2. Figure 2	3.3 ± 0.3	11.0	13.0		
(LOAD , ENP, ENT)		t _s	Figure 2, Figure 3	5.0 ± 0.5	7.0	7.0	ns	
Minimum set-up time			Figure 2	3.3 ± 0.3	8.0	8.0		
(A, B, C, D)		t _s	Figure 2	5.0 ± 0.5	4.0	4.0	ns	
Minimum set-up time			Figure 5	3.3 ± 0.3	6.0	6.0		
(CLR)	(Note 2)	t _s	Figure 5	5.0 ± 0.5	4.0	4.0	ns	
Minimum hald time			Figure 0 Figure 2 Figure 5	3.3 ± 0.3	1.0	1.0		
Minimum hold time		t _h	Figure 2, Figure 3, Figure 5	5.0 ± 0.5	1.0	1.0	ns	
Minimum removal time		4	Figure 4	3.3 ± 0.3	6.0	6.0		
(CLR)	(Note 1)	t _{rem}	Figure 4	5.0 ± 0.5	4.0	4.0	ns	

Note 1: For TC74AC161 only
Note 2: For TC74AC163 only

AC Characteristics (C_L = 50 pF, R_L = 500 Ω , input: t_r = t_f = 3 ns)

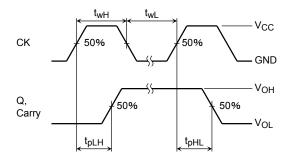
Characteristics	Symbol	Test Condition		-	Ta = 25°C		Ta = -40 to 85°C		Unit
	,		V _{CC} (V)	Min	Тур.	Max	Min	Max	
Propagation delay time	t _{pLH}	Figure 1	3.3 ± 0.3	-	8.8	15.8	1.0	18.0	ns
(CK-Q)	t _{pHL}		5.0 ± 0.5	_	6.5	9.6	1.0	11.0	
Propagation delay time	t _{pLH}	Figure 1	3.3 ± 0.3	_	10.4	18.4	1.0	21.6	no
(CK-carry, count mode)	t _{pHL}	rigure i	5.0 ± 0.5	_	8.1	11.8	1.0	13.5	ns
Propagation delay time	t _{pLH}	Figure 0	3.3 ± 0.3	_	12.9	22.4	1.0	25.5	
(CK-carry, preset mode)	t_{pHL}	Figure 2	5.0 ± 0.5	_	9.1	13.2	1.0	15.0	ns
Propagation delay time	t _{pLH}	Figure 6	3.3 ± 0.3	_	7.5	13.2	1.0	15.0	ns
(ENT-carry)	t_{pHL}	i igaio o	5.0 ± 0.5	_	5.8	8.3	1.0	9.5	
Propagation delay time	t _{pHL}	Figure 4	3.3 ± 0.3	_	10.6	18.4	1.0	21.0	ns
(CLR -Q) (Note 1)	γрпц	i igaio i	5.0 ± 0.5	_	7.7	11.4	1.0	13.0	110
Propagation delay time			3.3 ± 0.3	-	12.0	21.0	1.0	24.0	
(CLR -carry)	t _{pHL}	Figure 4	5.0 ± 0.5	_	8.6	12.7	1.0	14.5	ns
(Note 1)									
Maximum clock frequency	f _{max}	_	3.3 ± 0.3 5.0 ± 0.5	50 90	110 140	_	50 90	_ _	MHz
Input capacitance	C _{IN}	_	•	_	5	10	_	10	pF
Power dissipation capacitance	C _{PD}		(Note 2	_	85	_	_	_	pF

Note 1: For TC74AC161 only

Note 2: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

When the outputs drive a capacitive load, total current consumption is the sum of C_{PD} , and ΔI_{CC} which is obtained from the following formula:


$$\Delta I_{CC} = \ f_{CK} \cdot V_{CC} \left(\frac{C_{QA}}{2} + \frac{C_{QB}}{4} + \frac{C_{QC}}{8} + \frac{C_{QD}}{16} + \frac{C_{CO}}{16} \right)$$

CQA to CQD and CCO are the capacitances at QA to QD and CARRY OUT, respectively.

8

 f_{CK} is the input frequency of the CK.

Switching Characteristics Test Waveform

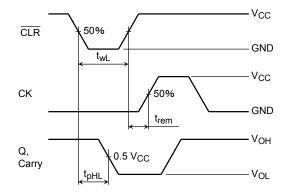
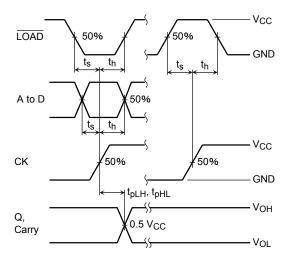



Figure 1 Count Mode

Figure 4 Clear Mode (TC74AC161)

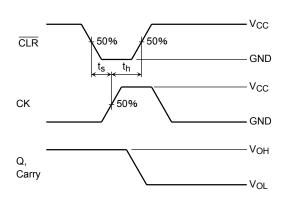
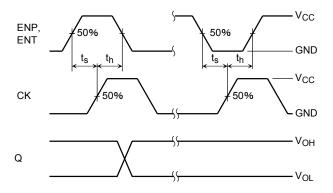
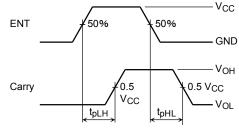



Figure 2 Preset Mode

Figure 5 Clear Mode (TC74AC163)



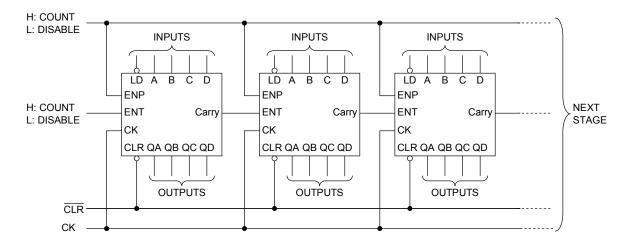
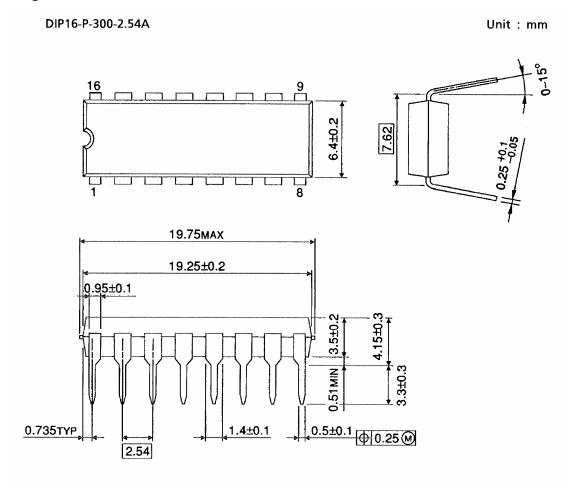
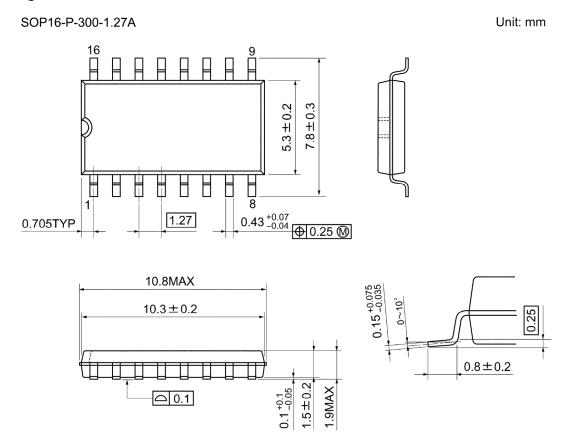

Figure 3 Count Enable Mode

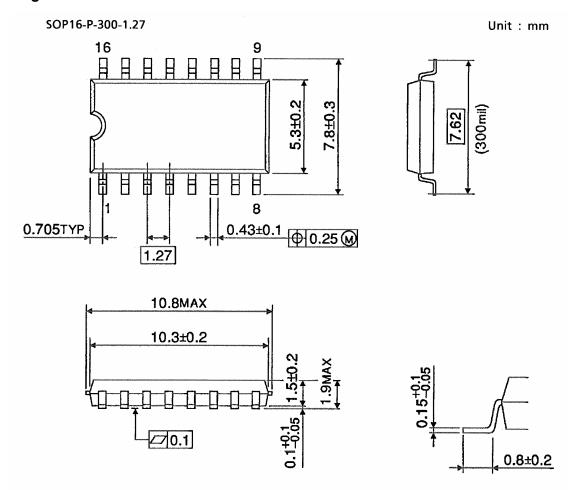
Figure 6 Cascade Mode (fix maximum count)



Typical Application

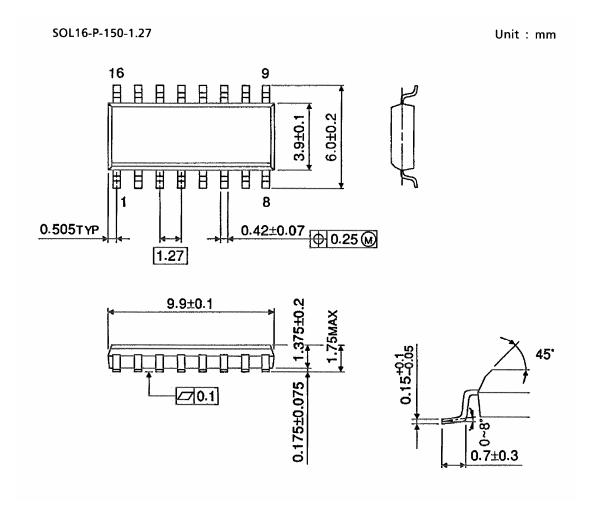
Parallel Carry N-Bit Counter



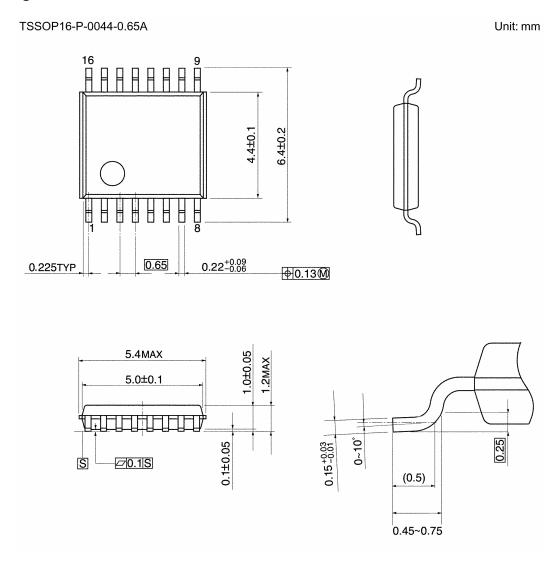

11

Weight: 1.00 g (typ.)

Weight: 0.18 g (typ.)


12

Weight: 0.18 g (typ.)


Package Dimensions (Note)

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

Weight: 0.06 g (typ.)

Note: Lead (Pb)-Free Packages

DIP16-P-300-2.54A SOP16-P-300-1.27A SOL16-P-150-1.27 TSSOP16-P-0044-0.65A

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023 A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023 B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_c

16

The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E