TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC153AP,TC74HC153AF,TC74HC153AFN TC74HC253AP,TC74HC253AF,TC74HC253AFN

TC74HC153AP/AF/AFN Dula 4-Channe Multiplexer

TC74HC253AP/AF/AFN

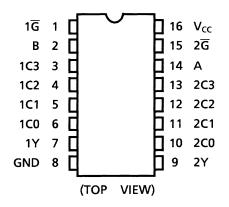
Dual 4-Channel Multiplexer with 3-State Output

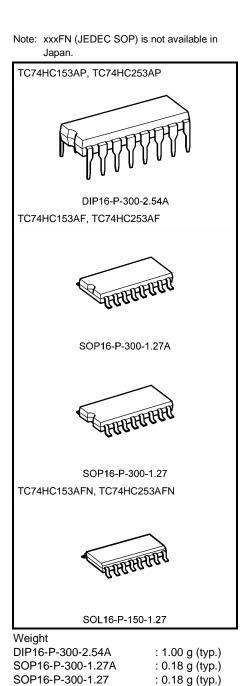
The TC74HC153A and TC74HC253A are high speed CMOS DUAL 4-CHANNEL MULTIPLEXERs fabricated with silicon gate C²MOS technology.

They achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

The TC74HC153A has standard outputs, while the TC74HC253A has 3-state outputs.

Input data (1C0 \sim 1C2, 2C0 \sim 2C3) are selected by the two address inputs, A and B.

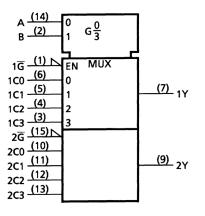

Separate strobe inputs $(1\overline{G}, 2\overline{G})$ are provided for each of the two four-line sections. They can be used to inhibit the data outputs. The output of the HC153A is set low, and the HC253A output is set to the high impedance state, when the strobe inputs are low.


All inputs are equipped with protection circuits against static discharge or transient excess voltage.

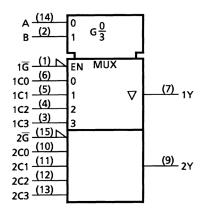
Features

- High speed: $t_{pd} = 12 \text{ ns}$ (typ.) at VCC = 5 V
- Low power dissipation: $I_{CC} = 4 \ \mu A \ (max)$ at $Ta = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Output drive capability: 10 LSTTL loads
- Symmetrical output impedance: |IOH| = IOL = 4 mA (min)
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: V_{CC} (opr) = 2 to 6 V
- Pin and function compatible with 74LS153, 74LS253

Pin Assignment


SOL16-P-150-1.27

: 0.13 g (typ.)


TOSHIBA

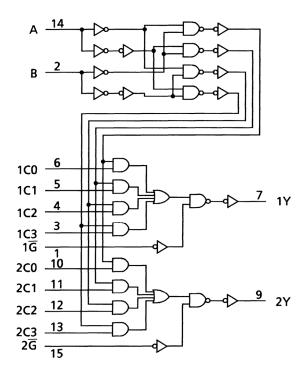
IEC Logic Symbol

TC74HC153A

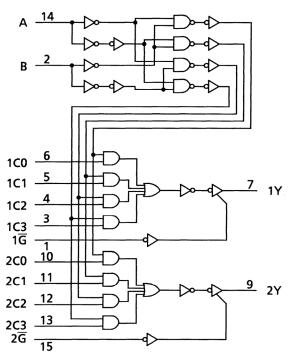
TC74HC253A

Truth Table

Select Inputs			Data	nputs		Strobe	Outputs Y		
В	А	C0	C1	C2	C3	G	G HC153A		
Х	Х	Х	Х	Х	Х	Н	L	Z	
L	L	L	Х	Х	Х	L	L	L	
L	L	Н	Х	Х	Х	L	Н	Н	
L	Н	Х	L	Х	Х	L	L	L	
L	Н	Х	н	Х	Х	L	Н	Н	
Н	L	Х	Х	L	Х	L	L	L	
Н	L	Х	х	Н	Х	L	Н	Н	
Н	Н	Х	Х	Х	L	L	L	L	
Н	Н	Х	Х	Х	Н	L	Н	Н	


X: Don't care

Z: High impedance


TOSHIBA

System Diagram

TC74HC153A

TC74HC253A

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 7	V
DC input voltage	VIN	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	I _{OK}	±20	mA
DC output current	IOUT	±25	mA
DC V _{CC} /ground current	ICC	±50	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C shall be applied until 300 mW.

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
		0 to 1000 ($V_{CC} = 2.0 \text{ V}$)	
Input rise and fall time	t _r , t _f	0 to 500 (V _{CC} = 4.5 V)	ns
		0 to 400 (V _{CC} = 6.0 V)	

Note: The recommended operating conditions are required to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = -40 to 85°C		Unit
				$V_{CC}(V)$	Min	Тур.	Max	Min	Max	
		—		2.0	1.50	_	_	1.50	_	
High-level input voltage	VIH			4.5	3.15	—	—	3.15	—	V
· onago				6.0	4.20	—	—	4.20	—	
				2.0			0.50		0.50	
Low-level input voltage	VIL	_		4.5	_	_	1.35	_	1.35	V
· onago				6.0	_	_	1.80	_	1.80	
			I _{OH} = -20 μA	2.0	1.9	2.0		1.9		V
	V _{OH}	V _{IN} = VIH or VIL .		4.5	4.4	4.5	_	4.4	_	
High-level output voltage				6.0	5.9	6.0	—	5.9	—	
· onago			$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31		4.13		
			$I_{OH} = -5.2 \text{ mA}$	6.0	5.68	5.80	—	5.63	—	
	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 20 μA	2.0		0.0	0.1		0.1	V
				4.5	_	0.0	0.1	_	0.1	
Low-level output voltage				6.0	—	0.0	0.1	_	0.1	
			$I_{OL} = 4 \text{ mA}$	4.5		0.17	0.26		0.33	
			$I_{OL} = 5.2 \text{ mA}$	6.0	—	0.18	0.26	_	0.33	
3-state output	I _{OZ}	$V_{IN} = V_{IH}$ or	VIL							
off-state current	(Note)	$V_{OUT} = V_{CC}$ or GND		6.0		_	±0.5	—	±5.0	μA
Input leakage current	I _{IN}	$V_{IN} = V_{CC}$ or GND		6.0	_	_	±0.1		±1.0	μΑ
Quiescent supply current	Icc	$V_{IN} = V_{CC}$ or GND		6.0	_	_	4.0	_	40.0	μA

Note: TC74HC253A only

AC Characteristics (CL = 15 pF, VCC = 5 V, Ta = 25°C, input: tr = tf = 6 ns)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Output transition time		t _{TLH} t _{THL}	_	_	4	8	ns
Propagation delay time (Cn-Y)		t _{pLH} t _{pHL}	_	_	12	19	ns
Propagation delay time (A, B-Y)		t _{pLH} t _{pHL}	_	_	17	26	ns
Propagation delay time $(\overline{G} - Y)$	(Note 1)	^t pLH ^t pHL	_	_	8	16	ns
3-state output enable time $(\overline{G} - Y)$	(Note 2)	t _p ZL t _p ZH	$R_L = 1 k\Omega$	_	9	16	ns

Note 1: For TC74HC153A only

Note 2: For TC74HC253A only

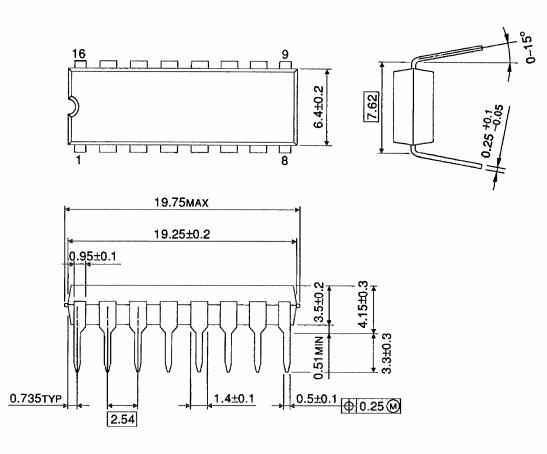
Characteristics	Symbol	Test Condition		-	Ta = 25°C		Ta = -40 to 85°C		Unit
	,		$V_{CC}(V)$	Min	Тур.	Max	Min	Max	
	^t тLн		2.0	_	30	75	_	95	
Output transition time		—	4.5	_	8	15	—	19	ns
	t _{THL}		6.0		7	13		16	
Propagation delay	t _{pLH}		2.0	_	48	115	—	145	
time		—	4.5	_	15	23	—	29	ns
(Cn-Y)	t _{pHL}		6.0		12	20	—	25	
Propagation delay	+		2.0		68	150		190	
time	t _{pLH}	_	4.5	_	20	30	_	38	ns
(A, B-Y)	t _{pHL}		6.0	_	16	26	—	33	
Propagation delay time	•	_	2.0	_	31	95	_	120	
(G - Y)	t _{pLH}		4.5	_	11	19	—	24	ns
(Note 2)	^t pHL		6.0	_	9	16	_	20	
3-state output enable time	t _{pZL}		2.0	_	36	100	_	125	
(G - Y)		$R_L = 1 \ k\Omega$	4.5	_	12	20	—	25	ns
(Note 3)	^t pZH		6.0		9	17	_	21	
3-state output disable time			2.0		22	115	_	145	
(G - Y)	t _{pLZ}	$R_L = 1 \ k\Omega$	4.5	_	13	23	_	29	ns
(Note 3)	^t pHZ	IZ	6.0	_	11	20	—	25	
Input capacitance	C _{IN}	—			5	10		10	pF
Power dissipation	C _{PD}	TC74HC153A			58				pF
capacitance	(Note 1)	TC74HC253A		_	59				μг

AC Characteristics ($C_L = 50 \text{ pF}$, input: $t_r = t_f = 6 \text{ ns}$)

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

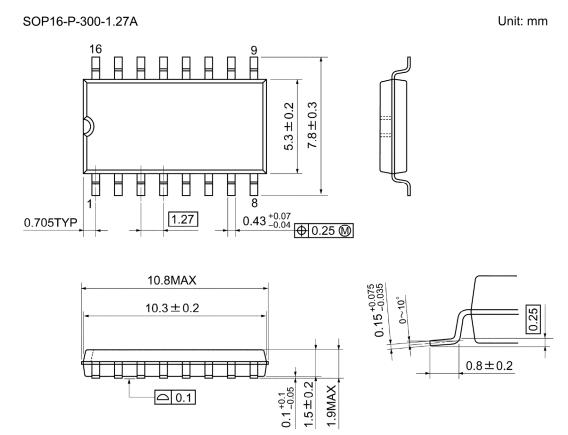
 $I_{CC} \text{ (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$


Note 2: For TC74HC153A only

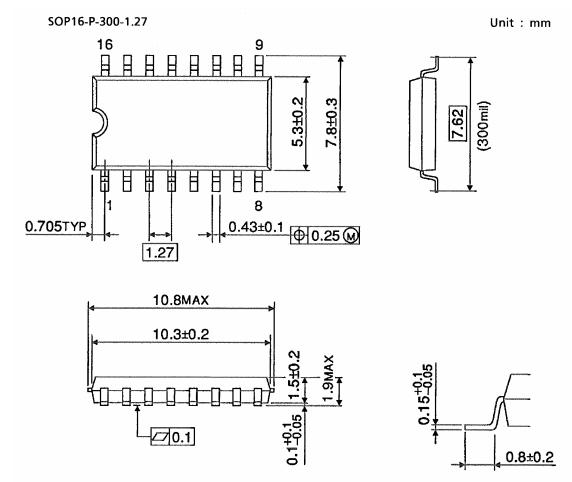
Note 3: For TC74HC253A only

Package Dimensions

DIP16-P-300-2.54A


Unit : mm

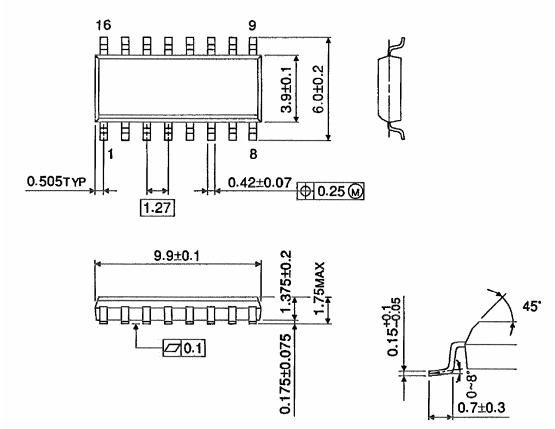
Weight: 1.00 g (typ.)


TOSHIBA

Package Dimensions

Weight: 0.18 g (typ.)

Package Dimensions



Weight: 0.18 g (typ.)

Package Dimensions (Note)

SOL16-P-150-1.27

Unit : mm

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

Note: Lead (Pb)-Free Packages DIP16-P-300-2.54A SOP16-P-300-1.27A SOL16-P-150-1.27

RESTRICTIONS ON PRODUCT USE

Handbook" etc. 021023_A

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk, 021023 B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E