TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

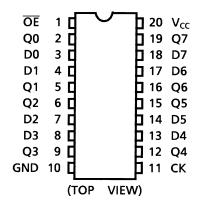
TC74HC374AP,TC74HC374AF,TC74HC374AFW

Octal D-Type Flip-Flop with 3-State Output

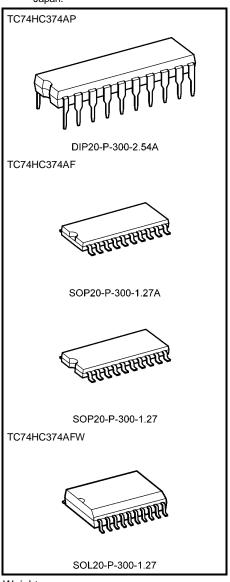
The TC74HC374A is a high speed CMOS OCTAL FLIP-FLOP with 3-STATE OUTPUT fabricated with silicon gate C²MOS technology.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

These 8-bit D-type flip-flops are controlled by a clock input (CK) and a output enable input (\overline{OE}).

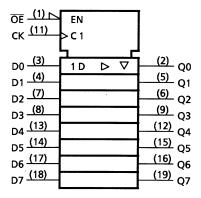

When the $\overline{\text{OE}}$ input is high, the eight outputs are in a high impedance state.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


Features

- High speed: $f_{max} = 77 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $ICC = 4 \mu A \text{ (max)}$ at $Ta = 25^{\circ}C$
- High noise immunity: VNIH = VNIL = 28% VCC (min)
- Output drive capability: 15 LSTTL loads
- Symmetrical output impedance: | IOH | = IOL = 6 mA (min)
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: VCC (opr) = 2 to 6 V
- Pin and function compatible with 74LS374

Pin Assignment

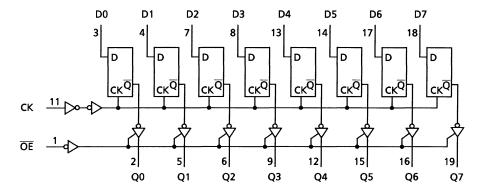

Note: xxxFW (JEDEC SOP) is not available in Japan.

Weight

DIP20-P-300-2.54A : 1.30 g (typ.) SOP20-P-300-1.27A : 0.22 g (typ.) SOP20-P-300-1.27 : 0.22 g (typ.) SOL20-P-300-1.27 : 0.46 g (typ.)

IEC Logic Symbol

Truth Table


	Outputs		
ŌĒ	CK	D	Q
Н	Х	Х	Z
L	—	Х	Q _n
L		L	L
L	\Box	Н	Н

X: Don't care

Z: High impedance

Q_n: No change

System Diagram

2

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 7	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	−0.5 to V _{CC} + 0.5	٧
Input diode current	I _{IK}	±20	mA
Output diode current	lok	±20	mA
DC output current	lout	±35	mA
DC V _{CC} /ground current	Icc	±75	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C shall be applied until 300 mW.

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	Vcc	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0 to 500 (V _{CC} = 4.5 V)	ns
		0 to 400 ($V_{CC} = 6.0 \text{ V}$)	

Note: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics Symbol		Test Condition $V_{CC}\left(V\right)$		Ta = 25°C			Ta = -40 to 85°C		Unit	
				V _{CC} (V)	Min	Тур.	Max	Min	Max	
		_		2.0	1.50	_	_	1.50	_	
High-level input voltage	V_{IH}			4.5	3.15			3.15	_	V
ŭ				6.0	4.20	_	_	4.20	_	
				2.0	_		0.50		0.50	
Low-level input voltage	V _{IL}	_		4.5	_		1.35		1.35	V
, and the second				6.0	_	_	1.80	_	1.80	
				2.0	1.9	2.0		1.9	_	
	V _{OH}	VIN = VIH or VIL	$I_{OH} = -20 \mu A$	4.5	4.4	4.5		4.4	_	
High-level output voltage				6.0	5.9	6.0	_	5.9	_	V
			$I_{OH} = -6 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -7.8 \text{ mA}$	6.0	5.68	5.80		5.63	_	
	V _{OL}	VIN = V _{IH} or V _{IL}		2.0		0.0	0.1	_	0.1	
			$I_{OL} = 20 \ \mu A$	4.5	_	0.0	0.1	_	0.1	
Low-level output voltage				6.0		0.0	0.1	—	0.1	V
			$I_{OL} = 6 \text{ mA}$	4.5	_	0.17	0.26	_	0.33	
			$I_{OL} = 7.8 \text{ mA}$	6.0		0.18	0.26	—	0.33	
3-state output	loz	$V_{IN} = V_{IH}$ or V_{IL}		6.0			±0.5	_	±5.0	μА
off-state current	102	V _{OUT} = V _{CC} or GND		0.0			±0.5		±3.0	μΛ
Input leakage current	I _{IN}	$V_{IN} = V_{CC}$ or GND		6.0	_	_	±0.1	_	±1.0	μА
Quiescent supply current	I _{CC}	V _{IN} = V _{CC} or GND		6.0		_	4.0	_	40.0	μΑ

Timing Requirements (input: $t_r = t_f = 6$ ns)

Characteristics	Symbol	Test Condition	Test Condition			Ta = -40 to 85°C	Unit
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum pulse width	4		2.0	_	75	95	
(CK)	t _{W (H)}	_	4.5	_	15	19	ns
(CK)	t _{W (L)}		6.0	_	13	16	
Minimum aat un tima			2.0	_	75	95	
Minimum set-up time (Dn)	t _s	_	4.5	_	15	19	ns
(DII)			6.0	_	13	16	
Minimum hold time			2.0	_	0	0	
(Dn)	t _h	_	4.5	_	0	0	ns
(Dn)			6.0	_	0	0	
Clock frequency	f		2.0	_	6	5	
		_	4.5	_	31	25	MHz
			6.0	_	36	29	

4

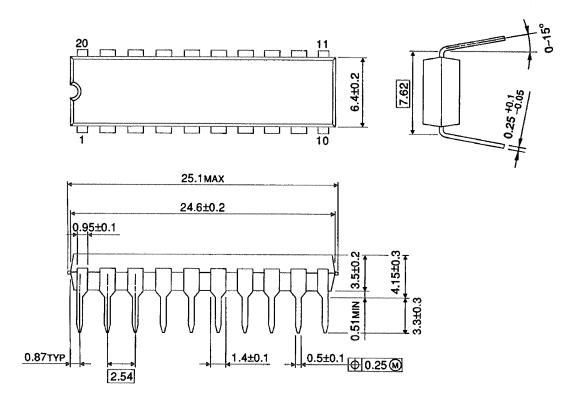
AC Characteristics (input: $t_r = t_f = 6 \text{ ns}$)

Characteristics Symbo		Test Condition			-	Га = 25°C		Ta = -40 to 85°C		Unit
			CL (pF)	V _{CC} (V)	Min	Тур.	Max	Min	Max	
				2.0	_	20	60	_	75	
Output transition time	t _{TLH}	_	50	4.5	_	6	12	_	15	ns
	t _{THL}			6.0	_	5	10	_	13	
				2.0	_	45	140	_	175	
			50	4.5	_	15	28	_	35	
Propagation delay time	t _{pLH}			6.0	_	13	24	_	30	
(CK-Q)	t_{pHL}	_		2.0		60	190	_	240	ns
(511 4)			150	4.5	_	20	38	_	48	
				6.0	_	17	32	_	41	
	^t pZL ^t pZH	$R_L = 1 \text{ k}\Omega$	50	2.0	_	39	135	_	170	- ns
				4.5	_	13	27	_	34	
Output anable time				6.0	_	11	23	_	29	
Output enable time			150	2.0	_	54	185	_	230	
				4.5	_	18	37	_	46	
				6.0	_	15	31	_	39	
	t _{pLZ}		50	2.0	_	30	135	_	170	
Output enable time		$R_L = 1 \text{ k}\Omega$		4.5	_	13	27	_	34	ns
	^t pHZ			6.0	_	12	23	_	29	
				2.0	6	18	_	5	_	
Maximum clock frequency	f _{max}	_	50	4.5	31	75	_	25	_	MHz
riequericy				6.0	36	90	_	29	_	
Input capacitance	C _{IN}	_	_			5	10		10	pF
Output capacitance	C _{OUT}	_	-			10			_	pF
Power dissipation capacitance	C _{PD} (Note)	_	_		_	47	_	_	_	pF

Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

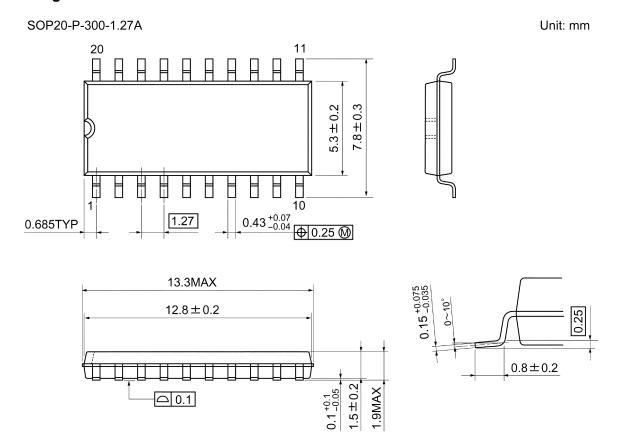
5

Average operating current can be obtained by the equation:


$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8$ (per flip flop)

And the total C_{PD} when n pcs. of F/F operate can be gained by the following equation:

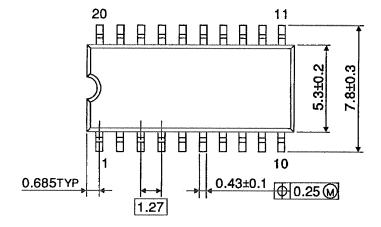
$$C_{PD}$$
 (total) = 30 + 17 · n

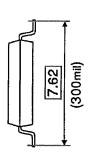


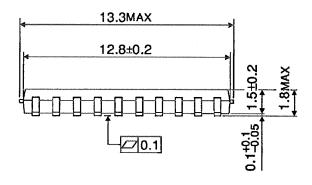
Package Dimensions

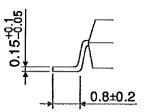
Weight: 1.30 g (typ.)

Package Dimensions


7

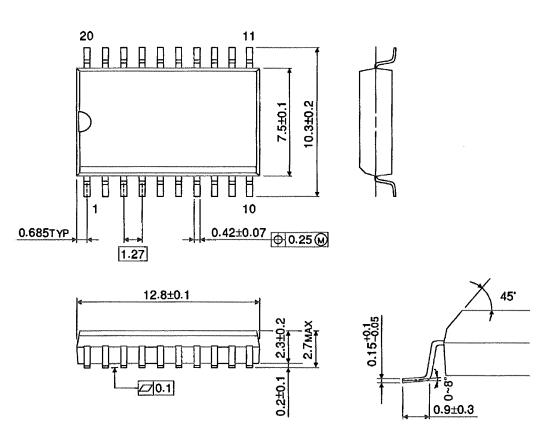

Weight: 0.22 g (typ.)


Unit: mm


Package Dimensions

SOP20-P-300-1.27

Weight: 0.22 g (typ.)


2006-02-01

8

Package Dimensions (Note)

SOL20-P-300-1.27 Unit: mm

Note: This package is not available in Japan.

Weight: 0.46 g (typ.)

Note: Lead (Pb)-Free Packages

DIP20-P-300-2.54A SOP20-P-300-1.27A

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023 B
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others. 021023_c

10

• The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E