TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC595AP,TC74HC595AF,TC74HC595AFN

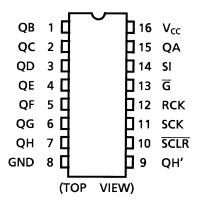
8-Bit Shift Register/Latch (3-state)

The TC74HC595A is a high speed 8-BIT SHIFT REGISTER/LATCH fabricated with silicon gate C2MOS technology.

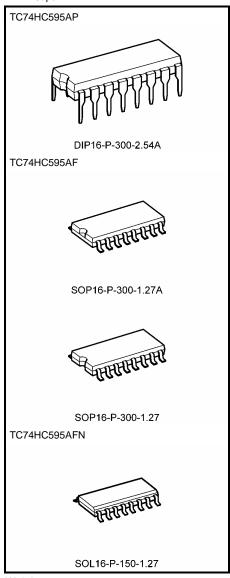
It achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

The TC74HC595A contains an 8-bit static shift register which feeds an 8-bit storage register.

Shift operation is accomplished on the positive going transition of the SCK input. The output register is loaded with the contents of the shift register on the positive going transition of the RCK input. Since RCK and SCK signal are independent, parallel outputs can be held stable during the shift operation.


And, since the parallel outputs are 3-state, it can be directly connected to 8-bit bus. This register can be used in serial-to-parallel conversion, data receivers, etc.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


Features

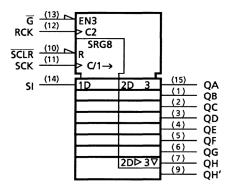
- High speed: $f_{max} = 55 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max)}$ at $T_{a} = 25 \text{°C}$
- High noise immunity: VNIH = VNIL = 28% VCC (min)
- Output drive capability: 15 LSTTL loads for QA to QH
 10 LSTTL loads for QH'
- Symmetrical output impedance: |IOH| = IOL = 6 mA (min)For QA to QH |IOH| = IOL = 4 mA (min)For QH'
- Balanced propagation delays: $t_pLH \simeq t_pHL$
- Wide operating voltage range: VCC (opr) = 2 to 6 V
- Pin and function compatible with 74LS595

Pin Assignment

Note: xxxFN (JEDEC SOP) is not available in Japan.

Weight

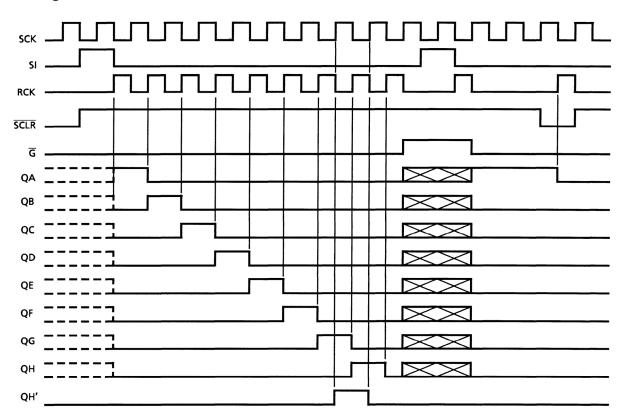
 DIP16-P-300-2.54A
 : 1.00 g (typ.)


 SOP16-P-300-1.27A
 : 0.18 g (typ.)

 SOP16-P-300-1.27
 : 0.18 g (typ.)

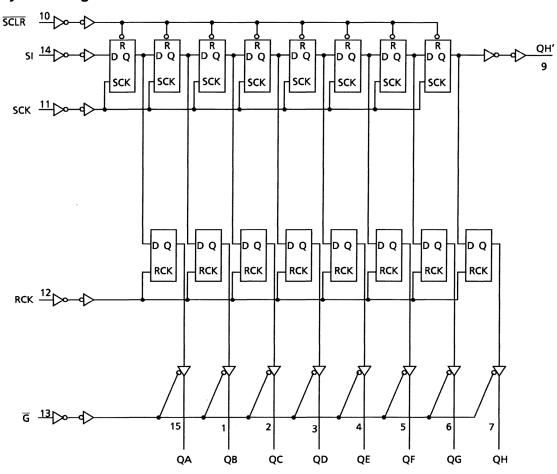
 SOL16-P-150-1.27
 : 0.13 g (typ.)

IEC Logic Symbol


Truth Table

Inputs					Function				
SI	SCK	SCLR	RCK	IG	Function				
Х	Х	Х	Х	Н	QA thru QH outputs disable				
Х	Х	Х	Х	L	QA thru QH outputs enable				
Х	Х	L	Х	Х	Shift register is cleared.				
L		Н	Х	Х	First stage of S.R. becomes "L". Other stages store the data of previous stage, respectively.				
Н		Н	Х	Х	First stage of S.R. becomes "H". Other stages store the data of previous stage, respectively.				
Х	\downarrow	Н	Х	Х	State of S.R. is not changed.				
Х	Х	Х		Х	S.R. data is stored into storage register.				
Х	Х	Х		Х	Storage register stage is not changed.				

2


X: Don't care

Timing Chart

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Supply voltage range	V _{CC}	-0.5 to 7	V	
DC input voltage	VIN	-0.5 to V _{CC} + 0.5	V	
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V	
Input diode current	I _{IK}	±20	mA	
Output diode current	lok	±20	mA	
DC output current (QH')	lau-	±25	mA	
(QA to QH)	Гоит	±35	IIIA	
DC V _{CC} /ground current	Icc	±75	mA	
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C shall be applied until 300 mW.

4

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0 to 500 (V _{CC} = 4.5 V)	ns
		0 to 400 ($V_{CC} = 6.0 \text{ V}$)	

Note: The recommended operating conditions are required to ensure the normal operation of the device.
Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition				Ta = 25°C			Ta = -40 to 85°C		Unit
	,				V _{CC} (V)	Min	Тур.	Max	Min	Max	
					2.0	1.50	_	_	1.50	_	
High-level input voltage	V_{IH}	_		4.5	3.15	_	_	3.15	_	V	
					6.0	4.20		_	4.20		—
					2.0	_	_	0.50	_	0.50	
Low-level input voltage	V_{IL}			_	4.5	_	_	1.35	_	1.35	V
ŭ					6.0			1.80	—	1.80	
					2.0	1.9	2.0	_	1.9	_	
		V _{IN}	V Vi⊢ or Vii	$I_{OH} = -20 \mu A$	4.5	4.4	4.5	_	4.4	_	V
					6.0	5.9	6.0	_	5.9	—	
High-level output voltage	V _{OH}		QH' QA to QH	$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	· V
, and the second				$I_{OH} = -5.2 \text{ mA}$	6.0	5.68	5.80	_	5.63	_	
				$I_{OH} = -6 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	
				$I_{OH} = -7.8 \text{ mA}$	6.0	5.68	5.80	_	5.63	_	
				$I_{OL} = 20 \mu A$	2.0	_	0.0	0.1	_	0.1	
		= /	۱ ∕ _{IH} or V _{IL}		4.5	_	0.0	0.1	_	0.1	v v
					6.0		0.0	0.1		0.1	
Low-level output voltage	V_{OL}		QH'	$I_{OL} = 4 \text{ mA}$	4.5		0.17	0.26	_	0.33	
				$I_{OL} = 5.2 \text{ mA}$	6.0		0.18	0.26		0.33	
				$I_{OL} = 6 \text{ mA}$	4.5	_	0.17	0.26	_	0.33	
			QH	$I_{OL} = 7.8 \text{ mA}$	6.0	_	0.18	0.26	_	0.33	
3-state output off-state current	I _{OZ}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND		6.0		_	±0.5	_	±5.0	μА	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND			6.0			±0.1	_	±1.0	μА
Quiescent supply current	Icc	VIN	V _{IN} = V _{CC} or GND		6.0	_	_	4.0	_	40.0	μА

5

Timing Requirements (input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C		Ta = -40 to 85°C	Unit
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum pulse width			2.0	_	75	95	
(SCK, RCK)	tw (H)	_	4.5	_	15	19	ns
(OCK, NCK)	t _{W (L)}		6.0	_	13	16	
Minimum pulse width			2.0	_	75	95	
(SCLR)	t _{W (L)}	_	4.5	_	15	19	ns
(OOLIK)			6.0	_	13	16	
Minimum set-up time			2.0	_	50	65	
(SI-SCK)	t _S	_	4.5	_	10	13	ns
(0.0014)			6.0	_	9	11	
Minimum set-up time			2.0	_	75	95	
(SCK-RCK)	ts		4.5	_	15	19	ns
(551111511)			6.0	_	13	16	
Minimum set-up time			2.0	_	100	125	
(SCLR -RCK)	t _S	_	4.5	_	20	25	ns
(ODER HOIL)			6.0	_	17	21	
			2.0	_	0	0	
Minimum hold time	t _h	_	4.5	_	0	0	ns
			6.0	_	0	0	
Minimum removal time			2.0	_	50	65	
(SCLR)	t _{rem}	_	4.5	_	10	13	ns
(· ·)			6.0	_	9	11	
			2.0	_	6	5	
Clock frequency	f	_	4.5	_	30	25	MHz
			6.0	_	35	28	

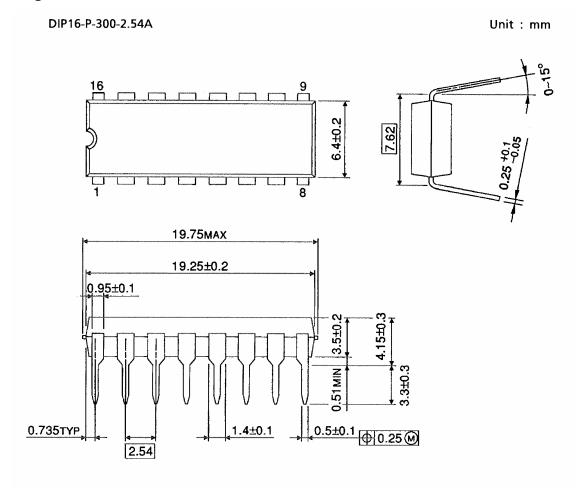
AC Characteristics (C_L = 15 pF, V_{CC} = 5 V, Ta = 25°C, input: t_r = t_f = 6 ns)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Output transition time (QH')	t _{TLH}	_	_	4	8	ns
Propagation delay time (SCK-QH')	t _{pLH}	_	_	12	21	ns
Propagation delay time (SCLR -QH')	t _{pHL}	_	_	15	30	ns
Maximum clock frequency	f _{max}		35	77	_	MHz

AC Characteristics (input: $t_r = t_f = 6$ ns)

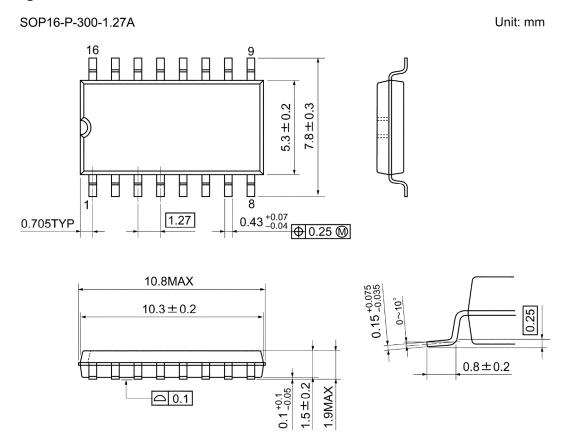
Characteristics	Symbol	Test Condit		ndition		Ta = 25°C			Ta = -40 to 85°C	
	-,		CL (pF)	V _{CC} (V)	Min	Тур.	Max	Min	Max	Unit
Output transition times				2.0	_	25	60	_	75	
Output transition time	t _{TLH}	_	50	4.5	_	7	12	_	15	ns
(Q _n)	t _{THL}			6.0	_	6	10	_	13	
Output transition time	4			2.0	_	30	75	_	95	
(QH')	t _{TLH}	_	50	4.5	_	8	15	_	19	ns
(QH)	t _{THL}			6.0	_	7	13	—	16	
Propagation delay	4			2.0	_	45	125	_	155	
time	t _{pLH}	_	50	4.5	_	15	25	_	31	ns
(SCK-QH')	t _{pHL}			6.0	_	13	21	_	26	
Propagation delay				2.0	_	60	175	_	220	
time	t_{pHL}	_	50	4.5	_	18	35	_	44	ns
(SCLR -QH')				6.0	_	15	30	_	37	
				2.0	_	60	150		190	
			50	4.5	_	20	30		38	
Propagation delay time	t_{pLH}			6.0	_	17	26	_	32	20
(RCK-Q _n)	t_{pHL}	_		2.0	_	75	190	_	240	ns
(150	4.5	_	25	38	_	48	
				6.0	_	22	32	_	41	
				2.0	_	45	135	_	170	
			50	4.5	_	15	27	_	34	
Output analyla tima	t_{pZL}	D: 440		6.0	_	13	23	_	29	
Output enable time	t _{pZH}	$R_L = 1 k\Omega$		2.0	_	60	175		220	ns
			150	4.5	_	20	35		44	
				6.0	_	17	30		37	
				2.0	_	30	150	_	190	
Output disable time	t _{pLZ}	$R_L = 1 \text{ k}\Omega$	50	4.5	_	15	30		38	ns
	t _{pHZ}			6.0	_	14	26	_	33	
				2.0	6	17	_	5	_	
Maximum clock frequency	f _{max}	_	50	4.5	30	50	_	25	_	MHz
				6.0	35	59	_	28	_	
Input capacitance	C _{IN}	_	_		_	5	10	_	10	pF
Power dissipation capacitance	C _{PD} (Note)	_	_		_	184	_	_	_	pF

Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


7

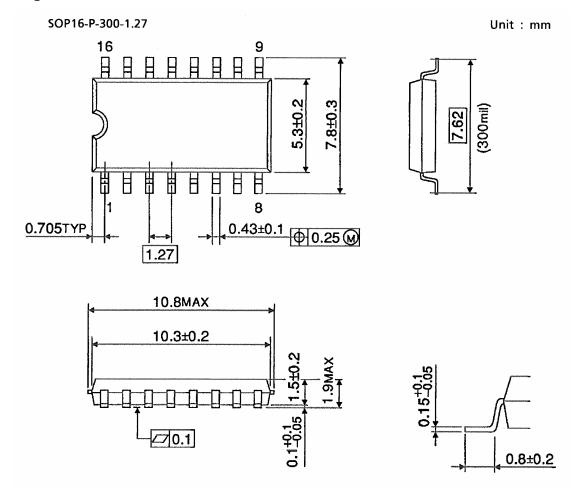
Average operating current can be obtained by the equation:

$$I_{CC} (opr) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$$

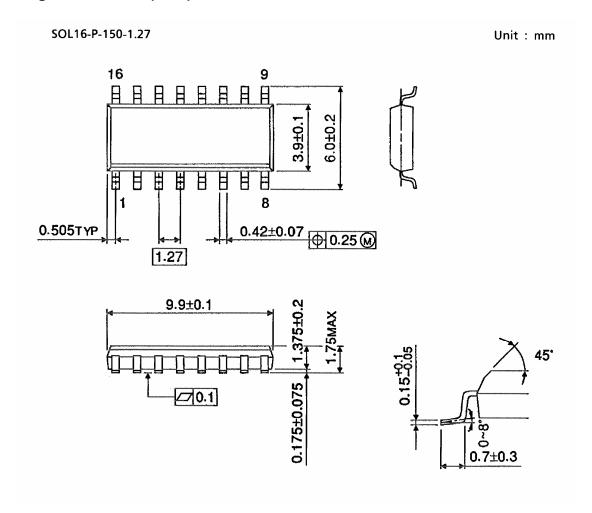


Package Dimensions

Weight: 1.00 g (typ.)


Package Dimensions

Weight: 0.18 g (typ.)


Package Dimensions

Weight: 0.18 g (typ.)

Package Dimensions (Note)

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

Note: Lead (Pb)-Free Packages

DIP16-P-300-2.54A SOP16-P-300-1.27A SOL16-P-150-1.27

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_c
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E