東芝 CMOS デジタル集積回路 シリコン モノリシック

TC74VHC123AF,TC74VHC123AFT,TC74VHC123AFK, TC74VHC221AF,TC74VHC221AFK

Dual Monostable Multivibrator

TC74VHC123AF/AFT/AFK Retriggerble TC74VHC221AF/AFT/AFK Non-Retriggerble

TC74VHC123A/221A は、シリコンゲート CMOS 技術を用いた超高速 CMOS 2 回路入りモノステーブル·マルチバイブレータです。 CMOS の特長である低い消費電力で、高速ショットキ TTL に匹敵する高速動作を実現できます。また、新規に採用した Q&Q バッファにより、スイッチング時に発生する各種ノイズも大幅に低減しました。

トリガ入力は、立ち下がりエッジでトリガする \overline{A} 入力と立ち上がりエッジでトリガする B 入力および \overline{CLR} 入力があり、 \overline{A} 、 \overline{B} 入力はシュミット・トリガ入力ですので入力信号の上昇、下降時間が長い場合 ($t_r=t_f=1$ s) でも確実に動作します。いったんトリガされると出力は \overline{CLR} 入力を "L" にしない限り、外付け抵抗 (R_X) とコンデンサ (C_X) により決まる一定時間単安定モードを継続します。

VHC123Aでは、単安定時間内に再度トリガ入力が与えられると、 そのトリガも有効となり、単安定モードを持続させるリトリガ機能 があります。

Cx、Rx の時定数を任意に選ぶことにより、広い範囲に渡るパルス出力が得られます。Cx、Rx の時定数が 1 ms 以上のとき出力パルス幅は、ほぼ tw (OUT) $\simeq 1.0$ Cx · Rx となります。

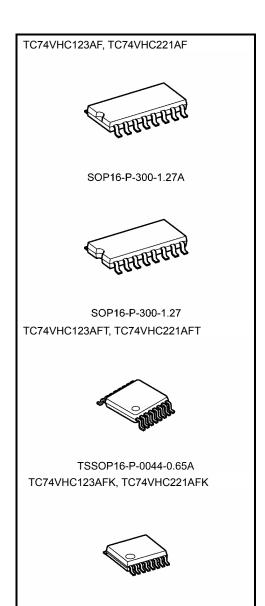
すべての入力端子には、プラス側(入力から VCC に向かって順方向になる)のダイオードが入らない、新開発の入力保護回路を採用しました。これにより、電源電圧が加わらない状態で入力に 5 V の電圧が与えられるケースも許容されます。この入力パワーダウンプロテクション方式により、2 電源間インタフェース、5 V から 3 V X のレベル変換、バッテリーバックアップ回路などへの幅広い応用が可能となります。

特 長(注)

• 高速動作 : tpd = 8.1 ns (標準) (VCC = 5 V)

低消費電流: スタンバイ時 ICC = 4 μA (最大) (Ta = 25°C)
 動作時 ICC = 600 μA (最大) (VCC = 5.0 V)

高雑音余裕度 : VNIH = VNIL = 28% VCC (最小)


• 全入力とも、パワーダウンプロテクション機能あり

• バランスのとれた遅延時間:t_{pLH} ≃ t_{pHL}

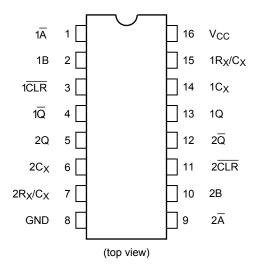
広い動作電圧範囲 : VCC (opr) = 2~5.5 V

• 74HC123A/221A と同一ピン接続、同一ファンクション

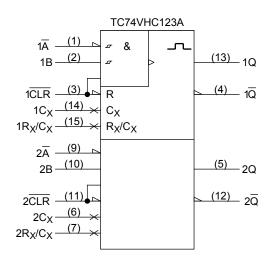
注: 1回路のみ使用する場合には、 \overline{CLR} = "L" とし、 R_X/C_X , C_X , Q, \overline{Q} はオープン、その他入力端子は "H"、または "L" としてください。

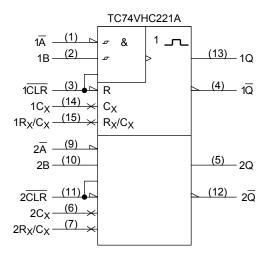
質量

 SOP16-P-300-1.27A
 : 0.18 g (標準)


 SOP16-P-300-1.27
 : 0.18 g (標準)

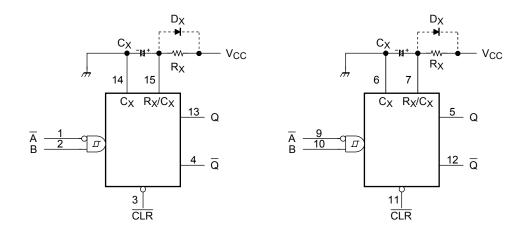
 TSSOP16-P-0044-0.65A
 : 0.06 g (標準)


 VSSOP16-P-0030-0.50
 : 0.02 g (標準)


VSSOP16-P-0030-0.50

ピン接続図

論理図



真理值表

	Inputs		Out	puts	Note		
Ā	В	CLR	Q	ΙQ	Note		
\Box	Н	Н			Output Enable		
Х	L	Η	L	Η	Inhibit		
Н	Х	Н	L	Н	Inhibit		
L		Н	7		Output Enable		
L	Н	\downarrow	Ę		Output Enable		
Х	Х	L	L	Н	Reset		

X: Don't care

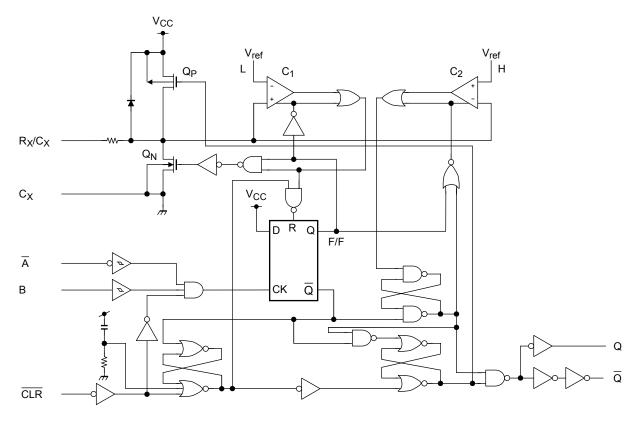
外付け部品接続法 (注1)(注2)

注 1: C_X, R_X, D_X は、外付け部品を示します。

注 2: 外付けダイオード DX について

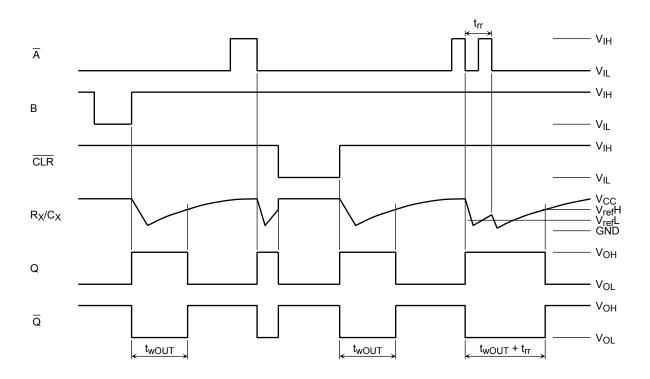
VHC123A/221A では、トリガのない待ち状態のときには、外付けコンデンサ C_X は V_{CC} レベルまで充電されています。従って、VHC123A/221A の電源がオフ状態になると、 C_X に蓄えられた電荷は R_X を通しても放電しますが、その大半は R_X/C_X 端子から V_{CC} に向かって順方向になる IC 内部の寄生ダイオードを通して放電されることになります。

この場合、電源のフィルタコンデンサが十分大きく、電源の下降時間がある程度大きければ R_X/C_X 端子への 突入電流は自動的に制限されますが、 C_X が大きく、かつ電源の下降時間が短い場合には、過電流による熱破 壊やラッチアップによる 2 次破壊の危険があります。 R_X/C_X 端子の寄生ダイオード順電流は定格上 ± 20 mA ですので、 C_X の大きい場合、電源の下降時間 t_f は、

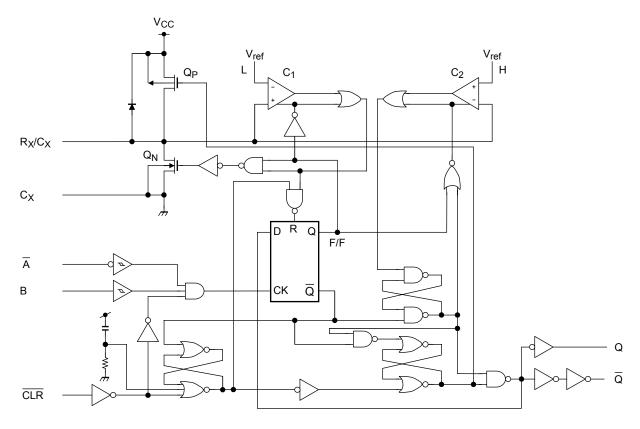

 $t_f \ge (V_{CC} - 0.7) \cdot C_X/20 \text{ mA}$

(t_f : 電源断時より電源レベルが $\simeq 0.4 \ V_{CC}$ まで下降するまでの時間)

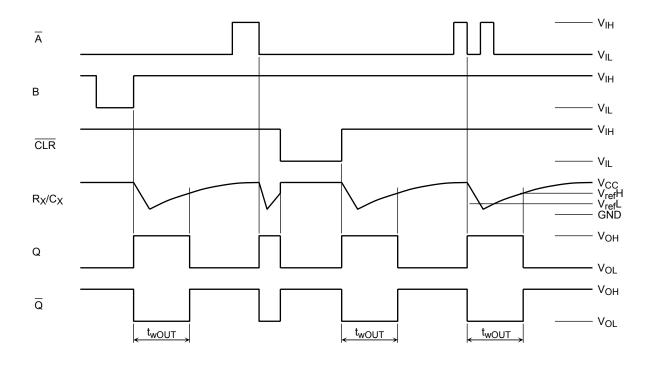
の式を満たす必要があります。電源の下降時間が上式を満足しない場合には、C_X/R_X端子への過電流保護のために上図に示すクランピングダイオードが必要です。


システム図

TC74VHC123A


タイミング図

TC74VHC123A


システム図

TC74VHC221A

タイミング図

TC74VHC221A

動作説明

(1) 静止状態

トリガが与えられる前の静止状態では、Rx/Cx の端子の電位を決める QP、Qn (システム図参照)の両トランジスタがともに"オフ"しているため、外付けコンデンサは VCC レベルまで充電されています。

この場合にはまた、タイミングを決定する 2 個のコンパレータ、および $V_{ref}H$ 、 $V_{ref}L$ の 2 個の基準電圧発生源はすべて動作を停止しているため、電源電流はリーク成分のみとなります。

(2) トリガ動作

 \overline{A} 入力が "L" レベルのときに B 入力に立ち上がり信号が与えられた場合、または B 入力が "H" レベル のときに \overline{A} 入力に立ち下がり信号が与えられた場合、および \overline{A} 入力 "L" レベル、 \overline{B} 入力が "H" レベルの ときに \overline{CLR} 入力に立ち上がり信号が与えられた場合には、トリガが受け付けられます。トリガが受け付けられると、その瞬間に C_1 、 C_2 のコンパレータは動作を開始し、 Q_N が "オン" します。従って、コンデンサの電荷は Q_N を通して放電し、 R_X/C_X 電位が低下します。 R_X/C_X 電位が、 \overline{IC} 内部の低レベル基準電圧 \overline{V}_{ref} Lまで下がると、コンパレータ \overline{C}_1 の出力 "L" となり、トリガ・コントロール・フリップフロップがリセットされると同時に \overline{Q}_N が "オフ" します。ここで \overline{C}_1 は動作を停止しますが、 \overline{C}_2 は動作を続けます。 \overline{Q}_N が "オフ" すると \overline{R}_X/C_X 電位は、外付けコンデンサ \overline{C}_X と抵抗 \overline{R}_X の時定数で上昇を開始します。

一方、出力 \mathbf{Q} は、トリガが与えられると \mathbf{IC} 内部の $\mathbf{F/F}$ およびゲートの遅延時間後には "H" レベルになり、 $\mathbf{Rx/Cx}$ 電位が下降から上昇モードに転じても "H" レベルを継続しています。

Rx/Cx 電位がさらに上昇を続け IC 内部の高レベル基準電圧 $V_{ref}H$ に達すると、コンパレータ C_2 電位が "L" レベルになり、Q 出力を "L" レベルに戻すとともに、 C_2 自身も動作を停止します。すなわち、トリガが与えられてから、Rx/Cx 電位が再び $V_{ref}H$ に戻るまでの間単安定モードを継続します。

CxRx の時定数が十分大きく、コンデンサの放電時間と IC 内部の遅延時間が無視できる場合、出力パルス幅は、 t_{W} (OUT) = 1.0 CxRx で計算できます。

(3) リトリガ動作 (TC74VHC123A のみ)

単安定モード時に別のトリガが与えられた場合、IC がすでにコンデンサの充電サイクルに入っていれば、そのトリガは受け付けられて Rx/Cx 端子は再度 $V_{ref}L$ まで引き下げられます。従い、設定された出力パルス幅より短いサイクルでトリガが継続されるならば、出力 Q は "H" を保つことになります。ただし、トリガが非常に近接して与えられた場合、2 度目のトリガ時に IC がまだ放電サイクルであったとすると、トリガは無効になります。2 度目のトリガが有効になる最小時間 t_{rr} (min) は、 V_{CC} と Cx に依存します。

(4) リセット動作

 $\overline{\text{CLR}}$ 端子は通常 "H" レベルで使用しますが、 $\overline{\text{CLR}}$ を "L" にすると論理的に Q 出力は "L" となり、かつトリガコントロール F/F もリセットされているため、トリガは無効になります。

さらに QPが"オン"するため、CX も急速に VCC レベルまで充電されます。

すなわち、 $\overline{\text{CLR}}$ 端子を "L" にすることにより、 $\overline{\text{IC}}$ の動作中/非動作中を問わず、システム動作を静止状態に瞬時に引き戻すことができます。

絶対最大定格 (注)

	Ij	Į		目			記号	定格	単位
電	源	į		電		圧	V_{CC}	-0.5~7.0	٧
入	t	ı		電		圧	V_{IN}	-0.5~7.0	٧
出	t	ı		電		圧	V _{OUT}	-0.5~V _{CC} + 0.5	٧
入	力保護	ダ	イオ		ド電	流	I _{IK}	-20	mA
出	力 寄 生	ダ	イオ		ド電	流	lok	±20	mA
出	t	ı		電		流	I _{OUT}	±25	mA
電	源 /	G	N	D	電	流	Icc	±50	mA
許	容	!		損		失	P_{D}	180	mW
保	存			温		度	T _{stg}	-65~150	°C

注: 絶対最大定格は、瞬時たりとも超えてはならない値であり、1 つの項目も超えてはなりません。

推奨動作条件 (注 1)

	項	目		記号	定格	単位
電	源	電	圧	V_{CC}	2.0~5.5	V
入	カ	電	圧	V_{IN}	0~5.5	V
出	カ	電	圧	V _{OUT}	0~V _{CC}	V
動	作	作温			-40~85	°C
入	力上昇、	下降	寺間	dt/dV	0~100 (V _{CC} = 3.3 ± 0.3 V)	ns/V
	л <u>т</u>	1, b± n	ग ⊫।		$0\sim20 \ (V_{CC} = 5 \pm 0.5 \ V)$	115/ V
外	付 け コ	ン デ ン	/ サ	C_X	制限なし (注 2)	F
外	付(ナ 抵	抗	D.,	5 k 以上 (V _{CC} = 2.0 V) (注 2)	Ω
71	ו נין	/ 抵	IJί	R _X	1 k 以上 (V _{CC} ≥ 3.0 V) (注 2)	22

注 1: 推奨動作条件は動作を保証するための条件です。 使用していない入力は VCC、もしくは GND に接続してください。

注 2: R_X および C_X の最大許容値は、 C_X のリーク電流、 R_X/C_X 端子の入力リーク電流、および配線基板の表面抵抗などに起因するリーク電流に関係します。

RX>1 MΩ の場合、外部ノイズの影響を受け易くなります。

電気的特性

DC 特性

			測定条件				Га = 25°(C	Ta = −40~85°C		
項目		記号		V _{CC} (V)	最小	標準	最大	最小	最大	単位	
入力電圧					2.0	1.50	_	_	1.50	_	V
	"H" レベル	V _{IH}		_	3.0~ 5.5	V _{CC} × 0.7	I	_	V _{CC} × 0.7	_	
八万屯江					2.0		1	0.50		0.50	·
	"L" レベル	V _{IL}		_	3.0~ 5.5	1	ı	V _{CC} × 0.3	1	V _{CC} × 0.3	
					2.0	1.9	2.0	_	1.9	_	
			V _{IN} = V _{IH} or V _{IL}	I _{OH} = -50 μA	3.0	2.9	3.0	_	2.9	_	
	"H"レベル	V_{OH}			4.5	4.4	4.5	_	4.4	_	V
				I _{OH} = −4 mA	3.0	2.58	_	_	2.48	_	
出力電圧				I _{OH} = -8 mA	4.5	3.94	_	_	3.80	_	
山乃屯江			V _{IN} = V _{IH} or V _{IL}		2.0	_	0.0	0.1	_	0.1	
				I _{OL} = 50 μA	3.0	_	0.0	0.1	_	0.1	
	"L"レベル	V_{OL}			4.5	_	0.0	0.1	_	0.1	
				I _{OL} = 4 mA	3.0	_	_	0.36	_	0.44	
				I _{OL} = 8 mA	4.5	_	_	0.36	_	0.44	
入力	電 流	I _{IN}	V _{IN} = 5.5	V _{IN} = 5.5 V or GND		_	ı	±0.1	ı	±1.0	μΑ
R _X /C _X 端	R _X /C _X 端子入力電流 I _{IN}		$V_{IN} = V_{C}$	_C or GND	5.5	_	-	±0.25	-	±2.50	μΑ
静的消	費電流	Icc	$V_{IN} = V_{C}$	_C or GND	5.5		1	4.0	-	40.0	μΑ
動的消	費電流		V _{IN} = V _{CC} or GND		3.0	_	160	250	_	280	
利加八月	負 电 /// (注)	Icc			4.5	_	380	500	_	650	μΑ
	(注)		$R_X/C_X = 0.5 V_{CC}$		5.5	_	560	750	_	975	

注: 1回路当たり

タイミング推奨動作条件 (input: $t_r = t_f = 3 \text{ ns}$)

	項目		記号		Ta = 25°C		Ta = -40 ~85°C	単位					
									V _{CC} (V)	標準	Limit	Limit	
最	小	パ	ル	7	7	幅	t _{w (L)}		3.3 ± 0.3	_	5.0	5.0	ns
取	7],	<i>,</i> ,	70		`	Ψ	t _{w (H)}	_	5.0 ± 0.5	1	5.0	5.0	115
最	小	パ	ル	7	ζ	幅	t a>		3.3 ± 0.3	_	5.0	5.0	ns
		(CI	R)				t _{w (L)}	_	5.0 ± 0.5	1	5.0	5.0	115
								R _X = 1 kΩ	3.3 ± 0.3	60	_	-	ns
最	小り	 	IJ	ガ	時	間	+	C _X = 100 pF	5.0 ± 0.5	39	_	-	115
					((注)	t _{rr}	R _X = 1 kΩ	3.3 ± 0.3	1.5	_	_	116
								C _X = 0.01 μF	5.0 ± 0.5	1.2	_	_	μs

注: TC74VHC123A にのみ適用

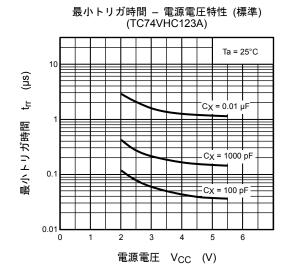
AC 特性 (input: $t_r = t_f = 3 \text{ ns}$)

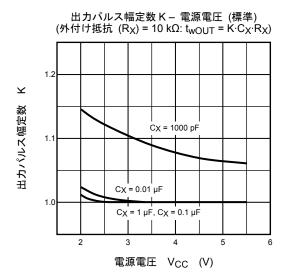
項目	記号	測	定条件		-	Га = 25°()	Ta = −40~85°C		単位
· · · · · · · · · · · · · · · · · · ·	配方		V _{CC} (V)	C _L (pF)	最小	標準	最大	最小	最大	丰位
			00.00	15	_	13.4	20.6	1.0	24.0	
伝 搬 遅 延 時 間	t _{pLH}		3.3 ± 0.3	50	_	15.9	24.1	1.0	27.5	ns
$(A, B-Q, \overline{Q})$	t _{pHL}	_	5.0 ± 0.5	15	_	8.1	12.0	1.0	14.0	115
			3.0 ± 0.3	50	_	9.6	14.0	1.0	16.0	
			3.3 ± 0.3	15	1	14.5	22.4	1.0	26.0	
伝 搬 遅 延 時 間	t _{pLH}		3.3 ± 0.3	50	_	17.0	25.9	1.0	29.5	ns
$(\overline{CLR} \text{ trigger-Q}, \overline{Q})$	t _{pHL}	_	5.0 ± 0.5	15	_	8.7	12.9	1.0	15.0	115
			3.0 ± 0.3	50	_	10.2	14.9	1.0	17.0	
		_	3.3 ± 0.3	15	1	10.3	15.8	1.0	18.5	ns
伝 搬 遅 延 時 間	t _{pLH}			50	1	12.8	19.3	1.0	22.0	
$(\overline{CLR}-Q,\ \overline{Q})$	t _{pHL}		5.0 ± 0.5	15		6.3	9.4	1.0	11.0	
				50	1	7.8	11.4	1.0	13.0	
		C _X = 28 pF	3.3 ± 0.3	50	1	160	240	_	300	ns
		$R_X = 2 k\Omega$	5.0 ± 0.5	50	_	133	200	_	240	113
出力パルス幅	t _{wOUT}	C _X = 0.01 μF	3.3 ± 0.3	50	90	100	110	90	110	μs
	IWOU1	$R_X = 10 \text{ k}\Omega$	5.0 ± 0.5	50	90	100	110	90	110	μσ
		$C_X = 0.1 \mu F$	3.3 ± 0.3	50	0.9	1.0	1.1	0.9	1.1	ms
		$R_X = 10 \text{ k}\Omega$	5.0 ± 0.5	50	0.9	1.0	1.1	0.9	1.1	1113
2 回路間										
出カパルス幅誤差	Δt_{WOUT}	_	_	50	_	±1	_	_	_	%
(同一パッケージ内)										
入 力 容 量	C _{IN}		_		_	4	10	_	10	pF
等 価 内 部 容 量	C_{PD}			(注)	_	73	_	_	_	pF

注: CPD は、無負荷時の動作消費電流より計算した IC 内部の等価容量です。

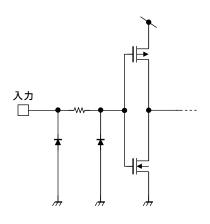
無負荷時の平均動作消費電流は、次式により求められます。

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}' \cdot Duty/100 + I_{CC}/2 (1 回路当たり)$

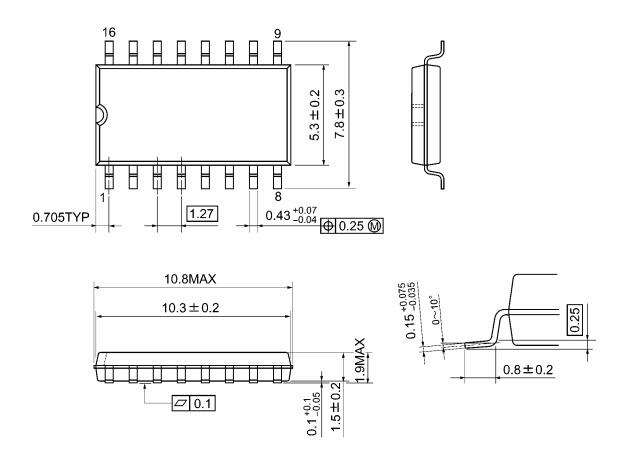

(I_{CC'}: 動的消費電流)

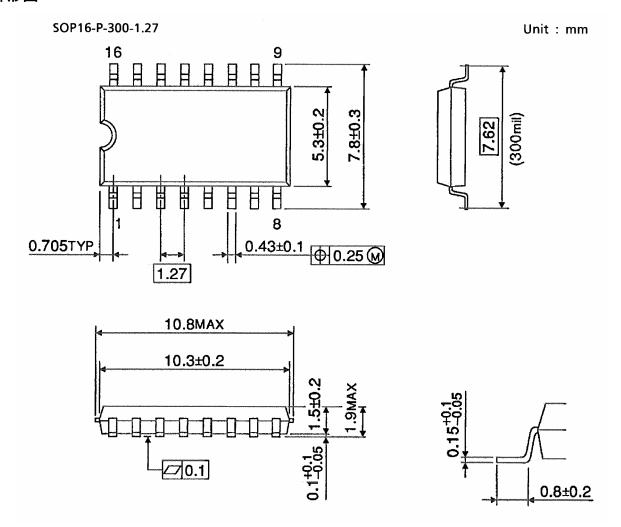

(Duty: %)

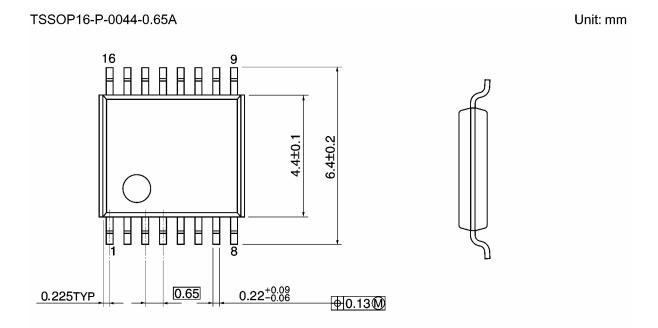
出力パルス幅 - 外付けコンデンサ特性 (標準)

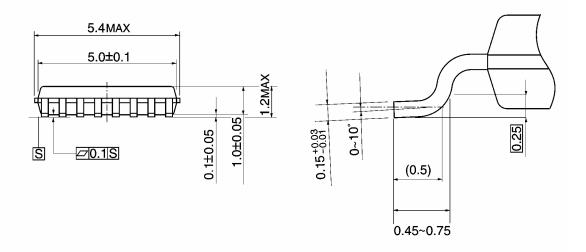

VCC = 4.5 V
CL = 50 pF

RX = 100 KΩ
RX = 10 kΩ



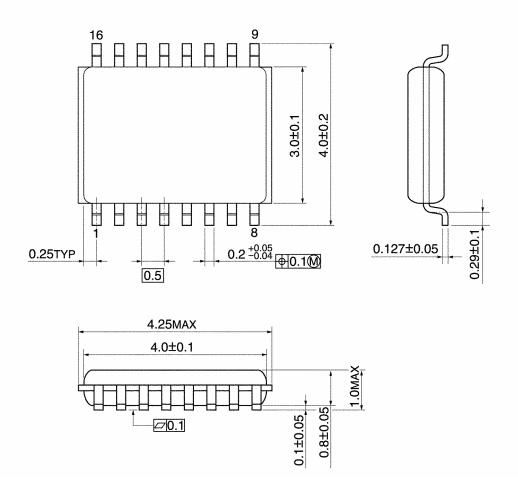

入力端子等価回路


SOP16-P-300-1.27A Unit: mm



質量: 0.18 g (標準)

質量: 0.18 g (標準)



12

質量: 0.06 g (標準)

VSSOP16-P-0030-0.50 Unit: mm

質量: 0.02 g (標準)

注: 鉛フリー対応製品パッケージ SOP16-P-300-1.27A TSSOP16-P-0044-0.65A VSSOP16-P-0030-0.50

当社半導体製品取り扱い上のお願い

060116TBA

- 当社は品質、信頼性の向上に努めておりますが、一般に半導体製品は誤作動したり故障することがあります。当社半導体製品をご使用いただく場合は、半導体製品の誤作動や故障により、生命・身体・財産が侵害されることのないように、購入者側の責任において、機器の安全設計を行うことをお願いします。なお、設計に際しては、最新の製品仕様をご確認の上、製品保証範囲内でご使用いただくと共に、考慮されるべき注意事項や条件について「東芝半導体製品の取り扱い上のご注意とお願い」、「半導体信頼性ハンドブック」などでご確認ください。 021023 A
- 本資料に掲載されている製品は、一般的電子機器 (コンピュータ、パーソナル機器、事務機器、計測機器、産業用ロボット、家電機器など) に使用されることを意図しています。特別に高い品質・信頼性が要求され、その故障や誤作動が直接人命を脅かしたり人体に危害を及ぼす恐れのある機器 (原子力制御機器、航空宇宙機器、輸送機器、交通信号機器、燃焼制御、医療機器、各種安全装置など) にこれらの製品を使用すること (以下"特定用途"という) は意図もされていませんし、また保証もされていません。本資料に掲載されている製品を当該特定用途に使用することは、お客様の責任でなされることとなります。 021023_B
- 本資料に掲載されている製品を、国内外の法令、規則及び命令により製造、使用、販売を禁止されている応用製品に使用することはできません。 060106_Q
- 本資料に掲載されている技術情報は、製品の代表的動作・応用を説明するためのもので、その使用に際して当社及び第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。 021023_C
- 本資料に掲載されている製品は、外国為替及び外国貿易法により、輸出または海外への提供が規制されているものです。 021023_E
- 本資料の掲載内容は、技術の進歩などにより予告なしに変更されることがあります。 021023_D