

TSX561, TSX562, TSX564, TSX561A, TSX562A, TSX564A

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers

Datasheet - production data

Features

Low power consumption: 235 μA typ. at 5 V

• Supply voltage: 3 V to 16 V

Gain bandwidth product: 900 kHz typ.

Low offset voltage

- "A" version: 600 μV max.- Standard version: 1 mV max.

Low input bias current: 1 pA typ.

High tolerance to ESD: 4 kV

Wide temperature range: -40 to +125 °C

Automotive qualification

• Tiny packages available

- SOT23-5

DFN8 2 mm x 2 mm, MiniSO8, SO8

QFN16 3 mm x 3 mm, TSSOP14

Benefits

- Power savings in power-conscious applications
- Easy interfacing with high impedance sensors

Related products

- See TSX63x series for reduced power consumption (45 μA, 200 kHz)
- See TSX92x series for higher gain bandwidth products (10 MHz)

Applications

- Industrial and automotive signal conditioning
- Active filtering
- · Medical instrumentation
- High impedance sensors

Description

The TSX56x, TSX56xA series of operational amplifiers benefit from STMicroelectronics $^{\circledR}$ 16 V CMOS technology to offer state-of-the-art accuracy and performance in the smallest industrial packages. The TSX56x, TSX56xA have pinouts compatible with industrial standards and offer an outstanding speed/power consumption ratio, 900 kHz gain bandwidth product while consuming only 250 μA at 16 V. Such features make the TSX56x, TSX56xA ideal for sensor interfaces and industrial signal conditioning. The wide temperature range and high ESD tolerance ease use in harsh automotive applications.

Table 1. Device summary

Version	Standard V _{io}	Enhanced V _{io}
Single	TSX561	TSX561A
Dual	TSX562	TSX562A
Quad	TSX564	TSX564A

Contents TSX56x, TSX56xA

Contents

			. 3						
2	Absolute maximum ratings and operating conditions								
3	Elec	lectrical characteristics							
4	Арр	lication information	15						
	4.1	Operating voltages	15						
	4.2	Rail-to-rail input	15						
	4.3	Input offset voltage drift over temperature	15						
	4.4	Long term input offset voltage drift	16						
	4.5	PCB layouts	17						
	4.6	Macromodel	17						
5	Pack	kage information	18						
	5.1	SOT23-5 package information	19						
	5.2	DFN8 2x2 package information	20						
	5.3	MiniSO8 package information	21						
	5.4	SO8 package information	22						
	5.5	QFN16 3x3 package information	23						
	5.6	TSSOP14 package information	25						
6	Orde	ering information	26						
7	Revi	sion history	27						

TSX56x, TSX56xA Pin connections

1 Pin connections

Single IN+ VCC+ VCC-IN-OUT SOT23-5 (TSX561) Dual 0 VCC+ OUT1 VCC+ OUT1 OUT2 OUT2 IN1-IN1+ 6 IN2-3 IN2-IN1+ VCC-IN2+ VCC-IN2+ **DFN8 2x2 (TSX562)** MiniSO8 and SO8 (TSX562) Quad OUT4 OUT1 OUT4 14 IN1-13 IN4-IN4+ IN1+ 12 IN1+ 12 IN4+ VCC+ VCC- V_{CC+} 11 V_{CC}-NC NC IN2+ 10 IN3+ IN2+ IN3+ IN2-IN3-OUT2 7 8 OUT3 QFN16 3x3 (TSX564) **TSSOP14 (TSX564)**

Figure 1. Pin connections for each package (top view)

2 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	18	
V _{id}	Differential input voltage ⁽²⁾	±V _{CC}	V
V _{in}	Input voltage ⁽³⁾	V _{CC-} - 0.2 to V _{CC+} + 0.2	
I _{in}	Input current ⁽⁴⁾	10	mA
T _{stg}	Storage temperature	-65 to +150	°C
	Thermal resistance junction to ambient ⁽⁵⁾⁽⁶⁾		
	SOT23-5	250	
	DFN8 2x2	120	
R _{thja}	MiniSO8	190	
,	SO8	125	
	QFN16 3x3	80	°C/W
	TSSOP14	100	
	Thermal resistance junction to case		
R _{thjc}	DFN8 2x2	33	
	QFN16 3x3	30	
T _j	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁷⁾	4	kV
FCD	MM: machine model for TSX561 ⁽⁸⁾	200	V
ESD	MM: machine model for TSX562 and TSX564 ⁽⁸⁾	100	\ \
	CDM: charged device model ⁽⁹⁾	1.5	kV
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltage, are with respect to network ground terminal.
- 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC} V_{in} must not exceed 18 V, V_{in} must not exceed 18 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. R_{th} are typical values.
- 7. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3 to 16	V
V _{icm}	Common mode input voltage range	V_{CC-} - 0.1 to V_{CC+} + 0.1	V
T _{oper}	Operating free air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 4. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L =10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	rmance					
		TSX56xA, T = 25 °C			600	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	O# t lt	TSX56xA, -40 °C < T < 125 °C			1800	μV
V _{io}	Offset voltage	TSX56x, T = 25 °C			1	m\/
		TSX56x, -40 °C < T < 125 °C			2.2	mV
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		2	12	μV/°C
	Input offset current	T = 25 °C		1	100 ⁽²⁾	
l _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽²⁾	~ ^
1	Input bias current	T = 25 °C		1	100 ⁽²⁾	pA
l _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽²⁾	
	Common mode rejection ratio	T = 25 °C	63	80		
CMR1	CMR = 20 log ($\Delta V_{ic}/\Delta V_{io}$) (V_{ic} = -0.1 V to V_{CC} -1.5 V, V_{out} = $V_{CC}/2$, R_L > 1 M Ω)	-40 °C < T < 125 °C	59			
	Common mode rejection ratio	T = 25 °C	47	66		
CMR2	CMR = 20 log ($\Delta V_{ic}/\Delta V_{io}$) (V_{ic} = -0.1 V to V_{CC} +0.1 V, V_{out} = $V_{CC}/2$, $R_L > 1 M\Omega$)	-40 °C < T < 125 °C	45			dB
_	Large signal voltage gain	T = 25 °C	85			
A _{vd}	$(V_{out} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V}),$ R _L > 1 MΩ)	-40 °C < T < 125 °C	83			
V	High level output voltage	T = 25 °C			70	
V _{OH}	$(V_{OH} = V_{CC} - V_{out})$	-40 °C < T < 125 °C			100	mV
V.	Low level output voltage	T = 25 °C			70	IIIV
V _{OL}	Low level output voltage	-40 °C < T < 125 °C			100	
	I _{sink} (V _{out} = V _{CC})	T = 25 °C	4.3	5.3		
,	sink (vout = vCC)	-40 °C < T < 125 °C	2.5			mA
l _{out}	(\/ . = 0 \/)	T = 25 °C	3.3	4.3		111/7
	I _{source} (V _{out} = 0 V)	-40 °C < T < 125 °C	2.5			
	Supply current	T = 25 °C		220	300	
I _{CC}	(per channel, $V_{out} = V_{CC}/2$, $R_L > 1 MΩ$)	-40 °C < T < 125 °C			350	μΑ

Table 4. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L =10 k Ω connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
AC performance									
GBP	Gain bandwidth product		600	800		kHz			
F _u	Unity gain frequency	R_L = 10 kΩ, C_L = 100 pF		690		NI IZ			
$\Phi_{\!m}$	Phase margin			55		Degree			
G _m	Gain margin			9		dB			
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $V_{\text{out}} = 0.5 \text{ V to } V_{\text{CC}} - 0.5 \text{ V}$		1		V/μs			
∫ e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		16		μV_{pp}			
e _n	Equivalent input noise voltage density	f = 1 kHz f = 10 kHz		55 29		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$			
THD+N	Total harmonic distortion + noise	Follower configuration, f_{in} = 1 kHz, R_L = 100 k Ω , V_{icm} = (V_{CC} -1.5 V)/2, BW = 22 kHz, V_{out} = 1 V_{pp}		0.004		%			

^{1.} See Section 4.3: Input offset voltage drift over temperature on page 15.

^{2.} Guaranteed by design.

Table 5. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance					
		TSX56xA, T = 25 °C			600	
\ /	Officet welltoge	TSX56xA, -40 °C < T < 125 °C			1800	μV
V_{io}	Offset voltage	TSX56x, T = 25 °C			1	m)/
		TSX56x, -40 °C < T < 125 °C			2.2	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		2	12	μV/°C
ΔV_{io}	Long-term input offset voltage drift	T = 25 °C ⁽²⁾		5		$\frac{\text{nV}}{\sqrt{\text{month}}}$
	Input offset current	T = 25 °C		1	100 ⁽³⁾	
I _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾	^
	Input bias current	T = 25 °C		1	100 ⁽³⁾	рA
l _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾	
	Common mode rejection ratio	T = 25 °C	66	84		
CMR1	$ \begin{aligned} &\text{CMR} = 20 \text{ log } (\Delta V_{ic}/\Delta V_{io}) \\ &(V_{ic} = -0.1 \text{ V to } V_{CC} - 1.5 \text{ V}, \\ &V_{out} = V_{CC}/2, \text{ R}_{L} > 1 \text{ M}\Omega) \end{aligned} $	-40 °C < T < 125 °C	63			
	Common mode rejection ratio	T = 25 °C	50	69		
CMR2	$ \begin{aligned} &\text{CMR} = 20 \text{ log } (\Delta \text{V}_{\text{ic}} / \Delta \text{V}_{\text{io}}) \\ &(\text{V}_{\text{ic}} = \text{-0.1 V to V}_{\text{CC}} + \text{0.1 V}, \\ &\text{V}_{\text{out}} = \text{V}_{\text{CC}} / 2, \text{ R}_{\text{L}} > \text{1 M}\Omega) \end{aligned} $	-40 °C < T < 125 °C	47			dB
	Large signal voltage gain	T = 25 °C	85			
A_{vd}	$(V_{out} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V}),$ R _L > 1 M Ω)	-40 °C < T < 125 °C	83			
V _{OH}	High level output voltage (V _{OH} = V _{CC} - V _{out})	R_L = 10 kΩ, T = 25 °C R_L = 10 kΩ, -40 °C < T < 125 °C			70 100	mV
V _{OL}	Low level output voltage	R_L = 10 kΩ T = 25 °C R_L = 10 kΩ -40 °C < T < 125 °C			70 100	1110
	1	V _{out} = V _{CC} , T = 25 °C	11	14		
	Isink	V _{out} = V _{CC} , -40 °C < T < 125 °C	8			mA
l _{out}		V _{out} = 0 V, T = 25 °C	9	12		''''
	Isource	V _{out} = 0 V, -40 °C < T < 125 °C	7			
	Supply current	T = 25 °C		235	350	_
I _{CC}	(per channel, $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$)	-40 °C < T < 125 °C			400	μA

Table 5. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
AC perfor	AC performance									
GBP	Gain bandwidth product		700	850		kHz				
F _u	Unity gain frequency	$R_1 = 10 kΩ, C_1 = 100 pF$		730		KI IZ				
$\Phi_{\!m}$	Phase margin	1KL - 10 KS2 OL - 100 PF		55		Degree				
G _m	Gain margin			9		dB				
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $V_{\text{out}} = 0.5 \text{ V to } V_{\text{CC}} - 0.5 \text{ V}$		1.1		V/µs				
∫ e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		15		μV _{pp}				
e _n	Equivalent input noise voltage density	f = 1 kHz f = 10 kHz		55 29		<u>nV</u> √Hz				
THD+N	Total harmonic distortion + noise	Follower configuration, f_{in} = 1 kHz, R_L = 100 k Ω , V_{icm} = (V_{CC} - 1.5 V)/2, BW = 22 kHz, V_{out} = 2 V_{pp}		0.002		%				

^{1.} See Section 4.3: Input offset voltage drift over temperature on page 15.

^{2.} Typical value is based on the V_{io} drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.

^{3.} Guaranteed by design.

Table 6. Electrical characteristics at V_{CC+} = +16 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	ormance					
		TSX56xA, T = 25 °C			600	
\ /	Office to the sec	TSX56xA, -40 °C < T < 125 °C			1800	μV
V_{io}	Offset voltage	TSX56x, T = 25 °C			1	\
		TSX56x, -40 °C < T < 125 °C			2.2	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		2	12	μV/°C
ΔV_{io}	Long-term input offset voltage drift	T = 25 °C ⁽²⁾		1.6		$\frac{\mu V}{\sqrt{month}}$
1	Input offset current	T = 25 °C		1	100 ⁽³⁾	
I _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾	nΛ
l	Input bias current	T = 25 °C		1	100 ⁽³⁾	pА
I _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾	
	Common mode rejection ratio	T = 25 °C	76	95		
CMR1	CMR = 20 log ($\Delta V_{ic}/\Delta V_{io}$) (V_{ic} = -0.1 V to V_{CC} - 1.5 V, V_{out} = $V_{CC}/2$, $R_L > 1 M\Omega$)	-40 °C < T < 125 °C	72			
	Common mode rejection ratio	T = 25 °C	60	78		
CMR2	CMR = 20 log ($\Delta V_{ic}/\Delta V_{io}$) (V_{ic} = -0.1 V to V_{CC} + 0.1 V, V_{out} = $V_{CC}/2$, $R_L > 1 M\Omega$)	-40 °C < T < 125 °C	56			dB
	Common mode rejection ratio	T = 25 °C	76	90		
SVR	20 log ($\Delta V_{CC}/\Delta V_{io}$) (V_{CC} = 3 V to 16 V, V_{out} = V_{icm} = $V_{CC}/2$)	-40 °C < T < 125 °C	72			
_	Large signal voltage gain	T = 25 °C	85			
A_{vd}	$(V_{out} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V}),$ R _L > 1 M Ω)	-40 °C < T < 125 °C	83			
V _{OH}	High level output voltage (V _{OH} = V _{CC} - V _{out})	R_L = 10 kΩ, T = 25 °C R_L = 10 kΩ, -40 °C < T < 125 °C			70 100	m\/
V _{OL}	Low level output voltage	R_L = 10 kΩ, T = 25 °C R_L = 10 kΩ, -40 °C < T < 125 °C			70 100	mV
	1	V _{out} = V _{CC} , T = 25 °C	40	92		
,	l sink	V _{out} = V _{CC} , -40 °C < T < 125 °C	35			mΛ
l _{out}	1	V _{out} = 0 V, T = 25 °C	30	90		mA
	Isource	V _{out} = 0 V, -40 °C < T < 125 °C	25			
	Supply current	T = 25 °C		250	360	
I _{CC}	(per channel, $V_{out} = V_{CC}/2$, $R_L > 1 MΩ$)	-40 °C < T < 125 °C			400	μΑ

Table 6. Electrical characteristics at V_{CC+} = +16 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, V_{amb} = 25 °C, and $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
AC perfo	AC performance									
GBP	Gain bandwidth product		750	900		kHz				
Fu	Unity gain frequency	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		750		KIIZ				
$\Phi_{\!m}$	Phase margin	N _L = 10 k22 C _L = 100 pr		55		Degree				
G _m	Gain margin			9		dB				
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $V_{out} = 0.5 \text{ V}$ to $V_{CC} - 0.5 \text{ V}$		1.1		V/µs				
∫e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		15		μV _{pp}				
e _n	Equivalent input noise voltage density	f = 1 kHz f = 10 kHz		48 27		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$				
THD+N	Total harmonic distortion + noise	Follower configuration, f_{in} = 1 kHz, R_L = 100 k Ω , V_{icm} = (V_{CC} - 1.5 V)/2, BW = 22 kHz, V_{out} = 5 V_{pp}		0.0005		%				

^{1.} See Section 4.3: Input offset voltage drift over temperature on page 15.

Typical value is based on the V_{io} drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.

^{3.} Guaranteed by design.

Figure 2. Supply current vs. supply voltage at

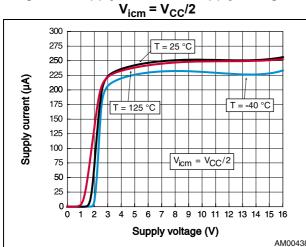


Figure 3. Input offset voltage distribution at V_{CC} = 16 V and V_{icm} = 8 V

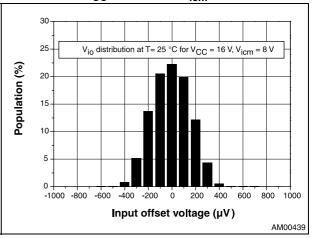


Figure 4. Input offset voltage temperature coefficient distribution at V_{CC} = 16 V, V_{icm} = 8 V

Figure 5. Input offset voltage vs. input common mode voltage at V_{CC} = 12 V

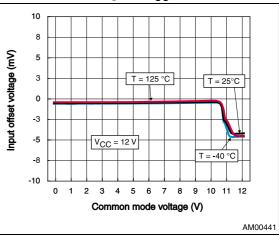


Figure 6. Input offset voltage vs. temperature at V_{CC} = 16 V

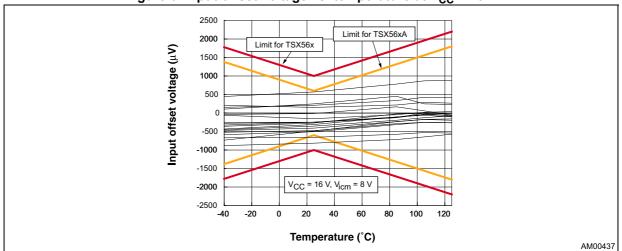
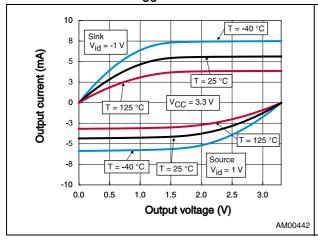



Figure 7. Output current vs. output voltage at V_{CC} = 3.3 V

Figure 8. Output current vs. output voltage at $V_{CC} = 5 \text{ V}$

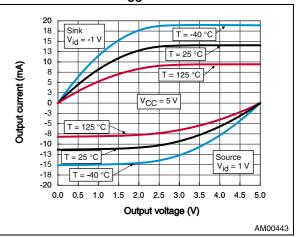
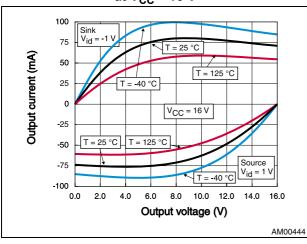



Figure 9. Output current vs. output voltage at V_{CC} = 16 V

Figure 10. Bode diagram at $V_{CC} = 3.3 \text{ V}$

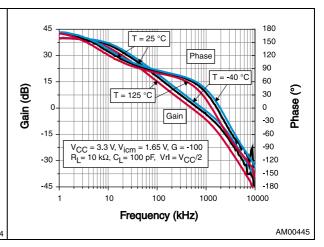
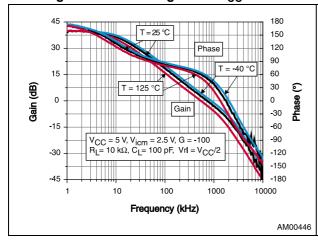



Figure 11. Bode diagram at $V_{CC} = 5 \text{ V}$

Figure 12. Bode diagram at V_{CC} = 16 V

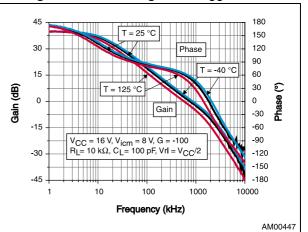
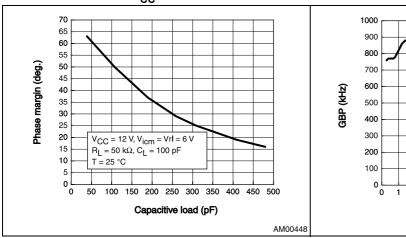
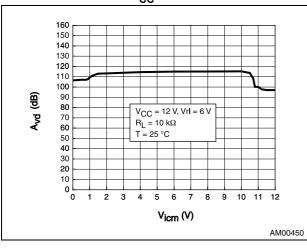



Figure 13. Phase margin vs. capacitive load $V_{CC} = 12 \text{ V}$ Figure 14. GBP vs. input common mode voltage at $V_{CC} = 12 \text{ V}$

at V_{CC} = 12 V


1000
900
800
700
V_{CC} = 12 V, V_{icm} = VrI
R_L = 10 kΩ, C_L = 100 pF
T = 25 °C

200
100
0 1 2 3 4 5 6 7 8 9 10 11 12
V_{icm} (V)

AM00449

Figure 15. A_{vd} vs. input common mode voltage at V_{CC} = 12 V

Figure 16. Slew rate vs. supply voltage

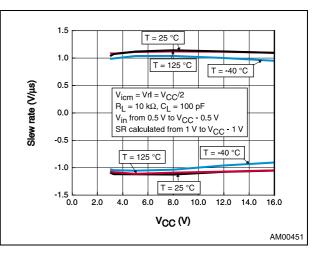
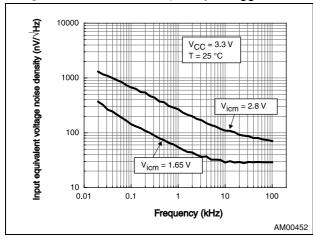
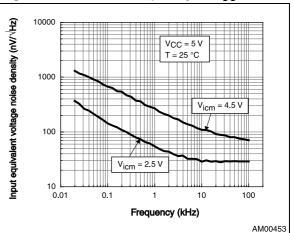




Figure 17. Noise vs. frequency at V_{CC} = 3.3 V

Figure 18. Noise vs. frequency at $V_{CC} = 5 \text{ V}$

57

Figure 19. Noise vs. frequency at V_{CC} = 16 V Figure 20. Distortion + noise vs. output voltage amplitude

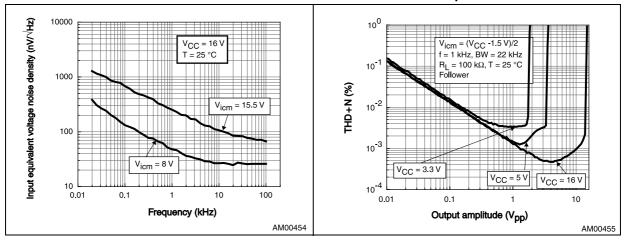
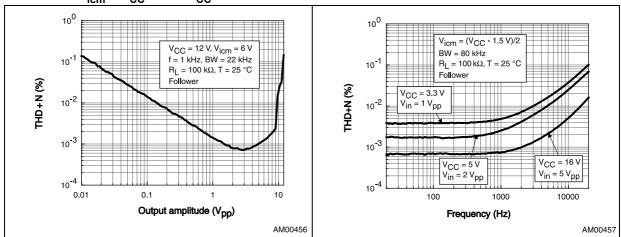



Figure 21. Distortion + noise vs. amplitude at $V_{icm} = V_{CC}/2$ and $V_{CC} = 12 \text{ V}$

Figure 22. Distortion + noise vs. frequency

4 Application information

4.1 Operating voltages

The amplifiers of the TSX56x and TSX56xA series can operate from 3 V to 16 V. Their parameters are fully specified at 3.3 V, 5 V and 16 V power supplies. However, the parameters are very stable in the full V_{CC} range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to +125 ° C.

4.2 Rail-to-rail input

The TSX56x and TSX56xA devices are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from V_{CC-} - 0.1 V to V_{CC+} + 0.1 V.

However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from V_{CC-} - 0.1 V to V_{CC+} - 1.5 V).

Beyond V_{CC+} - 1.5 V, the operational amplifiers are still functional but with degraded performance, as can be observed in the electrical characteristics section of this datasheet (mainly V_{io} and GBP). These performances are suitable for a number of applications needing to be rail-to-rail.

The devices are designed to prevent phase reversal.

4.3 Input offset voltage drift over temperature

The maximum input voltage drift over the temperature variation is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effects of temperature variations.

The maximum input voltage drift over temperature is computed in *Equation 1*.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \text{max} \left| \frac{V_{io}(T) - V_{io}(25^{\circ}C)}{T - 25^{\circ}C} \right|$$

with T = -40 °C and 125 °C.

The datasheet maximum value is guaranteed by measurement on a representative sample size ensuring a C_{pk} (process capability index) greater than 2.

4.4 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using *Equation 2*.

Equation 2

$$A_{FV} = e^{\beta \cdot (V_S - V_U)}$$

Where:

A_{FV} is the voltage acceleration factor

 β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)

 V_S is the stress voltage used for the accelerated test

V_{II} is the voltage used for the application

The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.

Equation 3

$$A_{FT} = e^{\frac{E_a}{k} \cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)}$$

Where:

A_{FT} is the temperature acceleration factor

Ea is the activation energy of the technology based on the failure rate

k is the Boltzmann constant (8.6173 x 10^{-5} eV.K⁻¹)

 T_U is the temperature of the die when V_U is used (K)

T_S is the temperature of the die under temperature stress (K)

The final acceleration factor, A_F , is the multiplication of the voltage acceleration factor and the temperature acceleration factor (*Equation 4*).

Equation 4

$$A_F = A_{FT} \times A_{FV}$$

 A_F is calculated using the temperature and voltage defined in the mission profile of the product. The A_F value can then be used in *Equation 5* to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

Months = $A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$

To evaluate the op-amp reliability, a follower stress condition is used where V_{CC} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).

The V_{io} drift (in μV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see *Equation 6*).

Equation 6

$$V_{CC} = maxV_{op}$$
 with $V_{icm} = V_{CC} / 2$

The long term drift parameter (ΔV_{io}), estimating the reliability performance of the product, is obtained using the ratio of the V_{io} (input offset voltage value) drift over the square root of the calculated number of months (*Equation 7*).

Equation 7

$$\Delta V_{io} = \frac{V_{io} drift}{\sqrt{(months)}}$$

where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

4.5 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.


4.6 Macromodel

Accurate macromodels of the TSX56x, TSX56xA devices are available on the STMicroelectronics' website at *www.st.com*. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSX56x and TSX56xA operational amplifiers. They emulate the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, *but they do not replace on-board measurements*.

Package information TSX56x, TSX56xA

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

TSX56x, TSX56xA Package information

5.1 SOT23-5 package information

A AZ

Figure 23. SOT23-5 package mechanical drawing

Table 7. SOT23-5 package mechanical data

	Dimensions								
Ref.	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.90	1.20	1.45	0.035	0.047	0.057			
A1			0.15			0.006			
A2	0.90	1.05	1.30	0.035	0.041	0.051			
В	0.35	0.40	0.50	0.013	0.015	0.019			
С	0.09	0.15	0.20	0.003	0.006	0.008			
D	2.80	2.90	3.00	0.110	0.114	0.118			
D1		1.90			0.075				
е		0.95			0.037				
E	2.60	2.80	3.00	0.102	0.110	0.118			
F	1.50	1.60	1.75	0.059	0.063	0.069			
L	0.10	0.35	0.60	0.004	0.013	0.023			
K	0 °		10 °	0 °		10 °			

Package information TSX56x, TSX56xA

5.2 DFN8 2x2 package information

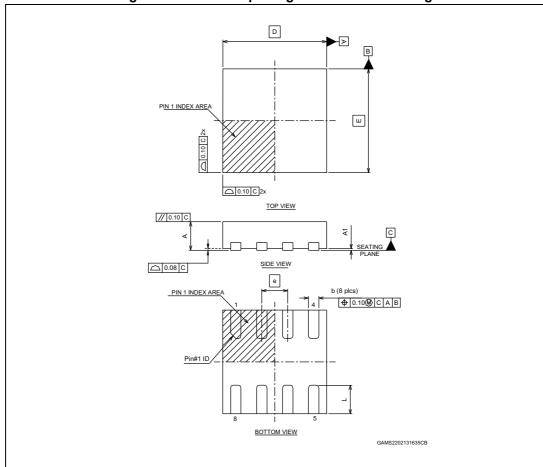


Figure 24. DFN8 2x2 package mechanical drawing

Table 8. DFN8 2x2 package mechanical data

public of 21 to 2x2 public of actual									
	Dimensions								
Ref.	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.70	0.75	0.80	0.028	0.030	0.031			
A1	0.00	0.02	0.05	0.000	0.001	0.002			
b	0.15	0.20	0.25	0.006	0.008	0.010			
D		2.00			0.079				
Е		2.00			0.079				
е		0.50			0.020				
L	0.045	0.55	0.65	0.018	0.022	0.026			
N		8		8					

TSX56x, TSX56xA Package information

5.3 MiniSO8 package information

D E1

C CCC C

SEATING PLANE

C GAUGE PLANE

PIN 1 IDENTIFICATION

1 4 4

Figure 25. MiniSO8 package mechanical drawing

Table 9. MiniSO8 package mechanical data

	Dimensions					
Symbol	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.10			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
E	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
е		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	0°		8°	0°		8°
ссс			0.10			0.004

Package information TSX56x, TSX56xA

5.4 SO8 package information

Figure 26. SO8 package mechanical drawing

Table 10. SO8 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	0		8 °	1 °		8 °
ccc			0.10			0.004

TSX56x, TSX56xA Package information

5.5 QFN16 3x3 package information

D **▶** В (D/2xE/2) Е △ aaa C 2x aaa C 2x TOP VIEW // ccc C SEATING PLANE SIDE VIEW eee C bbb (M) C A B bbb (M) C 12 Pin#1 ID R0.11 **BOTTOM VIEW** GAMS2502131051CB

Figure 27. QFN16 3x3 package mechanical drawing

Package information TSX56x, TSX56xA

Table 11. QFN16 3x3 package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.50		0.65	0.020		0.026
A1	0		0.05	0		0.002
b	0.18	0.25	0.30	0.007	0.010	0.012
D		3.00			0.118	
E		3.00			0.118	
е		0.50			0.020	
L	0.30		0.50	0.012		0.020
aaa			0.15			0.006
bbb			0.10			0.004
ccc			0.10			0.004
ddd			0.05			0.002
eee			0.08			0.003

TSX56x, TSX56xA Package information

5.6 TSSOP14 package information

Figure 28. TSSOP14 package mechanical drawing

Table 12. TSSOP14 package mechanical data

	Dimensions					
Symbol	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.90	5.00	5.10	0.193	0.197	0.201
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.176
е		0.65			0.0256 BSC	
L	0.45	0.60	0.75			
L1		1.00				
k	0°		8°	0°		8°
aaa			0.10	0.018	0.024	0.030

Ordering information TSX56x, TSX56xA

6 Ordering information

Table 13. Order codes

Order code	Temperature range	Channel number	Package	Packaging	Marking
TSX561ILT		1	SOT23-5		
TSX562IQ2T			DFN8 2 x 2		K23
TSX562IST	-40 to 125 °C	2	MiniSO8		
TSX562IDT	-40 to 125 C		SO8]	TSX562I
TSX564IQ4T		4	QFN16 3 x 3		K23
TSX564IPT		4	TSSOP14	Tape and reel	TSX564I
TSX561IYLT ⁽¹⁾	-40 to 125 °C automotive grade	1	SOT23-5		K116
TSX562IYST ⁽¹⁾		2	MiniSO8		
TSX562IYDT ⁽²⁾		2	SO8		TSX562Y
TSX564IYPT ⁽¹⁾		4	TSSOP14		TSX564IY
TSX561AILT		1	SOT23-5		K117
TSX562AIST	-40 to 125 °C	2	MiniSO8		KII7
TSX562AIDT		2	SO8		TSX562AI
TSX564AIPT		4	TSSOP14		TSX564AI
TSX561AIYLT ⁽¹⁾	-40 to 125 °C	1	SOT23-5		K118
TSX562AIYST ⁽¹⁾		-40 to 125 °C	2	MiniSO8	
TSX562AIYDT ⁽²⁾	automotive grade	2	SO8		TSX562AY
TSX564AIYPT ⁽¹⁾		4	TSSOP14]	TSX564AIY

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent.

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent are ongoing.

TSX56x, TSX56xA Revision history

7 Revision history

Table 14. Document revision history

Date	Revision	Changes
06-Jun-2012	1	Initial release.
18-Sep-2012	2	Added TSX562, TSX564, TSX562A, and TSX564A devices. Updated Features, Description, Figure 1, Table 1 (added DFN8, MiniSO8, QFN16, and TSSOP14 package). Updated Table 1 (updated ESD MM values). Updated Table 4 and Table 5 (added footnotes), Section 5 (added Figure 24 to Figure 28 and Table 8 to Table 12), Table 13 (added dual and quad devices). Minor corrections throughout document.
23-May-2013	3	Replaced the silhouette, pinout, package diagram, and mechanical data of the DFN8 2x2 and QFN16 3x3 packages. Added Benefits and Related products. Table 1: updated R _{thja} values and added R _{thjc} values for DFN8 2x2 and QFN16 3x3. Updated Section 4.3, Section 4.4, and Section 4.6 Replaced Figure 23: SOT23-5 package mechanical drawing and Table 7: SOT23-5 package mechanical data.
09-Aug-2013	4	Added SO8 package for dual version TSX562 and TSX562A. <i>Table 2</i> : updated for SO8 package <i>Table 13</i> : added order codes TSX562IDT, TSX562IYDT, TSX562AIDT, TSX562AIYDT; updated automotive grade status.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

77