

www.vishay.com

Vishay Semiconductors

Power Rectifier Diodes (T-Modules), 2200 V, 20 A

D-55

PRODUCT SUMMARY					
I _{F(AV)}	20 A				
Туре	Modules - Diode, High Voltage				
V _{RRM}	2200 V				
Package	D-55				
Circuit	Single diodes				

FEATURES

- · Electrically isolated base plate
- 2200 V_{RRM}
- Industrial standard packaging
- UL approved file E78996

- · Simplified mechanical designs, rapid assembly
- Large creepage distances
- · Designed and qualified for industrial level
- · Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

These series of T-modules use standard recovery power rectifier diodes. The semiconductors are electrically isolated from the metal base, allowing common heatsink and compact assembly to be built.

Applications include power supplies, battery charges, welders, motor controls, and solar panel application.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	T20HF	UNITS			
		20	А			
I _{F(AV)}	T _C	85	°C			
I _{F(RMS)}		31				
	50 Hz	450	Α			
I _{FSM}	60 Hz	470				
2 	50 Hz	1015	A ² s			
1-1	60 Hz	920	A-5			
I²√t		10 125	A²√s			
V _{RRM}		2200	V			
T _J		- 40 to 150	°C			

ELECTRICAL SPECIFICATIONS

VOLTAGE R	ATINGS			
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 150 °C mA
T20HF220	22	2200	2250	18

Vishay Semiconductors

FORWARD CONDUCTION						
PARAMETER	SYMBOL		TEST CONDITION	T20HF	UNITS	
Maximum average forward current	le	180° conduct	tion, half sine wave		20	А
at case temperature	I _{F(AV)}	100 Conduct	ion, nan sine wave		85	°C
Maximum RMS forward current	I _{F(RMS)}				31	Α
Maximum neak and avala		t = 10 ms	No voltage		450	
Maximum peak, one-cycle forward, non-repetitive	l=o	t = 8.3 ms	reapplied		470	A
surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}	Sinusoidal	380	
cargo carrent		t = 8.3 ms	reapplied	half wave,	400	
		t = 10 ms	No voltage	initial T _J =	1015	
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied	T _J maximum	920	A ² s
Waxiiiluiii i-t ioi lusiiig		t = 10 ms	100 % V _{RRM}		715	A-5
		t = 8.3 ms	reapplied		650	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to	10 ms, no voltage re	eapplied	10 125	A²√s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x T _J maximum	$I_{F(AV)} < I < \pi \times I_{F(AV)}$,	0.77	V
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}),$	$(I > \pi \times I_{F(AV)})$, T_J maximum			V
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J maximum			8.5	- mΩ
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)})$, T_J maximum			6.7	11152
Maximum forward voltage drop	V _{FM}	$I_{FM} = 60 \text{ A}, T_J = 25 \text{ °C},$ $t_p = 400 \text{ µs square pulse}$ $Average \text{ power} = V_{F(TO)} \times I_{F(AV)} + r_f \times (I_{F(RMS)})^2$			1.50	V

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	T20HF	UNITS
Maximum peak reverse leakage current	I _{RRM}	T _J = 150 °C	18	mA
RMS isolation voltage	V _{ISOL}	50 Hz, circuit to base, all terminals shorted $T_J = 25$ °C, t = 1 s	3500	V

THERMAL AND MECHANICAL SPECIFICATIONS									
PARAMETER	SYMBOL	MBOL TEST CONDITIONS		VALUES	UNITS				
FARAMETER	STIVIBUL			T20HF					
Maximum junction operating and storage temperature range	T _J , T _{Stg}							- 40 to 150	°C
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation		2.53	K/W				
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface smooth, flat and greased		0.2	K∕ VV				
Mounting torque, to heatsink		Non-lubricated M3.5 mounting screws (1)		1.3 ± 10 %	Nm				
± 10 % terminals		threads M5 screw terminals		3 ± 10 %	INIII				
Approximate weight		See dimensions - link at the end of datasheet		54	g				
Case style				T-module	(D-55)				

Note

⁽¹⁾ A mounting compound is recommended and the torque should be rechecked after a period of about 3 hours to allow for the spread of the compound

△R CONDUCTION PER JUNCTION											
DEVICES	SINUSC	SINUSOIDAL CONDUCTION AT T _J MAXIMUM					RECTANGULAR CONDUCTION AT T _J MAXIMUM				UNITS
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
T20HF	0.29	0.34	0.43	0.64	1.10	0.20	0.35	0.47	0.67	1.11	K/W

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

www.vishay.com

Vishay Semiconductors

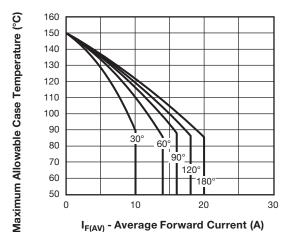


Fig. 1 - Current Ratings Characteristics

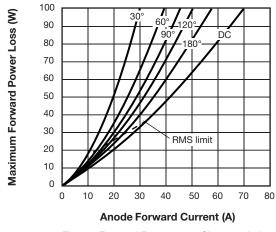


Fig. 4 - Forward Power Loss Characteristics

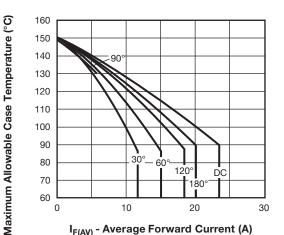


Fig. 2 - Current Ratings Characteristics

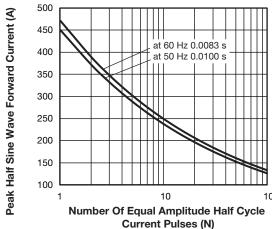


Fig. 5 - Maximum Non-Repetitive Surge Current

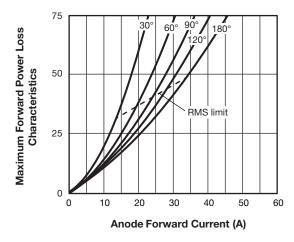


Fig. 3 - Forward Power Loss Characteristics

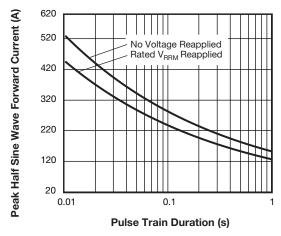


Fig. 6 - Maximum Non-Repetitive Surge Current

Vishay Semiconductors

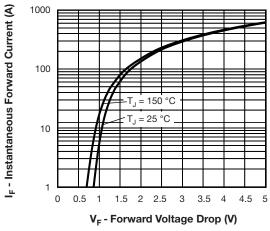


Fig. 7 - Forward Voltage Drop Characteristics

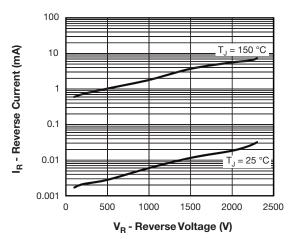


Fig. 8 - Typical Values of Reverse Current vs. Reverse Voltage

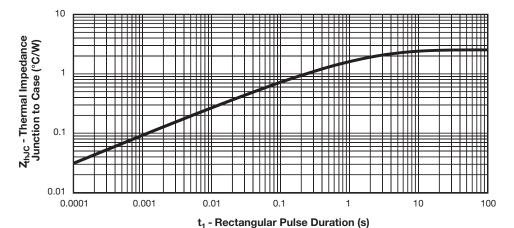
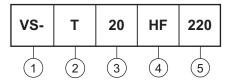



Fig. 9 - Maximum Thermal Impedance Z_{th,IC} Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

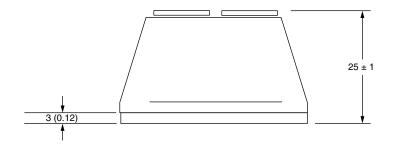
2 - Module type

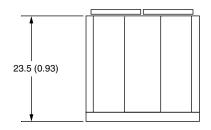
3 - Current rating

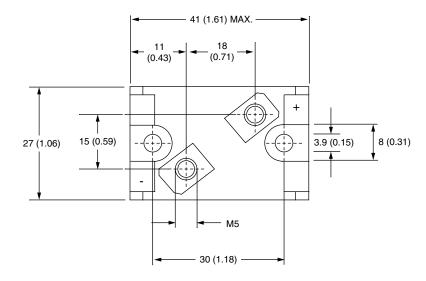
4 - Circuit configuration (see Circuit Configuration table)

5 - Voltage code x 10 = V_{RRM}

CIRCUIT CONFIGURATION					
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Single diode	HF	+ 0			


LINKS TO RELAT	ED DOCUMENTS
Dimensions	www.vishay.com/doc?95313




Vishay Semiconductors

D-55 T-Module Diode Standard and Fast Recovery

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000