
GREEN (5-2008)**

Vishay Semiconductors

High Speed Infrared Emitting Diode, 940 nm, GaAlAs, MQW

DESCRIPTION

VSLB3940 is a high speed infrared emitting diode in GaAlAs, MQW technology, molded in a clear plastic package.

FEATURES

Package type: leaded

• Package form: T-1, clear epoxy

• Dimensions: Ø 3 mm

• Peak wavelength: $\lambda_p = 940 \text{ nm}$

· High speed

• High radiant power

· High radiant intensity

• Angle of half intensity: $\varphi = \pm 22^{\circ}$

· Low forward voltage

· Suitable for high pulse current operation

· Good spectral matching to Si photodetectors

 Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Note

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

APPLICATIONS

- · Infrared remote control units
- Free air transmission systems
- Infrared source for optical counters and card readers

PRODUCT SUMMARY					
COMPONENT	I _e (mW/sr)	φ (deg)	λ _p (nm)	t _r (ns)	
VSLB3940	65	± 22	940	15	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION				
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM	
VSLB3940	Bulk	MOQ: 5000 pcs, 5000 pcs/bulk	T-1	

Note

MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V_{R}	5	V	
Forward current		l _F	100	mA	
Peak forward current	$t_p/T = 0.1, t_p = 100 \mu s$	I _{FM}	1	А	
Surge forward current	t _p = 100 μs	I _{FSM}	1.5	А	
Power dissipation		P _V	160	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 85	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	$t \le 5$ s, 2 mm from case	T _{sd}	260	°C	
Thermal resistance junction/ambient	J-STD-051, leads 7 mm, soldered on PCB	R _{thJA}	300	K/W	

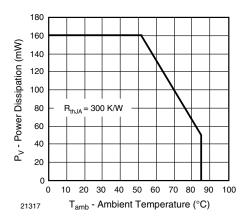


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

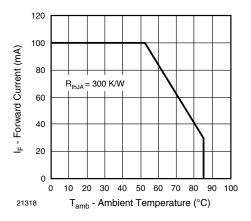


Fig. 1 - Forward Current Limit vs. Ambient Temperature

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F	1.15	1.35	1.6	V
	$I_F = 1 \text{ A, } t_p = 100 \mu\text{s}$	V _F		2.2		V
Temperature coefficient of V _F	I _F = 1 mA	TK _{VF}		- 1.5		mV/K
	I _F = 100 mA	TK _{VF}		- 1.1		mV/K
Reverse current	V _R = 5 V	I _R			10	μA
Junction capacitance	$V_R = 0 \text{ V, f} = 1 \text{ MHz,}$ $E = 0 \text{ mW/cm}^2$	CJ		70		pF
B	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	I _e	32	65	110	mW/sr
Radiant intensity	$I_F = 1 \text{ A, t}_p = 100 \mu\text{s}$	l _e		650		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	фе		40		mW
Temperature coefficient of radiant	I _F = 1 mA	TK _{φe}		- 1.1		%/K
power	I _F = 100 mA	TK _{φe}		- 0.51		%/K
Angle of half intensity		φ		± 22		deg
Peak wavelength	I _F = 30 mA	λ_{p}		940		nm
Spectral bandwidth	I _F = 30 mA	Δλ		25		nm
Temperature coefficient of λ_p	I _F = 30 mA	TK_{\lambdap}		0.25		nm
Rise time	I _F = 100 mA, 20 % to 80 %	t _r		15		ns
Fall time	I _F = 100 mA, 20 % to 80 %	t _f		15		ns
Virtual source diameter		d		2		mm

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

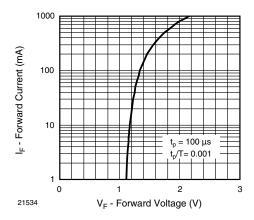


Fig. 2 - Forward Current vs. Forward Voltage

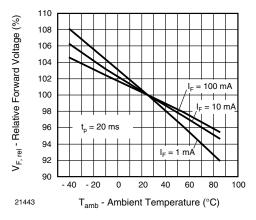


Fig. 3 - Relative Forward Voltage vs. Ambient Temperature

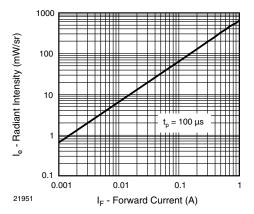


Fig. 4 - Radiant Intensity vs. Forward Current

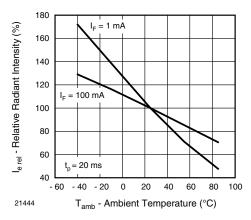


Fig. 5 - Relative Radiant Intensity vs. Ambient Temperature

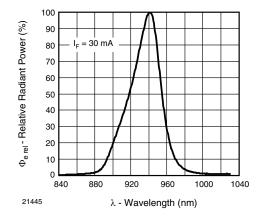


Fig. 6 - Relative Radiant Power vs. Wavelength

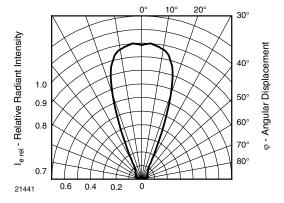
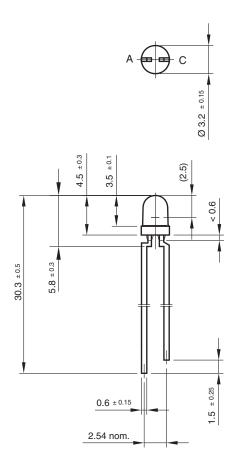
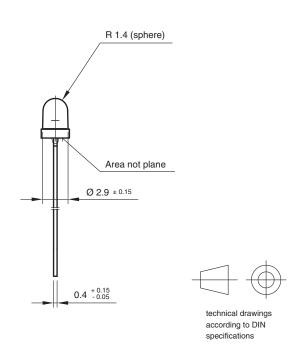




Fig. 7 - Relative Radiant Intensity vs. Angular Displacement

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.544-5255.01-4

Issue: 7; 25.09.08 95 10913

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000