

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2005 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:
Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for
commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax
products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Boe-Bot SumoBot, SX-Key and Toddler are registered trademarks of Parallax, Inc.
If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must state
that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the trademark
name in each printed document or web page. HomeWork Board, Parallax, and the Parallax logo are trademarks of
Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in printed material, you must state
that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the trademark name in each printed
document or web page. Other brand and product names are trademarks or registered trademarks of their respective
holders.

ISBN 1-928982-35-2

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com.

• Propeller Chip – This list is specifically for our customers using Propeller chips and products.
• BASIC Stamp – This list is widely utilized by engineers, hobbyists and students who share their

BASIC Stamp projects and ask questions.
• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in

Class curriculum in their courses. The list provides an opportunity for both students and educators to
ask questions and get answers.

• Parallax Educators – A private forum exclusively for educators and those who contribute to the
development of Stamps in Class. Parallax created this group to obtain feedback on our curricula and
to provide a place for educators to develop and obtain Teacher’s Guides.

• Robotics – Designed for Parallax robots, this forum is intended to be an open dialogue for robotics
enthusiasts. Topics include assembly, source code, expansion, and manual updates. The Boe-Bot®,
Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with
Parallax assembly language SX – Key® tools and 3rd party BASIC and C compilers.

• Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

ACKNOWLEGEMENTS
Many thanks to fellow Parallaxians Jen Jacobs for cover and title page art and Chris Savage for technical review of
this edition.

Table of Contents · Page i

Table of Contents

Preface... iii
Author’s Note ... iii
Getting the Most from StampWorks..v
Steps to Success ..v

Preparing the StampWorks Lab ... 1
StampWorks Kit Contents...1
Setting Up the Hardware and Software ..2
Notes on Using Integrated Circuits in StampWorks Experiments...................................9

Programming Essentials... 11
Contents of a Working Program ...11
Branching – Redirecting Program Flow ..12
Looping – Running Code Again and Again...14
Subroutines – Reusable Code that Saves Program Space..16

The Elements of PBASIC Style.. 19
Time to Experiment .. 25

Learn the Programming Concepts..25
Building the Projects ...25
What to do Between Projects ...25
Experiment #1: Flash an LED...26
Experiment #2: Flash an LED (Advanced) ...29
Experiment #3: Display a Counter with LEDs...33
Experiment #4: Science Fiction LED Display ...36
Experiment #5: LED Graph (Dot or Bar) ...40
Experiment #6: A Simple Game ...46
Experiment #7: A Lighting Controller ..51

Building Circuits on Your Own.. 57
Using 7-Segment LED Displays .. 59

Experiment #8: A Single-Digit Counter ...60
Experiment #9: A Digital Die...63
Experiment #10: A Digital Clock ...67

Using Character LCDs ... 73
Experiment #11: Basic LCD Demonstration ...75
Experiment #12: Creating Custom LCD Characters...82
Experiment #13: Reading the LCD RAM ..88

Page ii ·StampWorks

Moving Forward ... 93
Experiment #14: Scanning and Debouncing Multiple Inputs ..94
Experiment #15: Counting Events ..98
Experiment #16: Frequency Measurement ..101
Experiment #17: Advanced Frequency Measurement ...106
Experiment #18: A Light Controlled Theremin..109
Experiment #19: Sound Effects (SFX)..112
Experiment #20: Infrared Object Detection ..119
Experiment #21: Analog Input with PULSIN...123
Experiment #22: Analog Output with PWM ..126
Experiment #23: Expanded Digital Outputs with Shift Registers................................130
Experiment #24: Expanded Digital Inputs with Shift Registers...................................137
Experiment #25: Mixed IO with Shift Registers ..143
Experiment #26: Hobby Servo Control ...146
Experiment #27: Stepper Motor Control ...150
Experiment #28: Voltage Measurement ...156
Experiment #29: Temperature Measurement ...161
Experiment #30: High Resolution Temperature Measurement168
Experiment #31: Advanced 7-Segment Multiplexing..173
Experiment #32: I2C Communications ...179
Experiment #33: Using a Real-Time Clock...188
Experiment #34: Serial Communications with a PC ...197
Experiment #35: (BONUS) BS2px ADC ...206

Power PBASIC .. 211
Striking Out on Your Own .. 219

Preface · Page iii

Preface

AUTHOR’S NOTE

Dear friends,

It seems like ages ago that Ken Gracey handed me a new prototyping and
development board and asked, “What do you think we could do with this?” That
board, of course, was the original NX-1000 and what we went on to create together
was the first edition of the book you’re now reading: StampWorks.

A lot of things have changed since then, and yet many things remain comfortably
constant: there are still many ways to learn microcontroller programming and one of
the best – in our opinion – is to do so using the BASIC Stamp® microcontroller. Our
philosophy has always been rooted in the belief that learning by doing provides the
fastest, deepest, most satisfying results. We teach theory by putting it into practice.
That’s what StampWorks is all about.

Most of you that find your way to StampWorks will have had some applicable
experience; perhaps you’ve worked your way through our excellent Stamps in Class
student guides and are looking to build on that experience. Perhaps you have an
electronics and/or programming background and are looking to apply those skills
with the BASIC Stamp microcontroller. Either way, this book will teach you to apply
the skills that you have and develop new ones along the way so that you can
confidently translate your ideas into working projects. Microcontrollers are a part of
our daily lives – whether we see them or not – so learning to design with and
program them is a very valuable skill.

Like earlier editions, this book assumes that you’re ready to work – ready to read
component documentation, willing to open the BASIC Stamp IDE help file for details
on a PBASIC command, that you’re unafraid to do a web search if necessary to
obtain data that will be required for a challenge; in short, whatever it takes to
succeed. We’ll push a bit harder this time, but we’ll do it together. My goal is that
even if this isn’t your first exposure to StampWorks, it will be a worthwhile and
pleasurable experience.

Page iv ·StampWorks

Among the changes that affect this edition of StampWorks is an updated PBASIC
language: PBASIC 2.5. For those that come from a PC programming background,
PBASIC 2.5 will make the transition to embedded programming a bit easier to deal
with. And what I’m especially excited about is a new development platform: the
Parallax Professional Development Board. My colleague, John Barrowman, with
feedback from customers and Parallax staff alike, put about all of the features we
would ever want into one beautiful product. For those of you have an NX-1000 (any
of the variants), don’t worry; most of the experiments will run on it without major
modification.

Finally, as far as the text goes, many of the project updates are a direct result of
those that have come before you, and you, my friend, have the opportunity to affect
future updates. Please, if you ever have a question, comment, or suggestion, feel
free to e-mail them to Editor@parallax.com.

Preface · Page v

GETTING THE MOST FROM STAMPWORKS

Before you get started, you’ll want to have a copy of the BASIC Stamp Syntax and
Reference Manual (version 2.1 or higher) handy – either printed or in PDF (available
as a free download from www.parallax.com). Through the course of this book I will
ask you to review specific sections of the BASIC Stamp Manual in preparation for an
experiment. At other times I may ask you to go to the Internet to download a
datasheet; by doing this we can focus on the details of the experiment and not have
to print a lot of redundant information.

STEPS TO SUCCESS

Read (or review if you have previous BASIC Stamp programming experience)
sections 1 – 4 of the BASIC Stamp Syntax and Reference Manual. This will introduce
you to the BASIC Stamp microcontroller, its programming IDE, and its memory
organization. And if you’ve never worked with microcontrollers or programming of
any kind, I strongly suggest that you download and work your way through our
What’s A Microcontroller? student guide. This outstanding resource is used in
schools all over the world and is considered the best introduction to microcontroller
principals and programming available anywhere.

The focus of StampWorks is on embedded programming and circuit integration.
That said, this is not a text on electronics principles. If you are new to the world of
electronics, a great beginning text is Getting Started in Electronics by renowned
electronics author, Forrest M. Mims. You can find this at your favorite bookseller.

Read “Preparing the StampWorks Lab” in the next section. This will introduce you to
the Parallax Professional Development Board (PDB) and get it ready for the
experiments that follow.

Finally, work your way through the experiments, referring to the BASIC Stamp
Syntax and Reference Manual (or online Help file) as needed. This is the fun part –
and the part that is the most work. Don’t allow yourself to be satisfied with simply
loading and running the code – dig in and work with it, modify it, make it your own.

By the time you’ve completed the experiments in this book I believe you will be
ready and will have the confidence to take on your own BASIC Stamp microcontroller
projects; from projects that may be very simple to those that are moderately
complex. The real key is to make sure you truly understand an experiment before

Page vi ·StampWorks

moving on to another. Oftentimes we will rely on what we’ve previously worked
through as support for a new experiment. Taken one at a time, the experiments are
not difficult and if you work through them methodically, you’ll find your confidence
and abilities increasing at a very rapid pace.

 Preparing the StampWorks Lab · Page 1

Preparing the StampWorks Lab
STAMPWORKS KIT CONTENTS

Before getting to the experiments, let’s start by taking inventory of the kit and then
preparing the PDB for use in the experiments that follow. Once this is done, you’ll be
able to move through the experiments smoothly, and when you’ve completed
StampWorks you’ll be ready for just about any project you can imagine.

StampWorks Lab Kit Contents #27297
(parts and quantities subject to change without notice)

Stock Code # Description Marking Qty
27218 BASIC Stamp Syntax and Reference Manual 1
27220 StampWorks Manual v2.1 1
23138 Professional Development Board 1
BS2-IC BASIC Stamp 2 module 1
750-00007 Power supply, 12 vdc, 1 amp 1
800-00003 Serial cable 1
805-00006 USB cable, Mini-A to Mini-B 1
700-00050 22-gauge wire, solid, red 1
700-00051 22-gauge wire, solid, white 1
700-00052 22-gauge wire, solid, black 1
200-01030 0.01 µF capacitor 103 2
200-01040 0.1 µF capacitor 104 2
150-02210 220 ohm resistor Red-Red-Brn 3
150-04710 470 ohm resistor Yel-Vio-Brn 3
150-01020 1 k-ohm resistor Brn-Blk-Red 3
150-04720 4.7 k-ohm resistor Yel-Vio-Red 3
150-01030 10 k-ohm resistor Brn-Blk-Org 3
350-00009 CdS photoresistor 2
350-00003 IR LED 1
350-90000 LED stand-off (for IR LED) 1
350-90001 LED shield (for IR LED) 1
350-00014 IR receiver 1
603-00006 Parallel LCD module 1
604-00009 LM555 timer 1
602-00015 LM358 dual op-amp 1
602-00009 74HC595, serial-in-parallel-out shift register 2
602-00010 74HC165, parallel-in-serial-out shift register 2
ADC0831 ADC0831, 8-bit A/D converter 1
604-00002 DS1620, digital thermometer 1
603-00014 MC14489 LED multiplexer 1
604-00020 24LC32 EEPROM 1
900-00005 Servo, Parallax Standard 1
27964 Stepper motor, 12 vdc, unipolar 1

Page 2 · StampWorks

SETTING UP THE HARDWARE AND SOFTWARE

To set up the StampWorks lab for experiments, you’ll need the following items:

• Professional Development Board
• BASIC Stamp 2 module
• 12-volt wall pack (2.1 mm, center-positive plug)
• Programming cable (serial or USB)
• Red and black hook-up wire (22-gauge, solid)
• Wire cutters/strippers (not included in the StampWorks Kit)

Installing the BASIC Stamp Module

Start by removing the BASIC Stamp 2 module from its protective foam and carefully
inserting it into the 40-pin DIP socket on the PDB (upper-left, near the DB-9
programming connector). You’ll notice that the BASIC Stamp 2 module and the PDB
socket are marked with semi-circle alignment guides. The BASIC Stamp 2 module
should be inserted into the socket so that the alignment guides match. Ensure that
the BASIC Stamp 2 module is fully left-aligned in the socket as shown in the
illustration below.

Make the Programming Connection

Use a programming cable (either serial or USB, but not both at the same time) to
connect the PDB to your PC. It is best to select a serial (COM) port that is not already
in use. If, however, you’re forced to unplug another device, for example, a PDA or
electronic organizer from your computer, make sure that you also disable its
communication software before attempting to program your BASIC Stamp
microcontroller.

 Preparing the StampWorks Lab · Page 3

Computer System Requirements

You will need either a desktop or laptop PC to run the BASIC Stamp Editor software.
For the best experience with the StampWorks experiments, check that you computer
system meets the following requirements:

• Microsoft Windows® 2000/XP or newer operating system
• An available serial or USB port (with VCP driver installed)
• World Wide Web access

Installing the BASIC Stamp Editor

Download the latest version of the BASIC Stamp Editor for Windows (version 2.1 or
later) from www.parallax.com. Run the program installer, following the on-screen
prompts.

Download the StampWorks Program Files

The sample programs listed in this book, with the exception of Experiment 35, were
written for the BASIC Stamp 2. These programs and some additional bonus programs
are available for free download from www.parallax.com. Many of them contain
additional code to support conditional compliation with different BASIC Stamp
models.

Note: For USB programming, make sure that you have the latest FDTI VCP (Virtual Com
Port) driver. Step-by-step installation instructions of the VCP driver may be obtained via
the StampWorks Product Page http at www.parallax.com.

Note: While third-party developers have made BASIC Stamp editors available for
operating systems other than Windows, these editors are not supported by Parallax. This
text assumes that you’re running the official Parallax BASIC Stamp Editor on a Windows
computer. If you’re using another operating system and editor, you may need to make
adjustments in editor-specific instructions.

Page 4 · StampWorks

Preparing the Breadboard

In the center of the PDB is a solderless breadboard where we will build circuits that
are not integral to the PDB lab board itself (a variety of components are included in
the StampWorks kit). It’s important to understand how this breadboard works. With
a little bit of preparation, it will be even easier to use with the experiments that
follow.

The innermost portion of the breadboard is where we will connect the components.
This section of the breadboard consists of several columns of sockets (there are
numbers printed along the top for reference). For each column there are two sets of
rows. The rows are labeled A through E and F through J, respectively. For any
column, sockets A through E are electrically connected. The same holds true for
rows F through J.

Above and below the main section of breadboard are two horizontal rows of sockets,
each divided in the center. These horizontal rows (often called “rails” or “buses”) will
be used to carry +5 volts (Vdd) and Ground (Vss). The preparation of the
breadboard involves connecting the rails so that they run from end-to-end,
connecting the top and bottom rails together and, finally, connecting the rails to the
Vdd and Vss connections of the PDB power supply. Here’s what the breadboard
looks like on the outside:

 Preparing the StampWorks Lab · Page 5

If the breadboard was X-Rayed, we would see the internal connections and the
breaks in the Vdd and Vss rails that need to be connected. Here’s a view of the
breadboard’s internal connections:

Start by setting your wire stripper for 22 gauge (0.34 mm2). Take the spool of black
wire and strip a ¼-inch (6 mm) length of insulation from the end of the wire. With
your needle-nose pliers, carefully bend the bare wire 90 degrees so that it looks like
this:

Now push the bare wire into the topmost (ground) rail, into the socket that is just
above breadboard column 29 (this socket is just left of the middle of the breadboard,
near the top). Hold the wire so that it extends to the right. Mark the insulation by
lightly pinching it with the wire cutters at the socket above column 32. Be careful
not to cut the wire.

Remove the wire from the breadboard and cut it about ¼-inch (6 mm) beyond the
mark you just made. With your wire strippers, remove the insulation at the mark.
Now bend the second bare end 90 degrees so that the wire forms a squared “U”
shape with the insulation in the middle.

Page 6 · StampWorks

If you’ve measured and cut carefully, this “U” shaped wire will plug comfortably into
the ground rail at sockets 29 and 32. This will create a single ground rail. Repeat
this process with black wire for the bottom-most rail. Then, connect the two rails
together using the same process at column 60 (right-most sockets on each rail).

With the red wire, connect the top and bottom inside rail halves together. These rails
will carry +5 volts, or Vdd. Connect the Vdd rails together at column 59.

Now take a 1½-inch (4 cm) section of black wire and a 1½-inch (4 cm) section of
red wire and strip ¼-inch (6 mm) insulation from the ends of both. Bend each wire
into a rounded “U” shape. These wires are not designed to lie flat like the other
connections, making them easy to remove from the StampWorks lab board if
necessary.

Carefully plug one end of the red wire into any of the terminal sockets of the VDD
block (near pin 1 of the BASIC Stamp socket) and the other end into the Vdd (+5)
rail at column 5. Then, plug one end of the black wire into any of the sockets of the
VSS block and other end into the ground rail at column 1. Be very careful with these
last two connections. If the Vdd and Vss rails get connected together damage may
occur when power is applied to the PDB. When completed, the PDB breadboard will
look like this:

 Preparing the StampWorks Lab · Page 7

Final Checkout

With the BASIC Stamp module installed and the breadboard prepared it is time for a
final checkout before proceeding to the experiments. If you haven’t done so already,
connect a programming cable (serial or USB) between your PC and the PDB.
Connect a 12-volt DC power supply to the PDB power connector. Move the PDB
power switch to ON; a blue LED next to the power switch should illuminate. If it
doesn’t, move the power switch to OFF and recheck all connections, as well as the
power supply.

Start the BASIC Stamp Editor and enter the following short program:

' {$STAMP BS2}

Main:
 DEBUG "Ready for StampWorks 2.1!"
 END

Page 8 · StampWorks

Now run the program. If all went well the program will be downloaded to the BASIC
Stamp module and a Debug Terminal window will appear.

If an error occurs, check the following items:

• Is the BASIC Stamp module plugged into the PDB correctly?
• Is the PDB power switch set to ON? Is the blue ON LED lit?
• Is the programming cable connected between the PC and the PDB?
• Have you (manually) selected the wrong PC com port?
• Is the PC com port being used by another program?
• If using USB, have you installed the FTDI VCP driver?

When the Debug Terminal window appears and tells you that the StampWorks lab is
ready, it’s time to talk about BASIC Stamp programming.

 Preparing the StampWorks Lab · Page 9

NOTES ON USING INTEGRATED CIRCUITS IN STAMPWORKS
EXPERIMENTS

There are two ways to draw integrated circuits (ICs) in a schematic: One way is
considered “chip-centric” in which I/O pins appear in the schematic according to their
physical location on the device. StampWorks uses schematics drawn for efficiency,
meaning that I/O pins are placed to make the schematic legible. I/O pins on all
chips are counted according to their indicator, starting with Pin 1 and counting in a
counter-clockwise direction as shown below:

Page 10 · StampWorks

Programming Essentials · Page 11

Programming Essentials

CONTENTS OF A WORKING PROGRAM

In Sections 1 - 4 of the BASIC Stamp Syntax and Reference Manual you were
introduced to the BASIC Stamp, its architecture, and the concepts of variables and
constants. In this section, we’ll introduce the various elements of a program: linear
code, branching, loops, and subroutines.

The examples in this discussion use pseudo-code to demonstrate and describe
program structure. Italics are used to indicate the sections of pseudo-code that
require replacement with valid programming statements in order to allow the
example to compile and run correctly. You need not enter any of the examples here
as all of these concepts will be used in the experiments that follow.

People often think of computers and microcontrollers as “smart” devices and yet,
they will do nothing without a specific set of instructions. This set of instructions is
called a program, and it is our job to write it. Programs for the BASIC Stamp are
written in a language called PBASIC, a Parallax-specific version of the BASIC
(Beginner’s All-purpose Symbolic Instruction Code) programming language. BASIC is
very popular because of its simplicity and English-like syntax. Since its creation at
Dartmouth College in the mid 1960’s it has become one of the dominant
programming languages available for platforms as small as the BASIC Stamp
microcontroller, and as large as mainframe computer systems.

A working program can be as simple as a list of statements. Like this:

 statement 1
 statement 2
 statement 3
 END

This is a very simple, yet valid program structure. What you’ll find, however, is that
most programs do not run in a straight, linear fashion like the listing above. Program
flow is often redirected with branching, looping, and subroutines, with short linear
sections in between. The requirements for program flow are determined by the goal
of the program and the conditions under which the program is running.

Page 12 · StampWorks

BRANCHING – REDIRECTING PROGRAM FLOW

A branching instruction is one that causes the flow of the program to change from its
linear path. In other words, when the program encounters a branching instruction, it
will, in almost all cases, not be running the next [linear] line of code. The program
will usually go somewhere else, often creating a program loop. There are two
categories of branching instructions: unconditional and conditional. PBASIC has two
instructions, GOTO and GOSUB that cause unconditional branching.

Here’s an example of an unconditional branch using GOTO:

Label:
 statement 1
 statement 2
 statement 3
 GOTO Label

We call this an unconditional branch because it always happens. GOTO redirects the
program to another location. The location is specified as part of the GOTO instruction
and is called an address. Remember that addresses start a line of code and are
followed by a colon (:). You’ll frequently see GOTO at the end of the main body of
code, forcing the program statements to run again.

Conditional branching will cause the program flow to change under a specific set of
circumstances. The simplest conditional branching is done with an IF-THEN
construct. PBASIC includes two distinct versions of IF-THEN; the first is used
specifically to redirect program flow to another point based on a tested condition.

Take a look at this listing:

Start:
 statement 1
 statement 2
 statement 3
 IF (condition) THEN Start

In this example, statements 1- 3 will run at least once and then continue to run as
long as the condition evaluates as True. When required, the condition can be tested
prior to the code statements:

Programming Essentials · Page 13

Start:
 IF (condition) THEN
 statement 1
 statement 2
 statement 3
 ENDIF

Note that the code statements are nested in an IF-THEN-ENDIF structure which
does not require a branch label. If the condition evaluates as False, the program will
continue at the line that follows ENDIF. Another use of this conditional structure is
to add the ELSE clause:

Start:
 IF (condition) THEN
 statement 1
 statement 2
 statement 3
 ELSE
 statement 4
 statement 5
 statement 6
 ENDIF

If the condition evaluates as True then statements 1 – 3 will run, otherwise
statements 4 – 6 will run.

As your requirements become more sophisticated, you’ll find that you’ll want your
program to branch to any number of locations based on the value of a control
variable. One approach is to use multiple IF-THEN constructs.

 IF (index = 0) THEN Label_0
 IF (index = 1) THEN Label_1
 IF (index = 2) THEN Label_2

This approach is valid and does get used. Thankfully, PBASIC has a special command
called BRANCH that allows a program to jump to any number of addresses based on
the value of an index variable. BRANCH is a little more complicated in its setup, but
very powerful in that it can replace multiple IF-THEN statements. BRANCH requires
a control (index) variable and a list of addresses

The previous listing can be replaced with one line of code:

 BRANCH index, [Label_0, Label_1, Label_2]

Page 14 · StampWorks

When index is zero, the program will branch to Label_0, when index is one the
program will branch to Label_1 and so on.

Related to BRANCH is ON-GOTO, in fact, it can serve as direct replacement:

 ON index GOTO Label_0, Label_1, Label_2

Programmers coming from a PC background are probably more familiar with ON-
GOTO, hence its inclusion in PBASIC 2.5.

LOOPING – RUNNING CODE AGAIN AND AGAIN

As demonstrated in the previous section, program loops can be created with
conditional and unconditional branching instructions. Modern variants of BASIC,
including PBASIC 2.5, simplify looping with the DO-LOOP structure. With DO-LOOP
the branching label is no longer required. Here's how DO-LOOP is used to force
unconditional looping of number of code statements:

 DO
 statement 1
 statement 2
 statement 3
 LOOP

As in the previous example, statements 1 - 3 will run in order, continuously.

The DO-LOOP construct can be made conditional by testing before or after the loop
statements:

 DO WHILE (condition)
 statement 1
 statement 2
 statement 3
 LOOP

In this example the loop statements will only run if and while the condition evaluates
as True.

 DO
 statement 1
 statement 2
 statement 3
 LOOP WHILE (condition)

Programming Essentials · Page 15

In the second example, the loop statements will run at least once, even if the
condition evaluates as False. As you can see, the strength of DO-LOOP is that it
simplifies how and where the condition testing occurs.

DO-LOOP adds another type of testing with UNTIL.

 DO
 statement 1
 statement 2
 statement 3
 LOOP UNTIL (condition)

 DO UNTIL (condition)
 statement 1
 statement 2
 statement 3
 LOOP

By using UNTIL, the loop statements will run while the condition evaluates as False.
And, as demonstrated earlier, placing the test at the end of the loop will cause the
loop statements to run at least one time.

Another example of looping is the programmed loop using FOR-NEXT.

FOR controlVar = startVal TO endVal STEP stepSize
 statement 1
 statement 2
 statement 3
NEXT

The FOR-NEXT construct is used to run a section of code a specific number of times.
FOR-NEXT uses a control variable to determine the number of loop iterations. The
size of the variable will determine the upper limit of loop iterations. For example, the
upper limit when using a byte-sized control variable would be 255. In the example
below, controlVar could be defined as a Nib (4-bit) variable as the end value is
less than 16:

FOR controlVar = 1 TO 10
 statement 1
 statement 2
 statement 3
NEXT

Page 16 · StampWorks

The STEP option of FOR-NEXT is used when the loop needs to count in increments
other than one. If, for example, the loop needed to count even numbers, the code
would look something like this:

FOR counter = 2 TO 20 STEP 2
 statement 1
 statement 2
 statement 3
NEXT

SUBROUTINES – REUSABLE CODE THAT SAVES PROGRAM SPACE

The final programming concept we’ll discuss is the subroutine. A subroutine is a
section of code that can be called from anywhere in the program. GOSUB is used to
redirect the program to the subroutine code. The subroutine is terminated with the
RETURN instruction. RETURN causes the program to jump back to the line of code
that follows the calling GOSUB.

Start:
 DO
 GOSUB My_Sub
 PAUSE 1000
 LOOP

My_Sub:
 statement 1
 statement 2
 statement 3
 RETURN

In this example, the code in the My_Sub subroutine is executed and then the
program jumps back to the line PAUSE 1000.

Advanced programmers will take advantage of subroutines and the ON-GOSUB
instruction. ON-GOSUB works like ON-GOTO, except that the program returns to the
line that follows ON-GOSUB. This technique is very useful for creating task manager
program structures as shown next:

Main:
 DO
 GOSUB Critical_Task
 ON task GOSUB Task_1, Task_2, Task_3
 task = task + 1 // 3
 LOOP

Programming Essentials · Page 17

Critical_Task:
 statement(s)
 RETURN

Task_1:
 statement(s)
 RETURN

Task_2:
 statement(s)
 RETURN

Task_3:
 statement(s)
 RETURN

With this type of program the code section at Critical_Task is interleaved
between the other tasks. And by placing all task code into discrete subroutines, they
can be called from any point in the program. This allows one task to test for a
condition and call another subroutine if required, or to set the next task by modifying
the task pointer.

Page 18 · StampWorks

The Elements of PBASIC Style · Page 19

The Elements of PBASIC Style

Like most versions of the BASIC programming language, PBASIC is very forgiving
and the compiler enforces no particular formatting style. So long as the source code
is syntactically correct, it will compile and download to the BASIC Stamp without
trouble.

Why, then, would one suggest a specific style for PBASIC? With millions of BASIC
Stamp microcontrollers sold, and tens of thousands of active users world-wide, it is
very likely that you'll be sharing your PBASIC code with someone, if not co-
developing a BASIC Stamp-based project. Writing code in an organized, predictable
manner will save you – and your potential colleagues – time; in analysis, in
troubleshooting, and especially when you return to a project after a long break.

The style guidelines presented here are just that: guidelines. They have been
developed from style guidelines used by professional programmers using other high-
level languages such as Java®, C/C++ and Visual Basic®. Use these guidelines as is,
or modify them to suit your needs. The key is selecting a style that works well for
you or your organization and sticking to it.

1. Do It Right the First Time

Many programmers, especially new ones, fall into the "I'll knock it out now and fix it
later." trap. Invariably, the "fix it later" part never happens and sloppy code makes
its way into production projects. If you don't have time to do it right, when will you
find time to do it again?

Start clean and you'll be less likely to introduce errors in your code. And if errors do
pop up, clean and organized formatting will make them easier to find and fix.

2. Be Organized and Consistent

Using a blank program template will help you organize your programs and establish a
consistent presentation. The BASIC Stamp Editor allows you to specify a file
template for the File | New function (see Edit | Preferences | Files & Directories...).

Page 20 · StampWorks

3. Use Meaningful Names

Be verbose when naming constants, variables, and program labels. The compiler will
allow names up to 32 characters long. Using meaningful names will reduce the
number of comments and make your programs easier to read, debug and maintain.

4. Naming I/O Pins

BASIC Stamp I/O pins are a special case as various elements of the PBASIC language
require a pin to be a constant value, an input variable or an output variable. Begin
I/O pin names with an uppercase letter and use mixed case, using uppercase letters
at the beginning of new words within the name. When using the BS2, the PIN
definition is used. This will cause the compiler to use the correct variant (constant
value, input bit, or output bit) for the pin.

HeaterCtrl PIN 15

Since connections don't change during the program run, I/O pins are named like
constants (#5) using mixed case, beginning with an uppercase letter.

5. Naming Constants

Begin constant names with an uppercase letter and use mixed case, using uppercase
letters at the beginning of new words within the name.

AlarmCode CON 25

6. Naming Variables

Begin variable names with a lowercase letter and use mixed case, using uppercase
letters at the beginning of new words within the name. Avoid the use of internal
variable names (such as B0 or W1) in your programs. Allow the compiler to
automatically assign RAM space by declaring a variable of specific type.

waterLevel VAR Word

The Elements of PBASIC Style · Page 21

7. Variable Type Definitions

Conserve BASIC Stamp user RAM by declaring the variable type required to hold the
expected values of the variable.

bitValue VAR Bit ' 0 - 1
nibValue VAR Nib ' 0 - 15
byteValue VAR Byte ' 0 - 255
wordValue VAR Word ' 0 - 65535

8. Program Labels

Begin program labels with an uppercase letter, use mixed case, separate words
within the label with an underscore character and begin new words with a number or
uppercase letter. Labels should be preceded by at least one blank line, begin in
column 1 and must be terminated with a colon (except after GOTO and THEN where
they appear at the end of the line and without a colon).

Print_ZString:
 DO
 READ eeAddr, char
 eeAddr = eeAddr + 1
 IF (char = 0) THEN EXIT
 DEBUG char
 LOOP
 RETURN

9. PBASIC Keywords

All PBASIC language keywords, including SYMBOL, CON, VAR, PIN and
serial/debugging format modifiers (DEC, HEX, BIN) and control characters (CR, LF)
should be uppercase. The BASIC Stamp editor will correctly format PBASIC
keywords automatically, and allow you to set color highlighting by category to suit
your personal tastes.

Main:
 DEBUG "BASIC Stamp", CR
 END

Page 22 · StampWorks

10. Indent Nested Code

Nesting blocks of code improves readability and helps reduce the introduction of
errors. Indenting each level with two spaces is recommended to make the code
readable without taking up too much space.

Main:
..DO
....FOR testLoop = 1 TO 10
......IF (checkLevel < threshold) THEN
........lowLevel = lowLevel + 1
........LedOkay = IsOff
......ELSE
........LedOkay = IsOn
......ENDIF
......PAUSE 100
....NEXT
..LOOP WHILE (testMode = Yes)

Note: The dots are used to illustrate the level of nesting and are not a part of the code.

11. Condition Statements

Enclose condition statements in parenthesis for clarity.

Check_Temp:
 IF (indoorTemp >= setPoint) THEN
 AcCtrl = IsOn
 ELSE
 lowLevel = lowLevel + 1
 ENDIF

Fill_Water_Tank:
 DO WHILE (waterLevel = IsLow)
 TankFill = IsOn
 PAUSE 250
 LOOP
Get_Delay:
 DO
 DEBUG HOME, "Enter time (5 – 30)... ", CLREOL
 DEBUGIN DEC2 tmDelay
 LOOP UNTIL ((tmDelay >= 5) AND (tmDelay =< 30))

The Elements of PBASIC Style · Page 23

12. Be Generous With White Space

White space (spaces and blank lines) has no effect on compiler or BASIC Stamp
performance, so be generous with it to make listings easier to read. As suggested in
#8 above, allow at least one blank line before program labels (two blanks lines
before a subroutine label is recommended). Separate items in a parameter list with
a space.

Main:
 DO
 ON task GOSUB Update_Motors, Scan_IR, Close_Gripper
 LOOP

Update_Motors:
 PULSOUT leftMotor, leftSpeed
 PULSOUT rightMotor, rightSpeed
 PAUSE 20
 task = (task + 1) // NumTasks
 RETURN

An exception to this guideline is with the Bits parameter used with SHIFTIN and
SHIFTOUT, the REP modifier for DEBUG and SEROUT, and the byte count and
terminating byte value for SERIN. In these cases, format without additional white
space.

 SHIFTIN A2Ddata, A2Dclock, MSBPOST, [result\9]

 DEBUG REP "*"\25, CR

 SERIN IRbSIO, IRbBaud, [buffer\8\255]

13. Use Conditional Compilation for Compatibility

Some commands such as SERIN and SEROUT use different parameters based on the
target BASIC Stamp. Use conditional compilation for maximum compatibility of your
programs.

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021

Page 24 · StampWorks

 T9600 CON 240
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
#ENDSELECT

The StampWorks files (available for download from www.parallax.com) include a
blank programming template (Template.BS2) that will help you get started writing
organized code. It's up to you to follow the rest of the guidelines above – or develop
and use guidelines of your own.

Time to Experiment · Page 25

Time to Experiment

LEARN THE PROGRAMMING CONCEPTS

What follows is a series of programming experiments that you can build and run with
your StampWorks lab. The purpose of these experiments is to teach programming
concepts and the use of external components with the BASIC Stamp. The
experiments are focused and designed so that as you gain experience, you can
combine the individual concepts to produce sophisticated programs.

BUILDING THE PROJECTS

This section of the manual is simple but important because you will learn important
programming lessons and construction techniques using your StampWorks lab. As
you move through the rest of the manual, construction details will not be included
(you’ll be experienced by then and can make your own choices) and the discussion
of the program will be less verbose, focusing specifically on special techniques or
external devices connected to the BASIC Stamp.

WHAT TO DO BETWEEN PROJECTS

The circuit from one project may not be electrically compatible with another and
could, in some cases, cause damage to the BASIC Stamp if the old program is run
with the new circuit. For this reason, a blank program should be downloaded to the
BASIC Stamp before connecting the new circuit. This will protect the BASIC Stamp by
resetting the I/O lines to inputs. Here’s a simple program that will clear and reset the
BASIC Stamp.

' {$STAMP BS2}

Main:
 DEBUG "BASIC Stamp clear."
 END

For convenience, save this program to a file called CLEAR.BS2.

Page 26 · StampWorks

EXPERIMENT #1: FLASH AN LED

LEDs are everywhere; virtually every piece of electronic equipment that provides
some indication to a user can or does use LEDs. The purpose of this simple
experiment is to flash an LED with the BASIC Stamp, as flashing LEDs are frequently
used as alarm and status indicators.

Look It Up: PBASIC Elements to Know

• $STAMP (compiler directive)
• $PBASIC (compiler directive)
• PIN
• CON
• HIGH
• LOW
• PAUSE
• GOTO

Building the Circuit

All StampWorks experiments use a dashed line to indicate components that are
installed on the PDB. The LED is available on the “LEDS” section of the PDB, just to
the right of the BASIC Stamp socket.

The PDB has 16 discrete LEDs built in; connect just one to the BASIC Stamp module.

1. Start with a three-inch (8 cm) segment of white hook-up wire. Strip ¼-inch
(6 mm) of insulation from each end.

2. Plug one end into BASIC Stamp connection for P0.
3. Plug the other end into LED 0.

Time to Experiment · Page 27

Program: SW21-EX01-Flash_LED.BS2:
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' Flashes an LED connected to P0. This program will work, unmodified, on
' any BS2-family module.

' -----[I/O Definitions]---

AlarmLed PIN 0 ' LED on P0

' -----[Constants]---

FlashTm CON 500 ' delay 500 milliseconds

' -----[Program Code]--

Main:
 HIGH AlarmLed ' turn the LED on
 PAUSE FlashTm
 LOW AlarmLed ' turn the LED off
 PAUSE FlashTm
 GOTO Main

Behind the Scenes

Each of the BASIC Stamp’s I/O pins has three bits associated with its control. A bit in
the DIRS register determines whether the pin is an input (bit = 0) or an output (bit
= 1). If the pin is configured as an output, the current state of that pin is stored in
the associated bit in the OUTS register. If the pin is configured as an input, the
current pin value is taken from the associated bit in the INS register.

HIGH and LOW actually perform two functions with one command: the selected pin
is configured as an output (1 in the DIRS register) and the state bit is modified in
the OUTS register (1 for HIGH, 0 for LOW).

Page 28 · StampWorks

For example, this:

 HIGH 0

… actually performs the same function as:

 DIR0 = 1 ' make P0 an output
 OUT0 = 1 ' set P0 high

but does it with just one line of code. Conservation of program space is an
important aspect of microcontroller programming, and when we can save code space
we should – we’ll probably want or need that space later.

Write Code like a Pro

Note that even in this very simple program, we are following the style guidelines
detailed in “The Elements of PBASIC Style”. By using this professional style, the
program becomes somewhat self-documenting, requiring fewer comments, and it
allows the program to be modified far more easily. If, for example, we wanted to
change the LED pin assignment or the flash rate, we would only have to make small
changes to the declarations sections and not have to edit the entire listing. When
our programs grow to several hundred lines, using cleverly-named pin definitions and
constant values will save us a lot of time and frustration.

A very common beginner’s error is this:

 OUTPUT 0

 HIGH 0

There is no need to manually configure the pin as an output as this function is part of the
HIGH command. While doing this won’t harm the program, it does consume valuable code
space. There are very few occasions when INPUT and OUTPUT are required for proper
program operation, as most PBASIC commands handle setting the pin’s I/O state.

Time to Experiment · Page 29

EXPERIMENT #2: FLASH AN LED (ADVANCED)

Now that we’ve got things moving, let’s step up a bit and explore an advanced
approach to flashing an LED. The method revealed in this experiment provides the
best in program readability and ease-of-maintenance.

Look It Up: PBASIC Elements to Know

• OUTPUT
• DO-LOOP
• VAR
• Nib (variable type)
• BIT0..BIT15 (variable modifier)

Building the Circuit

This experiment uses the same circuit as Experiment #1.

Program: SW21-EX02-Flash_LED-Adv.BS2:
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' Flashes an LED connected to P0. This program will work, unmodified, on
' any BS2-family module.

' -----[I/O Definitions]---

Strobe PIN 0 ' LED on P0

' -----[Constants]---

IsOn CON 1 ' on for active-high LED
IsOff CON 0 ' off for active-high LED

FlashOn CON 50 ' on for 50 ms
FlashOff CON 950 ' off for 950 ms

' -----[Initialization]--

Page 30 · StampWorks

Reset:
 Strobe = IsOff
 OUTPUT Strobe ' enable pin to drive LED

' -----[Program Code]--

Main:
 DO
 Strobe = IsOn
 PAUSE FlashOn
 Strobe = IsOff
 PAUSE FlashOff
 LOOP

Behind the Scenes

The version of the LED blinker gets to the core of the hardware and works at a lower
level – a little more setup work, yes, but the result is a program with greater
readability, as well as flexibility for modification. And there is no mistaking the
meaning of:

 Strobe = IsOn

On reset, the LED control pin, called Strobe, is set to its off state by writing the
IsOff constant to it, and then the pin is made an output so that it can drive the
LED. This is one of those rare cases where the OUTPUT keyword is used; the reason
is that after this point, LED control will be by writing to a bit in the OUTS register.

This initialization section demonstrates the context-sensitivity of the PIN declaration.
In actual fact, these lines of code:

 Strobe = IsOff
 OUTPUT Strobe

… are translated by the compiler to:

 OUT0 = 0
 OUTPUT 0

Note how the compiler intelligently substitutes OUT0 in the first line of code, and the
number 0 in the second. Of course, we could have written the code as the compiler
ultimately translates it. The difference is that Strobe is more meaningful (to us

Time to Experiment · Page 31

humans) in terms of program functionality, and any design change would have been
more difficult to deal with.
The main program loop is handled with the DO-LOOP construct, and separate on-
and off-times are provided for flashing the LED. As with the pin configuration, we
can easily change the flash behavior by making a simple edit in the declarations
section. Since the LED has two states, having independent timing values for each
state gives us the greatest flexibility.

Taking it Further

Another advantage to direct use of output bits is that we can create code segments
like this:

 DO
 Strobe = cntr.BIT0
 PAUSE 500
 cntr = cntr + 1
 LOOP

Can you tell what’s happening here? Since Strobe is actually a bit variable (OUT0 in
this program), we can write any bit value to it – even a bit that’s part of another
variable. In the example above, BIT0 (the LSB) of cntr will be written to the LED
control pin through each iteration of the program loop. Using our active-high
configuration, this will cause the LED to light when the value of cntr is odd because
BIT0, which has a value of one, will be on when cntr is odd.

Q: Without changing the PAUSE 500 line, how could we make the LED flash at half
the current rate?

A: Write the value of cntr.BIT1 to the LED. Do you understand why this is?

When does one make the choice between DO-LOOP and GOTO Label? While both styles
are functionally equivalent, DO-LOOP provides the convenience of not having to define a
program label for the GOTO. The downside of DO-LOOP is that it can be difficult to follow
when very long sections of code are embedded within it – especially when indentation
guidelines are ignored.

While there is no hard and fast rule, a reasonable guideline is that about ten lines of code
or fewer are fine for DO-LOOP; longer sections are best used with GOTO Label.

Page 32 · StampWorks

Write Code like a Pro

This version of the LED blinker is how a professional programmer would approach
the task. Why? What if you were asked to write a program that required several
LEDs and you assumed that they were active-high, yet after hours of work on the
program you were handed a schematic with LED connections that looked like this:

The LED in the schematic above is active-low; you must take the control pin low to
light the LED. Now you would be forced to change the HIGH commands that control
LEDs to LOW, and then original LOW commands to HIGH which would be a lot of work
and possibly lead to the introduction of program errors.

The professional programmer builds flexibility into the program so that an electrical
design change can be accommodated with ease. By using the strategy employed in
this experiment, we only have to change the following declarations:

IsOn CON 0 ' on for active-low LED
IsOff CON 1 ' off for active-low LED

The rest of the program remains unchanged and is ready to run.

Time to Experiment · Page 33

EXPERIMENT #3: DISPLAY A COUNTER WITH LEDS

Most applications will require more than one LED, and from a programming stand-
point it is convenient to update all LEDs at the same time if possible. This
experiment demonstrates updating multiple LEDs by displaying a running 4-bit
counter.

Look It Up: PBASIC Elements to Know

• OUTS, OUTL, OUTH, OUTA - OUTD
• DIRS, DIRL, DIRH, DIRA - DIRD
• FOR-NEXT

Building the Circuit

For this experiment we will add three more LEDs to the circuit used in Experiments
#1 and #2.

1. Start with four three-inch (8 cm) segments of white hook-up wire. Strip ¼-
inch (6 mm) of insulation from each end.

2. Plug one end of a wire into BASIC Stamp connection for P0.
3. Plug the other end into LED 0.
4. Repeat steps 2 and 3 for P1 – P3 connecting to LEDs 1 – 3, respectively.

Page 34 · StampWorks

Program: SW21-EX03-Counter_LEDs.BS2:
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' Displays a 4-bit binary counter on LEDs connected to P0 - P3. This
' program will work, unmodified, on any BS2-family module.

' -----[I/O Definitions]---

LEDs VAR OUTA ' LEDs on P0 - P3
LEDsDirs VAR DIRA ' DIRS control for LEDs

' -----[Constants]---

MinCount CON 0 ' counter start value
MaxCount CON 15 ' counter end value

DelayTm CON 100 ' delay time for LEDs

' -----[Variables]---

cntr VAR Nib ' 4-bit counter variable

' -----[Initialization]--

Reset:
 LEDsDirs = %1111 ' make LEDs outputs

' -----[Program Code]--

Main:
 DO
 FOR cntr = MinCount TO MaxCount ' loop through all values
 LEDs = cntr ' move count to LEDs
 PAUSE DelayTm ' hold a bit
 NEXT
 LOOP ' repeat forever

Time to Experiment · Page 35

Behind the Scenes

As explained in Experiment #1, the state of the BASIC Stamp output bits is stored in
a RAM register called OUTS. The variable OUTA is the lower 4-bits of OUTS,
corresponding to I/O pins P0 – P3. Since OUTA is part of the BASIC Stamp’s general
purpose (RAM) memory, values can be written to and read from it like any other
variable.

In this program we simply transfer (copy) the contents of 4-bit variable cntr to
OUTA (alias for the LEDs). Since P0 – P3 have been made outputs, this causes the
value of cntr to be displayed on the LEDs in binary format.

Challenge yourself: Modify the program to count backwards.

Q: Can we get the same results without using the cntr variable?
A: Yes – simply use LEDs as the control variable for the FOR-NEXT loop.

Write Code like a Pro

Since we’re dealing with multiple LEDs as a group and we cannot take advantage of
the PIN type declaration, we’re forced to use a standard variable (OUTA in this case)
to update the LEDs simultaneously. When possible, it’s best to group outputs to
match the natural boundaries of the BASIC Stamp I/O and memory structure. Our
programs will not always be as neat and tidy as this experiment, but when we do
indeed end up with groupings of four or eight pins, it’s best to use the BASIC
Stamp’s natural boundaries.

And note that while the LEDsDirs variable does not actually control the state of the
I/O pins, it does set pin directions and this is required for making these pins outputs
with a single line of code. For this reason, it is defined near the LEDs declaration in
the I/O definitions block. If we needed to make a design change that moved the
LEDs to OUTD, for example, the required changes would take place in the same area
of the program.

LEDs VAR OUTD ' LEDs on P12 – P15
LEDsDirs VAR DIRD ' DIRS control for LEDs

Page 36 · StampWorks

EXPERIMENT #4: SCIENCE FICTION LED DISPLAY

We’ve seen how LEDs can be used to display a binary value (Experiment #3), and
now we’ll take it just one more step and do something a bit artistic. In this
experiment we’ll “ping-pong” one lit LED across a bank of eight to create a science-
fiction (think evil robot warrior) type display. Circuits like this are frequently used in
film and television props.

Look It Up: PBASIC Elements to Know

• WHILE (related to DO-LOOP)
• UNTIL (related to DO-LOOP)
• < (less than operator)
• << (shift left operator)
• >> (shift right operator)

Building the Circuit

For this experiment we will add four more LEDs to the circuit used in Experiment #3.

1. Start with eight three-inch (8 cm) segments of white hook-up wire. Strip ¼-
inch (6 mm) of insulation from each end.

2. Plug one end of a wire into BASIC Stamp connection for P0.

Time to Experiment · Page 37

3. Plug the other end into LED 0.
4. Repeat steps 2 and 3 for P1 – P7 connecting to LEDs 1 – 7, respectively.

Program: SW21-EX04-SciFi_LEDs.BS2:
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' "Ping-Pongs" a single LED back-and-forth across a bank of eight. This
' program will work, unmodified, on any BS2-family module.

' -----[I/O Definitions]---

LEDs VAR OUTL ' LEDs on P0 - P7
LEDsDirs VAR DIRL ' DIRS control for LEDs

' -----[Constants]---

DelayTm CON 100 ' delay time for lit LED

' -----[Initialization]--

Reset:
 LEDS = %00000001 ' start with right LED on
 LEDsDirs = %11111111 ' make LEDs outputs

' -----[Program Code]--

Main:
 DO WHILE (LEDs < %10000000) ' test for left extreme
 PAUSE DelayTm ' on-time for lit LED
 LEDs = LEDs << 1 ' shift LED left
 LOOP

 DO
 PAUSE DelayTm
 LEDs = LEDs >> 1 ' shift LEDs right
 LOOP UNTIL (LEDs = %00000001) ' test for right extreme

 GOTO Main

Page 38 · StampWorks

Behind the Scenes

This experiment demonstrates the ability to directly manipulate the BASIC Stamp
output pins just as we could any other variable. This program also demonstrates
conditional looping by adding pre- and post-loop tests to DO-LOOP.

The program starts by initializing the LEDs to %00000001 – this turns on the LED
connected to P0. Then we drop into the first DO-LOOP where the value of LEDs is
immediately tested. If the value of LEDs (currently %00000001) is less than
%10000000 then the code within the DO-LOOP is allowed to run, otherwise the
program continues at the line that follows LOOP.

Since LEDs is initially less than the test value, the program drops into the loop where
it runs a small PAUSE, then the lit LED is moved to the left with the << (shift-left)
operator. Shifting left by one bit performs the same function as multiplying by two,
albeit far more efficiently. After the shift the program goes back to the DO WHILE
line where the value of LEDs (now %00000010) is tested again.

After seven passes through the upper loop, LEDs will have a value of %10000000
and the test will fail (result will be False); this will force the program to jump to the
top of the second DO-LOOP.

The second DO-LOOP is nearly identical to the first except that the value of LEDs is
shifted right one bit with >> (same as dividing by two), and the test occurs at the
end of the loop. Note that when the test is placed at the end of the DO-LOOP
structure, the loop code will run at least one time. After seven iterations of the
bottom loop the test will fail and the code will drop to the GOTO Main line which
takes us back to the top of the program.

Beginning programmers will often ask, “When should I use WHILE versus UNTIL in a loop
test?”

It is in fact possible to write functionally equivalent code using WHILE or UNTIL. That said,
your programs will be easier to others to follow (and for you to pick up later) if the listing
reads logically. To that end, it is suggested that WHILE is used to run the loop while a
condition is true; and UNTIL is used to run the loop until a condition becomes true.

Time to Experiment · Page 39

Taking it Further

Q: How could we modify the code to cause the LEDs to behave like airport runway
lights?
A: See below for one possible solution (Can you modify the loop to test at the top?)

Reset:
 LEDsDirs = %11111111 ' make LEDs outputs

' -----[Program Code]--

Main:
 LEDs = %00000001 ' start with right LED on
 DO
 PAUSE DelayTm ' on-time for lit LED
 LEDs = LEDs << 1 ' shift LED left
 LOOP UNTIL (LEDs = %10000000) ' test for last LED
 GOTO Main

Write Code like a Pro

In this experiment we use binary (%) notation quite frequently – this is a handy tool
when our programming editor (like the BASIC Stamp IDE) allows it. This bit of code,
for example:

 LOOP UNTIL (LEDs = %10000000) ' test for last LED

… is far easier to visualize than:

 LOOP UNTIL (LEDs = 128) ' test for last LED

When dealing with binary inputs (e.g., buttons or switches) or outputs (e.g., a bank
of LEDs), use binary notation to help yourself (and others) “see” the operation of the
code.

Page 40 · StampWorks

EXPERIMENT #5: LED GRAPH (DOT OR BAR)

In Experiment #4 we used a line of LEDs for artistic purposes; this time we’ll turn to
something a bit more technically oriented. The purpose of this experiment is to
create a configurable (dot or bar) LED graph. This type of graph is very common on
audio equipment, specifically for VU (volume) meters. The value for the graph in the
experiment will be taken from the position of a potentiometer.

Look It Up: PBASIC Elements to Know

• Word (variable type)
• Byte (variable type)
• GOSUB-RETURN
• RCTIME
• IF-THEN-ELSE-ENDIF
• */ (star-slash operator)
• DCD

Building the Circuit

Add the following RC circuit to the LEDs used in Experiment #4.

Note: The 0.1 µF capacitor is marked: 104.

1. Using black wire (cut as required), connect the Vss (ground) rail to socket
A15.

2. Plug a 0.1 µF capacitor (marked 104) into sockets C15 and C16.
3. Using white wire, connect socket A16 to BASIC Stamp P15.

Time to Experiment · Page 41

4. Using white wire, connect socket B16 to the wiper (center terminal) of the
10K potentiometer.

5. Using black wire, connect the Vss (ground) rail to the bottom terminal of the
10K potentiometer.

Program: SW21-EX05-LED_Graph.BS2:
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' Displays a linear (bar) or dot graph using eight LEDs. This program
' will require modifications (to the constants LoScale and HiScale) when
' running on the BS2Sx, BS2p, or BS2px.

' -----[I/O Definitions]---

LEDs VAR OUTL ' LEDs on P0 - P7
LEDsDirs VAR DIRL ' DIRS control for LEDs

Pot PIN 15 ' Pot circuit IO

' -----[Constants]---

DotGraf CON 0 ' define graph types
BarGraf CON 1
GraphMode CON BarGraf ' define graph mode

IsOn CON 1
IsOff CON 0

LoScale CON 10 ' raw low reading
HiScale CON 695 ' raw high reading
Span CON HiScale - LoScale ' between lo-to-hi
Scale CON $FFFF / Span ' scale factor 0..255

' -----[Variables]---

rawVal VAR Word ' raw value from pot
grafVal VAR Byte ' graph value
hiBit VAR Byte ' highest lighted bit
newBar VAR Byte ' workspace for bar graph

Page 42 · StampWorks

' -----[Initialization]--

Reset:
 LEDsDirs = %11111111 ' make LEDs outputs

' -----[Program Code]--

Main:
 DO
 GOSUB Read_Pot ' get raw pot value
 grafVal = (rawVal - LoScale) */ Scale ' z-adjust, then scale
 GOSUB Show_Graph ' now show it
 PAUSE 50
 LOOP

' -----[Subroutines]---

Read_Pot:
 HIGH Pot ' charge cap
 PAUSE 1 ' for 1 millisecond
 RCTIME Pot, 1, rawVal ' read the Pot
 RETURN

Show_Graph:
 hiBit = DCD (grafVal / 32) ' get highest bit
 IF (GraphMode = BarGraf) THEN
 newBar = 0 ' clear bar workspace
 IF (grafVal > 0) THEN
 DO WHILE (hiBit > 0) ' all bar LEDs lit?
 newBar = newBar << 1 ' no - shift left
 newBar.BIT0 = IsOn ' light low end
 hiBit = hiBit >> 1 ' mark bit lit
 LOOP
 ENDIF
 LEDs = newBar ' output new level
 ELSE
 LEDs = hiBit ' show dot value
 ENDIF
 RETURN

Time to Experiment · Page 43

Behind the Scenes

Now we’re getting into it – this program, while short, is a bit on the sophisticated
side as it allows us to enter raw readings from the potentiometer and the program
will take care of the rest.

After initializing the outputs (P0 – P7) to drive LEDs, the program reads the 10K
potentiometer with the RCTIME function. Using DEBUG to display the raw value, it
was determined that RCTIME returned a low value of 10 and a high value of 746.
Since grafVal is a byte-sized variable, rawVal must be scaled down to fit into
eight bits.

To scale the raw value to fit into grafVal we’ll want to divide it by 2.73 (695 / 255).
The problem for us is that division in PBASIC is integer-only, so we’d end up with
troublesome rounding errors. Since division is the same as multiplying by a value’s
reciprocal, we can multiply rawVal by 0.366906. In some cases we can do a
multiply and divide to approximate the fractional value, but this is not possible
because the 16-bit (final) values used in PBASIC may cause high bit truncation.

This is where the */ (star-slash) operator comes in: this operator allows us to
multiply a value by another with a resolution of 1/256. The way this works is that */
does a multiplication of two values, then takes the middle two bytes of the 32-bit
result – the net effect is that we’re multiplying then immediately dividing by 256
(hence the resolution of 1/256). If the fractional value is going to be a constant we
can calculate the*/ parameter in advance by multiplying the fractional value by 256.
In our case this would be:

 0. 366906 x 256 = 93.92 (round up to 94)

As it turns out we can very easily calculate the value of Scale by dividing $FFFF
(maximum 16-bit value) by the pot span (difference between high and low readings).
Better yet, we can embed this calculation in a constant definition – this saves us
valuable variable space. At the top of the listing we have:

LoScale CON 10 ' raw low reading
HiScale CON 695 ' raw high reading
Span CON HiScale - LoScale ' between lo-to-hi
Scale CON $FFFF / Span ' scale factor 0..255

Page 44 · StampWorks

If we decide to replace the BS2 with a faster microcontroller, for example a BS2p,
the only thing we need to do is read the pot and enter the low and high readings
from it. After we make those changes the Scale constant will be updated on the
next compilation and the program will run just as it did on the BS2.
You may be wondering why the LoScale value is something greater than 0. If you
look at the schematic, there is a 220-ohm resistor between the pot’s wiper and the
center connection. The purpose of this resistor is to protect the BASIC Stamp when
the pot is turned all the way to Vss and the P15 is made an output and high; it also
causes a bit of delay in the capacitor discharge, hence the minimum value that is
greater than zero.

With grafVal scaled to a byte we can move on to creating the bar or dot graph
with the LEDs. The program uses the DCD operator to determine highest lighted bit
value from grafVal. With eight LEDs in the graph, grafVal is divided by 32,
forcing the result of DCD to output values from %00000001 (DCD 0) to %10000000
(DCD 7).

In Dot mode, this is all that’s required and a single LED that represents the scale of
the pot input is lit. In Bar Mode, however, the lower LEDs must be filled in. This is
accomplished in a simple loop. The control value for the loop is the variable, hiBit,
which is also calculated using DCD. In this loop, hiBit will be tested for zero to exit,
so each iteration through the loop will decrement (decrease) this value.

If hiBit is greater than zero, the bar graph workspace variable, newBar, is shifted
left and its bit 0 is set. For example, if DCD returned %1000 in hiBit, here’s how
hiBit and newBar would be affected through the loop:

hiBit newBar
1000 0001
0100 0011
0010 0111
0001 1111
0000 (done - exit loop and display value)

The purpose for the variable, newBar, is to prevent the LEDs from flashing with each
update. This allows the program to start with an “empty” graph and build to the

Time to Experiment · Page 45

current value. With this technique, the program does not have to remember the
value of the previous graph.

Write Code like a Pro

As your programs become more and more complex, it’s important to code and test a
section at a time. In this program there are two separate subroutines; each was
independently coded and tested before incorporating them together. Independent
testing of code modules is particularly important when the program is already
working – there is nothing more frustrating than “breaking” a perfectly good program
by adding untested code.

Page 46 · StampWorks

EXPERIMENT #6: A SIMPLE GAME

With the increase in power of small microcontrollers, hand-held games have become
a part of our cultural norm. The purpose of this experiment is to create a simple
slot-machine type game with the BASIC Stamp, complete with lights and sounds
effects.

Look It Up: PBASIC Elements to Know

• RANDOM
• & (And operator)
• FREQOUT
• BUTTON
• LOOKUP
• #DEFINE (conditional compilation)
• #IF-#THEN-#ELSE-#ENDIF (conditional compilation)

Building the Circuit

Time to Experiment · Page 47

1. Using white wire, connect BASIC Stamp pins P0 – P5 to LEDs 0 – 5.
2. Using white wire, connect BASIC Stamp pin P6 to the Audio Amplifier

(set the speaker selection shunt to SPK).
3. Using white wire, connect BASIC Stamp pin P7 to a pushbutton.

Program: SW21-EX06-Las_Vegas.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program simulates a very simple slot machine game, complete with
' sound FX. The constants TAdj and FAdj may require adjustment when using
' on faster BASIC Stamp modules.

' -----[I/O Definitions]---

LEDs VAR OUTL ' LED outputs
LEDsDirs VAR DIRL ' DIRS control for LEDs

Speaker PIN 6 ' speaker output
PlayBtn PIN 7 ' button input to play

' -----[Constants]---

TAdj CON $100 ' time adjust factor
FAdj CON $100 ' frequency adjust factor

' -----[Variables]---

rndVal VAR Word ' random number
pattern VAR Byte ' light pattern
tone VAR Word ' tone output
swData VAR Byte ' workspace for BUTTON
delay VAR Word ' delay while "spinning"
spin1 VAR Byte ' loop counter
spin2 VAR Byte ' loop counter

' -----[Initialization]--

Reset:
 LEDsDirs = %00111111 ' make LEDs outputs

Page 48 · StampWorks

' -----[Program Code]--

Main:
 DO
 GOSUB Get_Random ' get random number/tone
 FREQOUT Speaker, 35 */ TAdj, tone */ FAdj ' sound the tone
 PAUSE 100
 BUTTON PlayBtn, 0, 255, 10, swData, 1, Spin ' check for play
 LOOP

Spin:
 LEDs = %00111111 ' simulate machine reset
 PAUSE 750
 LEDs = %00000000
 PAUSE 500
 delay = 75 ' initialize delay

 FOR spin1 = 1 TO 25 ' spin the wheel
 GOSUB Get_Random ' get random number
 FREQOUT Speaker, 25 */ TAdj, 425 */ FAdj ' wheel click
 PAUSE delay ' pause between clicks
 delay = delay */ $0119 ' multiply delay by 1.1
 NEXT

 IF (pattern = %00111111) THEN ' if all lit, you win
 FOR spin1 = 1 TO 5
 FOR spin2 = 0 TO 3
 LOOKUP spin2, [$00, $0C, $12, $21], LEDs
 LOOKUP spin2, [665, 795, 995, 1320], tone
 FREQOUT Speaker, 35 */ TAdj, tone */ FAdj
 PAUSE 65
 NEXT
 NEXT
 ELSE
 FREQOUT Speaker, 1000 */ TAdj, 330 */ FAdj ' otherwise, groan...
 ENDIF

Clear_Game:
 LEDs = %00000000 ' clear LEDs
 PAUSE 1000
 GOTO Main ' do it again

' -----[Subroutines]---

Get_Random:
 RANDOM rndVal ' get pseudo-random number
 tone = rndVal & $7FF ' keep in reasonable range
 pattern = rndVal & %00111111 ' mask out unused bits
 LEDs = pattern ' show the pattern
 RETURN

Time to Experiment · Page 49

Behind the Scenes

One of the key aspects of this program is that it demonstrates how to put more
randomness into the pseudo-random nature of the RANDOM function. This is done by
adding a “human touch.”

The program waits in a loop at Main. The top of this loop calls Get_Random to
create a pseudo-random value, a tone for the speaker and to put the new pattern on
the LEDs. On returning to the loop, the tone is played and the button input is
checked for a press. The program will remain in this loop until we press the button.

The BUTTON instruction is used to debounce the input. Here’s what gives the
program its randomness: the time variations between button presses (during which
the RANDOM function is continually called, hence tumbling the value). When the
button is pressed, the LEDs are lit and cleared to simulate the game resetting. Then,
a FOR-NEXT loop is used to simulate the rolling action of a slot machine. For each
roll, a “click” sound is generated and the delay between clicks is modified (increased
by 10%) to simulate natural decay (slowing) of the “wheels.”

If all six LEDs are lit after the last spin, the program plays a little light and sound
show to celebrate our good fortune. This section uses LOOKUP to play a preset
pattern of LEDs and tones before returning to the top of the program. If any of the
LEDs are not lit, a groan will be heard from the speaker and the game will restart.

Taking It Further

Can you modify the program so that fewer than six LEDs are required for a win?
How can this be done?

Write Code like a Pro

Instead of waiting for an actual “win” we can rig the game to win every time by
inserting a line of code:

 pattern = %00111111

. . . before the section that tests the pattern bits. This is useful for fine-tuning the
celebration routine – just be sure to remove this code before delivering the final

Page 50 · StampWorks

project. In some programs where we may have several sections used for testing, or
we need the ability to turn test code on and off, inserting a conditional compilation
block will facilitate the quick removal and restoration of test code.

We can use #DEFINE to create a conditional constant

#DEFINE _TestMode = 1

When _TestMode is defined as 1 the code nested in #IF-#THEN will run, otherwise
it will not even be compiled or downloaded to the BASIC Stamp.

 #IF _TestMode #THEN
 pattern = %00111111
 #ENDIF

Be aware that enabling conditional compilation blocks like the one shown above will
increase the program size – if you’re going to be creating a large program you should
enable them from the beginning so that you don’t run out of space when you need
them later.

Time to Experiment · Page 51

EXPERIMENT #7: A LIGHTING CONTROLLER

The purpose of this experiment is to create a small lighting controller, suitable for
holiday displays and outdoor decorations. The outputs of this circuit will be LEDs
only (To control high-voltage lighting take a look at Matt Gilliland’s Microcontroller
Application Cookbook).

Look It Up: PBASIC Elements to Know

• DATA
• // (Modulus operator)
• ON-GOSUB
• READ

Building the Circuit

Page 52 · StampWorks

1. Using white wire, connect BASIC Stamp pins P0 – P5 to LEDs 0 – 5.
2. Plug a 0.1 µF (marked 104) capacitor into sockets C15 and C16.
3. Using white wire, connect socket A16 to BASIC Stamp P6.
4. Using a blackwire, connect socket A15 to the Vss (ground) rail.
5. Using white wire, connect socket B16 to the wiper (center terminal) of the

10K potentiometer.
6. Using black wire, connect the Vss (ground) rail to the bottom terminal of the

10K potentiometer.
7. Using white wire, connect BASIC Stamp pin P7 to a pushbutton.

Program: SW21-EX07-Light_Show.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' Runs a small, multi-mode light show controller using six outputs (runs
' on LEDs, but with proper interfacing could run incandescent lamps).
' This program will require modifications (to the constants LoSpeed and
' Scale) when running on the BS2Sx, BS2p, or BS2px.

' -----[I/O Definitions]---

Lights VAR OUTL ' light control outputs
LightsDirs VAR DIRL ' DIRS for lights outputs

Speed PIN 6 ' speed control Pot input
LtMode PIN 7 ' mode select input

' -----[Constants]---

LoSpeed CON 10 ' low end of POT reading
Scale CON $0163 ' 1.3868 with */

' -----[Variables]---

rawSpd VAR Word ' speed input from POT
delay VAR Word ' time between patterns
btnVar VAR Byte ' workspace for BUTTON
mode VAR Byte ' selected mode
offset VAR Byte ' offset into patterns
rndVal VAR Word ' workspace for RANDOM

Time to Experiment · Page 53

' -----[EEPROM Data]---

SeqA DATA %000001, %000010, %000100, %001000, %010000
 DATA %100000
SeqB DATA %100000, %010000, %001000, %000100, %000010
 DATA %000001, %000010, %000100, %001000, %010000
SeqC DATA %000000, %001100, %010010, %100001
SeqD DATA %100100, %010010, %001001
SeqE DATA %0

AMax CON SeqB - SeqA ' calculate length
BMax CON SeqC - SeqB
CMax CON SeqD - SeqC
DMax CON SeqE - SeqD

' -----[Initialization]--

Reset:
 LightsDirs = %00111111 ' make outputs

' -----[Program Code]--

Main:
 GOSUB Read_Speed ' read speed pot
 delay = (rawSpd - LoSpeed) */ Scale + 50 ' calc delay (50-1000 ms)
 PAUSE delay ' wait between patterns

Switch_Check:
 BUTTON LtMode, 0, 255, 0, btnVar, 0, Show ' new mode?
 mode = mode + 1 // 5 ' yes, update mode var

Show:
 ON mode GOSUB ModeA, ModeB, ModeC, ModeD, ModeE
 GOTO Main

' -----[Subroutines]---

Read_Speed:
 HIGH Speed ' charge cap
 PAUSE 1 ' for 1 millisecond
 RCTIME Speed, 1, rawSpd ' read the Pot
 RETURN

ModeA:
 offset = offset + 1 // AMax ' update offset (0 - 5)

Page 54 · StampWorks

 READ (SeqA + offset), Lights ' output new light pattern
 RETURN

ModeB:
 offset = offset + 1 // BMax
 READ (SeqB + offset), Lights
 RETURN

ModeC:
 offset = offset + 1 // CMax
 READ (SeqC + offset), Lights
 RETURN

ModeD:
 offset = offset + 1 // DMax
 READ (SeqD + offset), Lights
 RETURN

ModeE:
 RANDOM rndVal ' get random number
 Lights = rndVal & %00111111 ' light random channels
 RETURN

Behind the Scenes

Overall, this program is simpler than it first appears. The main body of the program
is a loop. Timing through the main loop is controlled by the position of the
potentiometer. RCTIME is used to read the pot and during development the
maximum pot reading was found to be 695, and the minimum reading was 10. What
we’d like to do is convert the span 10 – 695 to 50 – 1000.

The process is actually quite simple: the desired output span (950) is divided by the
input span (685) to provide a scale factor of 1.3868. This factor is converted for use
with */ by multiplying by 256 (355 or $0163). In application the low end pot value
is subtracted from the raw input, the scale factor applied, and then the minimum
output value of 50 is added. Those with a flair for mathematics will recognize the
familiar y = mx+b equation.

The code at Switch_Check looks to see if the button is pressed. If it is, the
variable, mode, is incremented (increased by 1). The modulus (//) operator is used
to keep mode in the range of zero to four. This works because the modulus operator
returns the remainder of an integer division. Since any number divided by itself will

Time to Experiment · Page 55

return a remainder of zero, using modulus in this manner causes mode to “wrap-
around” from four to zero.

The final element of the main loop is called Show. This code uses ON-GOSUB to call
the code that will output the light sequence specified by mode. Modes A through D
work similarly, retrieving light sequences from the BASIC Stamp’s EEPROM (stored in
DATA statements). Mode E outputs a random light pattern.

Take a look at the code section labeled ModeA. The first thing that happens is that
the variable, offset, is updated – again using the “wrap-around” technique with
the modulus operator. The value of offset is added to the starting position of the
specified light sequence and the current light pattern is retrieved from EEPROM with
READ. Notice that the DATA statements for each sequence are labeled (SeqA, SeqB,
etc.). Internally, each of these labels is converted to a constant value that is equal
to the starting address of the sequence. The length of each sequence is calculated
with these constants. By using this technique, light patterns can be updated
(shortened or lengthened) without having to modify the operational code called by
Show. ModeE is very straightforward, using the RANDOM function to output new
pattern of lights with each pass through the main loop.

Take it Further

Add a new lighting sequence. What sections of the program need to be modified to
make this work?

Write Code like a Pro

The modulus operator (//) is extremely useful, yet shunned by many beginning
programmers as “mysterious.” It’s not, really, in fact its operation is very simple: it
returns the remainder of an integer division. In practice what this means is that the
modulus of any value will fall into the range of zero to the value minus one.

Beginners will often do this:

 idx = idx + 1
 IF (idx = 5) THEN
 idx = 0
 ENDIF

Page 56 · StampWorks

The pro will replace that code with:

 idx = idx + 1 // 5

But what if we wanted to go the other direction, that is, wrap from zero back up to
some number?

 idx = idx - 1
 IF (idx = 0) THEN
 idx = 4
 ENDIF

Yes, this is possible too. Here’s how:

 idx = idx + 4 // 5

Can you see what’s happening? We’re adding the number of elements in the
sequence (5) minus one to idx; the net effect is that we end up subtracting one
from idx when modulus is used to remove the whole result of the division.

This is a very handy trick – keep it in your bag.

Building Circuits on Your Own · Page 57

Building Circuits on Your Own

With the experience you’ve gained in the previous experiments you’re ready to
assemble what follows without specific point-to-point wiring instructions. Don’t be
nervous, you can do it. The projects are fairly simple and you’ll see that they’re
electrically similar to the projects you’ve already built; what we’re going to focus on
is new code techniques.

Proceed slowly and be sure to double-check your connections before you apply
power. Remember, it’s always best to clear the BASIC Stamp’s memory and I/O
setup between experiments – and that can be done with a very simple program:

' {$STAMP BS2}

Main:
 DEBUG "The BASIC Stamp is ready."
 END

Are you ready for some more fun? You should be, and know that you’re well on you
way to designing your own BASIC Stamp projects and experiments.

Okay, then, let’s continue with 7-Segment LED displays….

Page 58 · StampWorks

Using 7-Segment LED Displays · Page 59

Using 7-Segment LED Displays

As you look around and notice devices that use them, you’ll see that LEDs come in all
manner of shape, size, and color. Early on, LED manufacturers found that they could
package seven rectilinear-shaped LEDs in a Figure-8 pattern and when specific
groups of LEDs were lit, the display could be any of the decimal digits and even a
few alpha characters. We call these packaged groups of LEDs 7-segment displays.

In order to simplify wiring, 7-segment LED displays have a common internal
connection; the LEDs used on the PDB are common-cathode, that is, the cathodes of
the LEDs within the display are connected together and that connection must be
made low (connected to Vss) in order to light any of the LEDs in the package. The
diagram below shows the connections of a common-cathode LED display in relation
to the current-limiting resistors on the PDB.

Note that the PDB has five, 7-segment, common-cathode LED modules, and the
terminal marked “A” in the “SEGMENTS” section is connected to the A-segment LED
in all five modules.

In the experiments that follow we will learn how to get the most out of 7-segment
displays.

Page 60 · StampWorks

EXPERIMENT #8: A SINGLE-DIGIT COUNTER

The purpose of this experiment is to get us started with 7-segment LED displays by
creating a simple, single-digit decimal counter.

Building the Circuit

Program: SW21-EX08-7-Seg_Counter.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' Displays decimal digits (0 - 9) on a 7-Segment display connected to
' P0-P7. This program will work, unmodified, on any BS2-family module.

' -----[I/O Definitions]---

Segs VAR OUTL ' Segments on P0 - P7
SegsDirs VAR DIRL ' DIRS for segments

Using 7-Segment LED Displays · Page 61

' -----[Variables]---

idx VAR Nib ' counter variable

' -----[EEPROM Data]---

' .GFEDCBA
' --------
Digit0 DATA %00111111
Digit1 DATA %00000110
Digit2 DATA %01011011
Digit3 DATA %01001111
Digit4 DATA %01100110
Digit5 DATA %01101101
Digit6 DATA %01111101
Digit7 DATA %00000111
Digit8 DATA %01111111
Digit9 DATA %01100111

' -----[Initialization]--

Reset:
 SegsDirs = %01111111 ' make outputs for LEDs

' -----[Program Code]--

Main:
 FOR idx = 0 TO 9 ' loop through digits
 READ (Digit0 + idx), Segs ' move pattern to display
 PAUSE 1000
 NEXT
 GOTO Main

Behind the Scenes

This experiment is very similar to the light show program in basic operation: a
pattern is read from the EEPROM and transferred directly to the LED segments. In
this program, sending specific patterns to the 7-segment LED creates the digits zero
through nine.

To demonstrate that all five modules have the segment lines tied together (and
connected to terminals A through DP, respectively), move the Vss connection from
DIGIT 0 to DIGIT 4. See what happens?

Page 62 · StampWorks

Take it Further

Update the program to create a single-digit hexadecimal counter. Use the patterns
below for the HEX digits.

Write Code like a Pro

Note that the DATA table the stores the 7-segment patterns uses verbose label
names and the patterns are placed in sequential order. By storing the segment
information in EEPROM instead of constants, transferring these patterns to the
display is greatly simplified.

Had we elected to store the patterns as constant values, we’d have to use the
following bit of code to make the transfer:

 LOOKUP idx, [Digit0, Digit1, Digit2, Digit3, Digit4,
 Digit5, Digit6, Digit7, Digit8, Digit9], Segs

As you can see, using READ is a bit tidier. In most programs, storing table values in
DATA statements will simplify coding and save code space if the same values are to
be used in more than one place in the program.

Using 7-Segment LED Displays · Page 63

EXPERIMENT #9: A DIGITAL DIE

In Experiment #6 we created a simple game; this time around we’ll make a simple
digital die (on half of a pair of dice) that can be used when we play our favorite
board games.

Building the Circuit

Add this pushbutton to the circuit in Experiment #8.

Program: SW21-EX09-Roller.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program combines a 7-segment display and pushbutton input to form
' a digital die that displays numbers 1 - 6. This program will work,
' unmodified, on any BS2-family module.

' -----[I/O Definitions]---

Segs VAR OUTL ' Segments on P0 - P7
SegsDirs VAR DIRL ' DIRS for segments

RollBtn PIN 15 ' roll button for die

' -----[Variables]---

Page 64 · StampWorks

rndVal VAR Word ' random number
swData VAR Byte ' workspace for BUTTON
dieVal VAR Nib ' new die value
spinPos VAR Nib ' spinner position
doSpin VAR Nib ' spinner update control

' -----[EEPROM Data]---

' .GFEDCBA
' --------
Digit0 DATA %00111111 ' digit patterns
Digit1 DATA %00000110
Digit2 DATA %01011011
Digit3 DATA %01001111
Digit4 DATA %01100110
Digit5 DATA %01101101
Digit6 DATA %01111101
Digit7 DATA %00000111
Digit8 DATA %01111111
Digit9 DATA %01100111

' .GFEDCBA
' --------
Bug0 DATA %00000001 ' animated "bug" frames
Bug1 DATA %00000010
Bug2 DATA %00000100
Bug3 DATA %00001000
Bug4 DATA %00010000
Bug5 DATA %00100000

BugLen CON Bug5 - Bug0 + 1 ' calc animation length

' -----[Initialization]--

Reset:
 SegsDirs = %01111111 ' make outputs for LEDs

' -----[Program Code]--

Main:
 DO
 GOSUB Tumble_Die ' shake the die
 PAUSE 5 ' loop pad
 ' check for button press
 BUTTON RollBtn, 0, 255, 5, swData, 1, Show_Die
 LOOP

Using 7-Segment LED Displays · Page 65

Show_Die:
 READ (Digit0 + dieVal), Segs ' transfer die to segments
 PAUSE 3000 ' hold for viewing
 GOTO Main ' start again

' -----[Subroutines]---

Tumble_Die:
 RANDOM rndVal ' stir random value
 dieVal = (rndVal // 6) + 1 ' get die val, 1 - 6
 doSpin = (doSpin + 1) // 10 ' update spin timer
 IF (doSpin = 0) THEN ' time for update
 spinPos = (spinPos + 1) // BugLen ' yes, point to next pos
 READ (Bug0 + spinPos), Segs ' output to segments
 ENDIF
 RETURN

Behind the Scenes

This program borrows heavily from what we’ve already done and should be easy to
understand. What we’ve done here is added a bit of programming creativity to make
a very simple program visually interesting.

Of note is the Tumble_Die subroutine which actually does quite a lot of work. The
first thing this routine does is shake the random number generator. Since the main
loop will call this subroutine about every five milliseconds, it’s getting a lot of shaking
and should give us nice random results.

From the random number the die value is created. Remember what we learned
about the modulus operator: it will always return a value between zero and the
divisor. Since there are six faces on a die, we divide the random value by six and
take the modulus; this gives us zero to five. Adding one “fixes” the value so it’s
between one and six.

Finally, this same subroutine is responsible for updating the animated “bug” used to
indicate the die being shaken. If we updated the frame through every pass of the
subroutine the display would look more like a flickering zero than an animation – we
need to slow things down, perhaps updating the animation every tenth time through
(which would give us a bit more than 50 ms per frame). This is accomplished by
using doSpin as a timer. This value gets incremented then divided by 10 (with //)
on every pass; when the modulus result is zero it’s time to update the animation

Page 66 · StampWorks

“frame.” The delay between frames allows us to seem them more clearly and
creates a more inviting display.

Take it Further

Update the program to make the animated bug run around in a “Figure-8” pattern as
show below.

Using 7-Segment LED Displays · Page 67

EXPERIMENT #10: A DIGITAL CLOCK

The purpose of this experiment is to create a simple digital clock using four, 7-
Segment displays. Through this experiment we’ll gain a bit of insight to the process
of display multiplexing, and discover a trick that lets us know when an input has
changed to a specified state.

Look It Up: PBASIC Elements to Know

• DIG (digit operator)

Building the Circuit

Page 68 · StampWorks

Program: SW21-EX10-Clock.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program takes an external 1 Hz signal from the pulse generator and
' synthesizes a simple clock/timer. This code will run, unmodified, on and
' BS2-family module.

' -----[I/O Definitions]---

Segs VAR OUTL ' Segments on P0 - P7
Digs VAR OUTC ' Digit control pins

Tic PIN 15 ' 1 Hz input

' -----[Constants]---

Blank CON %00000000 ' all segments off
DecPnt CON %10000000 ' decimal point on

IsHigh CON 1
IsLow CON 0

' -----[Variables]---

nTic VAR Bit ' new tic input
oTic VAR Bit ' old tic value
xTic VAR Bit ' change (1 when 0 -> 1)
secs VAR Word ' seconds
time VAR Word ' formatted time
theDig VAR Nib ' current display digit

' -----[EEPROM Data]---

' .GFEDCBA
' --------
Digit0 DATA %00111111 ' digit patterns
Digit1 DATA %00000110
Digit2 DATA %01011011
Digit3 DATA %01001111
Digit4 DATA %01100110
Digit5 DATA %01101101
Digit6 DATA %01111101
Digit7 DATA %00000111

Using 7-Segment LED Displays · Page 69

Digit8 DATA %01111111
Digit9 DATA %01100111

DigSel DATA %1110 ' digit 0 active
 DATA %1101 ' digit 1 active
 DATA %1011 ' digit 2 active
 DATA %0111 ' digit 3 active

' -----[Initialization]--

Reset:
 Digs = %1111 ' all off
 DIRS = $0FFF ' make segs & digs outputs

' -----[Program Code]--

Main:
 DO WHILE (Tic = IsHigh) ' wait during high cycle
 GOSUB Show_Clock
 LOOP
 DO WHILE (Tic = IsLow) ' wait during low cycle
 GOSUB Show_Clock
 LOOP
 secs = secs + 1 // 3600 ' update current time
 GOTO Main

' -----[Subroutines]---

Show_Clock:
 time = (secs / 60) * 100 ' get mins, move to 100s
 time = time + (secs // 60) ' add seconds in 1s/10s
 Segs = Blank ' clear display
 READ (DigSel + theDig), Digs ' select digit
 READ (Digit0 + (time DIG theDig)), Segs ' move digit pattern to segs
 IF (theDig = 2) THEN
 Segs = Segs | DecPnt ' add decimal point
 ENDIF
 theDig = theDig + 1 // 4 ' update digit pointer
 RETURN

Behind the Scenes

The first two projects with 7-segment displays used only one digit. This project uses
four. A new problem arises; since the segment (anode) lines of the displays are tied
together, we can only activate one at a time. This is accomplished by putting the

Page 70 · StampWorks

segment pattern on the anodes and then enabling the desired digit (by making its
cathode low).

It would be nice, though, if we could see all four digits at the same time. Well, we
can’t, but if we switch between them fast enough we can fool our eyes into thinking
that they are.

The human eye has a property known as Persistence of Vision (POV), which causes it
to hold an image briefly. The brighter the image, the longer it holds in our eyes. POV
is what causes us to see a bright spot in our vision after a friend snaps a flash photo.
We can use POV to our advantage by rapidly cycling through each of the four digits,
displaying the proper segments for that digit for a short period. If the cycle is fast
enough, the POV of our eyes will cause the all four digits to appear to be lit at the
same time. This process is called multiplexing.

Multiplexing is the process of sharing data lines; in this case, the segment lines to
the 7-segment displays. If we didn’t multiplex, 28 output lines would be required to
control four 7-segment displays. That’s 12 more lines than are available on the
BASIC Stamp module. To be honest, multiplexing in PBASIC is not terribly practical,
but it does allow us to gain an understanding of the process so that when we turn to
multiplexers for assistance (see Experiment #31), we are able to get the results we
desire.

The main loop of the program proceeds in three stages:

• Display the current time while the signal generator input is high
• Display the current time while the signal generator input is low
• Update the seconds counter

Note again how the modulus operator (//) is used to keep seconds in the range of 0
to 3599 (the number of seconds in one hour).

The real work in this experiment happens in the subroutine called Show_Clock. Its
purpose is to reformat the raw seconds into a time format (MMSS) and then update
the current digit. Since the routine can only show one digit at a time, it must be
called very frequently, otherwise display strobing will occur. As we saw earlier, the
main loop of the program does nothing but call this subroutine while waiting for the
Signal Generator input to change.

Using 7-Segment LED Displays · Page 71

The clock display is created by moving the minutes value (secs / 60) into the
thousands and hundreds columns of the variable time. The remaining seconds
(secs // 60) are added to time, placing them in the tens and ones columns.
Here’s how the conversion math works:

Example: 754 seconds

 754 / 60 = 12
 12 x 100 = 1200 (time = 1200)
 754 // 60 = 34
 1200 + 34 = 1234 (time = 1234; 12 minutes and 34 seconds)

Now that the time display value is ready, the segments are cleared for the next
update. Clearing the current segments value keeps the display sharp. If this isn’t
done, the old segments value will cause “ghosting” in the display. Once the display
is clear the current digit is selected and the segments get updated.

Pay special attention to the DIG operator; it is quite handy. DIG returns the single
digit value from the specified position of a number. For example:

 725 DIG 1 = 2

Remember, the right-most digit is digit 0. By updating the variable, theDig, we use
it as a column pointer for both the cathode control as well as pulling the digit offset
from time for use in reading the segments.

The PDB display does not have the colon (:) normally found on a digital clock, so
we’ll enable the decimal point behind digit 2 (ones digit of hours). When theDig is
not pointing to this digit the decimal point illumination is skipped. The final step is to
update theDig for the next calling of the subroutine.

Take it Further

Update the program to use a 10 Hz input from the Signal Generator and blink the
decimal point on every other transition (see SW21-EX10-Clock-DP_Blink.BS2 for full
listing).

Page 72 · StampWorks

Main:
 DO WHILE (Tic = IsHigh) ' wait during high cycle
 GOSUB Show_Clock
 LOOP
 DO WHILE (Tic = IsLow) ' wait during low cycle
 GOSUB Show_Clock
 LOOP
 tenths = tenths + 1 // 36000 ' update time @ 10 Hz
 GOTO Main

' -----[Subroutines]---

Show_Clock:
 time = (tenths / 600) * 100 ' get mins, move to 100s
 time = time + (tenths // 600 / 10) ' add seconds in 1s/10s
 Segs = Blank ' clear display
 READ (DigSel + theDig), Digs ' select digit
 READ (Digit0 + (time DIG theDig)), Segs ' move digit pattern to segs
 IF (theDig = 2) THEN
 Segs.BIT7 = tenths.BIT0 ' blink decimal point
 ENDIF
 theDig = theDig + 1 // 4 ' update digit pointer
 RETURN

Using Character LCDs · Page 73

Using Character LCDs

While LEDs and 7-segment displays make great output devices, there will be projects
that require providing more complex information to the user. Of course, nothing
beats the PC video display, but these are large, expensive, and almost always
impractical for microcontroller projects. Character LCD modules, on the other hand,
fit the bill well. These inexpensive modules allow both text and numeric output, use
very few I/O lines, and require little effort from the BASIC Stamp. And since the
introduction of the BS2p, character LCD instructions have become part of the PBASIC
2.0 and later 2.5 languages. That said, we can still use the stock BS2 to drive these
versatile displays and the experiments that follow will demonstrate how.

Character LCD modules are available in a wide variety of configurations: one-line,
two-line, and four-line are very common. The number of columns (characters) per
line is also variable, with 16- and 20- character displays being the most common and
popular.

The datasheet for the parallel LCD (2 lines x 16 characters) included in the
StampWorks Kit is available for download from www.parallax.com.

The LCD module connects to the PDB by a 14-pin IDC header (X1). The header is
keyed, preventing the connector from being inserted upside-down.

Initialization

The character LCD must be initialized before displaying characters on it. The projects
that follow initialize the LCD in accordance with the specification for the Hitachi
HD44780 controller. The Hitachi controller is the most popular available and many

Page 74 · StampWorks

controllers are compatible with it. When in doubt, be sure to download and examine
the driver documentation for an LCD that does not work properly with these
programs.

Modes of Operation

There are two essential modes of operation with character LCDs: writing a character
on the LCD, and sending a command to the LCD (to clear the screen, for example).
When sending a character, the RS line is high and the data sent is interpreted as a
character to be displayed at the current cursor position. The code sent is usually the
ASCII code for the character to be displayed. Several non-ASCII characters also are
available in the LCD ROM, as well as up to eight user-programmable custom
characters (stored in an area called CGRAM).

Commands are sent to the LCD by taking the RS line low before sending the data.
Several standard commands are available to manage and manipulate the LCD
display.

 Clear $01 Clears the LCD and moves cursor to first position of first line
 Home $02 Moves cursor to first position of first line
 Cursor Left $10 Moves cursor to the left
 Cursor Right $14 Moves cursor to the right
 Display Left $18 Shifts entire display to the left
 Display Right $1C Shifts entire display to the right

Connecting the LCD
The standard parallel LCD has a 14-pin IDC connector at the end of its cable. The
connector is “keyed” so that it is always inserted correctly into the PDB. Simply align
the connector key (small bump) with the slot in X1 and press the connector into the
socket until it is firmly seated.

Using Character LCDs · Page 75

EXPERIMENT #11: BASIC LCD DEMONSTRATION

This experiment demonstrates character LCD interfacing and control fundamentals by
putting the LCD module through its paces.

Look It Up: PBASIC Elements to Know

• PULSOUT
• HIGHNIB, LOWNIB
• ^ (Exclusive Or operator)
• #ERROR

Building the Circuit

Note on connections: On the PDB, X2 splits the LCD data buss between the left and right sides of the
lower portion of the connector.

Page 76 · StampWorks

Be sure to insert the wires for DB4-DB7 into the right side of the connector as shown
below:

Program: SW21-EX11-LCD_Demo.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates essential character LCD control.
'
' The connections for this program conform to the BS2p-family LCDCMD,
' LCDIN, and LCDOUT instructions. Use this program for the BS2, BS2e,
' or BS2sx. There is a separate program for the BS2p, BS2pe, and BS2px.

' -----[I/O Definitions]---

E PIN 1 ' Enable pin
RW PIN 2 ' Read/Write
RS CON 3 ' Register Select
LcdBus VAR OUTB ' 4-bit LCD data bus

' -----[Constants]---

LcdCls CON $01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left
LcdDispR CON $1C ' shift chars right

LcdDDRam CON $80 ' Display Data RAM control

Using Character LCDs · Page 77

LcdCGRam CON $40 ' Character Generator RAM
LcdLine1 CON $80 ' DDRAM address of line 1
LcdLine2 CON $C0 ' DDRAM address of line 2

#DEFINE LcdReady = ($STAMP >= BS2P)

' -----[Variables]---

char VAR Byte ' character sent to LCD
idx VAR Byte ' loop counter

' -----[EEPROM Data]---

Msg DATA "The BASIC STAMP!", 0 ' store message

' -----[Initialization]--

Reset:
 #IF ($STAMP >= BS2P) #THEN
 #ERROR "Please use BS2p version: SW21-EX11-LCD_Demo.BSP"
 #ENDIF

 DIRL = %11111110 ' setup pins for LCD
 PAUSE 100 ' let the LCD settle

Lcd_Setup:
 LcdBus = %0011 ' 8-bit mode
 PULSOUT E, 3
 PAUSE 5
 PULSOUT E, 3
 PULSOUT E, 3
 LcdBus = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00001100 ' disp on, no crsr or blink
 GOSUB LCD_Cmd
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Cmd

' -----[Program Code]--

Main:
 char = LcdCls ' clear the LCD
 GOSUB LCD_Cmd
 PAUSE 500
 idx = Msg ' get EE address of message

Page 78 · StampWorks

Write_Message:
 DO
 READ idx, char ' get character from EE
 IF (char = 0) THEN EXIT ' if 0, message is complete
 GOSUB LCD_Out ' write the character
 idx = idx + 1 ' point to next character
 LOOP
 PAUSE 2000 ' wait 2 seconds

Cursor_Demo:
 char = LcdHome ' move the cursor home
 GOSUB LCD_Cmd
 char = %00001110 ' turn the cursor on
 GOSUB LCD_Cmd
 PAUSE 500

 char = LcdCrsrR
 FOR idx = 1 TO 15 ' move cursor l-to-r
 GOSUB LCD_Cmd
 PAUSE 150
 NEXT

 FOR idx = 14 TO 0 ' move cursor r-to-l by
 char = LcdDDRam + idx ' moving to a specific
 GOSUB LCD_Cmd ' column
 PAUSE 150
 NEXT

 char = %00001101 ' cursor off, blink on
 GOSUB LCD_Cmd
 PAUSE 2000

 char = %00001100 ' blink off
 GOSUB LCD_Cmd

Flash_Demo:
 FOR idx = 1 TO 10 ' flash display
 char = char ^ %00000100 ' toggle display bit
 GOSUB LCD_Cmd
 PAUSE 250
 NEXT
 PAUSE 1000

Shift_Demo:
 FOR idx = 1 TO 16 ' shift display
 char = LcdDispR
 GOSUB LCD_Cmd
 PAUSE 100
 NEXT
 PAUSE 1000

Using Character LCDs · Page 79

 FOR idx = 1 TO 16 ' shift display back
 char = LcdDispL
 GOSUB LCD_Cmd
 PAUSE 100
 NEXT
 PAUSE 1000

 GOTO Main ' do it all over

' -----[Subroutines]---

LCD_Cmd:
 LOW RS ' enter command mode

LCD_Out:
 LcdBus = char.HIGHNIB ' output high nibble
 PULSOUT E, 3 ' strobe the Enable line
 LcdBus = char.LOWNIB ' output low nibble
 PULSOUT E, 3
 HIGH RS ' return to character mode
 RETURN

Behind the Scenes

This is a very simple program which demonstrates the essential functions of a
character LCD. The LCD is initialized using four-bit mode in accordance with the
Hitachi HD44780 controller specifications. This mode is used to minimize the number
of BASIC Stamp I/O lines needed to control the LCD. While it is possible to connect
to and control the LCD with eight data lines, this will not cause an appreciable
improvement in program performance and will use four more I/O lines; for most
projects it is better to conserve I/O.

The basics of the initialization are appropriate for most applications:

• The display is on
• The underline cursor is off
• The blinking cursor is off
• The cursor is automatically incremented after each write
• The display does not shift

Page 80 · StampWorks

Note that this program initializes the LCD for just one line, even though two lines are
physically available on the LCD. See the following experiment for initializing the LCD
for multi-line mode.
With the use of four data bits on the LCD bus, two write cycles are necessary to send
a byte to the LCD. The BASIC Stamp’s HIGHNIB and LOWNIB variable modifiers
make this process exceedingly easy. Each nibble is latched into the LCD by pulsing
the E (enable) line high with PULSOUT.

The main portion of the program starts by clearing the LCD and displaying a
message that has been stored in a DATA statement. This technique of storing
messages in EEPROM is very useful and makes programs easier to update. In this
program, characters are written until a zero is encountered. This method lets us
change the length of the string without worrying about loop control settings. With
the message displayed, the cursor position is returned home (first position of first
line) and turned on (an underline cursor appears).

The cursor is sent back and forth across the LCD using two distinct techniques. The
first uses the cursor-right command. Moving the cursor left is accomplished by
manually positioning the cursor to a specific column position. Manual cursor
positioning is required by many LCD programs for tidy formatting of the information
in the display.

With the cursor back home, it is turned off and the blink attribute is enabled. Blink
causes the current cursor position to alternate between the character and a solid
black box. This can be useful as an attention getter. Another attention-getting
technique is to flash the entire display. This is accomplished by toggling the display
enable bit. The Exclusive OR operator (^) simplifies bit toggling, as any bit XORed
with a 1 will invert:

1 ^ 1 = 0
0 ^ 1 = 1

Using the display shift commands, the entire display is shifted off-screen to the right,
then back. What this demonstrates is that the visible display is actually a window
into the LCD’s display memory (called the DDRAM). One method of using the
additional memory is to write messages off-screen and shift the visible display to
them.

Using Character LCDs · Page 81

Write Code like a Pro

Where possible, take advantage of built-in PBASIC instructions instead of manually
coding them. The BS2p-family, for example, has instructions for handling parallel
LCD modules so the code presented in the standard BS2-version of this project would
use program space unnecessarily. By using conditional compilation we are
frequently able to write a program that will run identically on any BS2-type
microcontroller.

Using the following definition from the LCD program:

#DEFINE _LcdReady = ($STAMP >= BS2P)

… we are able to write code that uses the LCD instructions available in the BS2p-
family. Here’s how the LCD_Cmd and LCD_Out subroutines could be updated to
reduce program memory requirements when a BS2p-family module is installed:

LCD_Cmd:
 #IF _LcdReady #THEN
 LCDCMD E, char ' send command to LCD
 RETURN ' return to program
 #ELSE
 LOW RS ' enter command mode
 #ENDIF

LCD_Out:
 #IF _LcdReady #THEN
 LCDOUT E, 0, [char]
 #ELSE
 LcdBus = char.HIGHNIB ' output high nibble
 PULSOUT E, 3 ' strobe the Enable line
 LcdBus = char.LOWNIB ' output low nibble
 PULSOUT E, 3
 HIGH RS ' return to character mode
 #ENDIF
 RETURN

Note the use of the underscore in the labels LCD_Cmd and LCD_Out – this prevents
conflict with internal reserved words LCDCMD and LCDOUT while making very clear
the intent of the subroutine.

See SW21-EX11-LCD_Demo-All.BS2 for the complete listing.

Page 82 · StampWorks

EXPERIMENT #12: CREATING CUSTOM LCD CHARACTERS

This program demonstrates the creation of custom LCD characters, animation with
the custom characters, and initializing the LCD for multi-line mode.

Building the Circuit

Use the same circuit as in Experiment #11.

Program: SW21-EX11-LCD_Demo.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates custom character creation and animation on a
' character LCD.
'
' The connections for this program conform to the BS2p-family LCDCMD,
' LCDIN, and LCDOUT instructions. Use this program for the BS2, BS2e,
' or BS2sx. There is a separate program for the BS2p, BS2pe, and BS2px.

' -----[I/O Definitions]---

E PIN 1 ' Enable pin
RW PIN 2 ' Read/Write
RS CON 3 ' Register Select
LcdBus VAR OUTB ' 4-bit LCD data bus

' -----[Constants]---

LcdCls CON $01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left
LcdDispR CON $1C ' shift chars right
LcdDDRam CON $80 ' Display Data RAM control
LcdCGRam CON $40 ' Character Generator RAM
LcdLine1 CON $80 ' DDRAM address of line 1
LcdLine2 CON $C0 ' DDRAM address of line 2

#DEFINE _LcdReady = ($STAMP >= BS2P)

Using Character LCDs · Page 83

' -----[Variables]---

char VAR Byte ' character sent to LCD
newChar VAR Byte
idx1 VAR Byte ' loop counters
idx2 VAR Nib

' -----[EEPROM Data]---

Msg1 DATA "THE BASIC STAMP " ' preload EE with messages
Msg2 DATA " IS VERY COOL! ", 3

CC0 DATA %01110 ' mouth 0
 DATA %11111
 DATA %11100
 DATA %11000
 DATA %11100
 DATA %11111
 DATA %01110
 DATA %00000

CC1 DATA %01110 ' mouth 1
 DATA %11111
 DATA %11111
 DATA %11000
 DATA %11111
 DATA %11111
 DATA %01110
 DATA %00000

CC2 DATA %01110 ' mouth 2
 DATA %11111
 DATA %11111
 DATA %11111
 DATA %11111
 DATA %11111
 DATA %01110
 DATA %00000

Smiley DATA %00000 ' smiley face
 DATA %01010
 DATA %01010
 DATA %00000
 DATA %10001
 DATA %01110
 DATA %00110
 DATA %00000

Page 84 · StampWorks

' -----[Initialization]--

Reset:
 #IF _LcdReady #THEN
 #ERROR "Please use BS2p version: SW21-EX12-LCD_Chars.BSP"
 #ENDIF

 DIRL = %11111110 ' setup pins for LCD
 PAUSE 100 ' let the LCD settle

Lcd_Setup:
 LcdBus = %0011 ' 8-bit mode
 PULSOUT E, 3
 PAUSE 5
 PULSOUT E, 3
 PULSOUT E, 3
 LcdBus = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00101000 ' multi-line mode
 GOSUB LCD_Cmd
 char = %00001100 ' disp on, no crsr or blink
 GOSUB LCD_Cmd
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Cmd

Download_Chars: ' download custom chars
 char = LcdCGRam ' point to CG RAM
 GOSUB LCD_Cmd ' prepare to write CG data
 FOR idx1 = CC0 TO (Smiley + 7) ' build 4 custom chars
 READ idx1, char ' get byte from EEPROM
 GOSUB LCD_Out ' put into LCD CG RAM
 NEXT

' -----[Program Code]--

Main:
 char = LcdCls ' clear the LCD
 GOSUB LCD_Cmd
 PAUSE 250

 FOR idx1 = 0 TO 15 ' get message from EEPROM
 READ (Msg1 + idx1), char ' read a character
 GOSUB LCD_Out ' write it
 NEXT
 PAUSE 1000 ' wait 2 seconds

Animation:
 FOR idx1 = 0 TO 15 ' cover 16 characters
 READ (Msg2 + idx1), newChar ' get new char from Msg2

Using Character LCDs · Page 85

 FOR idx2 = 0 TO 4 ' 5 characters in cycle
 char = LcdLine2 + idx1 ' set new DDRAM address
 GOSUB LCD_Cmd ' move cursor position
 LOOKUP idx2, [0, 1, 2, 1, newChar], char ' get animation "frame"
 GOSUB LCD_Out ' write "frame"
 PAUSE 100 ' animation delay
 NEXT
 NEXT
 PAUSE 2000

 GOTO Main ' do it all over

' -----[Subroutines]---

LCD_Cmd:
 LOW RS ' enter command mode

LCD_Out:
 LcdBus = char.HIGHNIB ' output high nibble
 PULSOUT E, 3 ' strobe the Enable line
 LcdBus = char.LOWNIB ' output low nibble
 PULSOUT E, 3
 HIGH RS ' return to character mode
 RETURN

Behind the Scenes

In this program, the LCD is initialized for multi-line mode (note the additional lines
after entering 4-bit mode). This will allow both lines of the LCD module to display
information. With the display initialized, custom character definitions are
downloaded to the LCD.

The LCD has room for eight, user-definable customer characters. The data is stored
for these characters in an area called CGRAM and must be downloaded to the LCD
after power-up and initialization (CGRAM is volatile, so custom character definitions
are lost when power is removed from the LCD). Each custom character requires eight
bytes, the first byte being the top line of the character, the last byte being the
bottom line of the character. The eighth byte is usually $00 as this is where the
cursor is positioned when under the character.

Page 86 · StampWorks

The standard LCD font is five bits wide by seven bits tall. You can create custom
characters that are eight bits tall, but as explained before the eighth line is generally
reserved for the underline cursor. Here’s an example of a custom character
definition:

The shape of the character is determined by the ones and zeros in the data bytes. A
1 in a given bit position will light a pixel; zero will extinguish it.

The bit patterns for custom characters are stored in the BASIC Stamp’s EEPROM with
DATA statements. To move the patterns into the LCD the cursor is moved to the
CGRAM then each data byte is written. Since the LCD has been initialized for auto-
incrementing, there is no need to address each data byte individually. Before the
characters can be used, the display must be returned to “normal” mode by moving
the cursor back to the DDRAM area. The usual method is to clear the display or
home the cursor.

Interestingly, the LCD retrieves the bit patterns from memory while refreshing the
display. In advanced applications, the CGRAM memory can be updated while the
program is running to create unusual display effects.

The heart of this program is the animation loop. This code grabs a character from
the second message, then, for each character in that message, displays the
animation sequence at the desired character location on the second line of the LCD.
A LOOKUP table is used to cycle the custom characters for the animation sequence.
At the end of the sequence, the new character is revealed.

Using Character LCDs · Page 87

Write Code like a Pro

Note the use of binary formatted numbers in the DATA statements for this program.
While the beginning programmer may consider this technique overly verbose, the
professional knows that the small amount of up-front work to use this format saves a
lot of time later when editing or redefining characters. The purpose of the various
numeric formats supported by the BASIC Stamp IDE is to assist the programmer –
once downloaded to the BASIC Stamp the values are all stored in a binary format.

Take it Further

Create your own custom character sequence. Update the initialization and animation
code to accommodate your custom character set.

Page 88 · StampWorks

EXPERIMENT #13: READING THE LCD RAM

This program demonstrates the use of the LCD’s CGRAM space as external memory.

Look It Up: PBASIC Elements to Know

• INS, INL, INH, INA - IND

Building the Circuit

Use the same circuit as in Experiment #11.

Program: SW21-EX13-LCD_Read.BSP
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates how to read data from the LCD's display RAM
' (DDRAM) or character RAM (CGRAM).
'
' The connections for this program conform to the BS2p-family LCDCMD,
' LCDIN, and LCDOUT instructions. Use this program for the BS2, BS2e,
' or BS2sx. There is a separate program for the BS2p, BS2pe, and BS2px.

' -----[I/O Definitions]---

E PIN 1 ' Enable pin
RW PIN 2 ' Read/Write
RS CON 3 ' Register Select
LcdDirs VAR DIRB ' bus DDR
LcdBusOut VAR OUTB ' 4-bit LCD data bus
LcdBusIn VAR INB

' -----[Constants]---

LcdCls CON $01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left
LcdDispR CON $1C ' shift chars right

Using Character LCDs · Page 89

LcdDDRam CON $80 ' Display Data RAM control
LcdCGRam CON $40 ' Character Generator RAM
LcdLine1 CON $80 ' DDRAM address of line 1
LcdLine2 CON $C0 ' DDRAM address of line 2

#DEFINE _LcdReady = ($STAMP >= BS2P)

' -----[Variables]---

char VAR Byte ' character sent to LCD
idx VAR Byte ' loop counter
rndVal VAR Word ' random value
addr VAR Byte ' address to write/read
tOut VAR Byte ' test value - out to LCD
tIn VAR Byte ' test value - in from LCD
temp VAR Word ' use for formatting
width VAR Nib ' width of value to display

' -----[Initialization]--

Reset:
 #IF _LcdReady #THEN
 #ERROR "Please use BS2p version: SW21-EX13-LCD_Read.BSP"
 #ENDIF

 DIRL = %11111110 ' setup pins for LCD
 PAUSE 100 ' let the LCD settle

Lcd_Setup:
 LcdBusOut = %0011 ' 8-bit mode
 PULSOUT E, 3
 PAUSE 5
 PULSOUT E, 3
 PULSOUT E, 3
 LcdBusOut = %0010 ' 4-bit mode
 PULSOUT E, 1
 char = %00101000 ' multi-line mode
 GOSUB LCD_Cmd
 char = %00001100 ' disp on, no crsr or blink
 GOSUB LCD_Cmd
 char = %00000110 ' inc crsr, no disp shift
 GOSUB LCD_Cmd

Display:
 char = LcdHome
 GOSUB LCD_Cmd
 PAUSE 2
 FOR idx = 0 TO 15

Page 90 · StampWorks

 LOOKUP idx, ["ADDR=?? OUT:???"], char
 GOSUB LCD_Out
 NEXT

 char = LcdLine2
 GOSUB LCD_Cmd
 PAUSE 2
 FOR idx = 0 TO 15
 LOOKUP idx, [" IN:???"], char
 GOSUB LCD_Out
 NEXT

' -----[Program Code]--

Main:
 RANDOM rndVal ' generate random number
 addr = rndVal.LOWBYTE & $3F ' create address (0 to 63)
 tOut = rndVal.HIGHBYTE ' create test value

 char = LcdCGRam + addr ' set CGRAM pointer
 GOSUB LCD_Cmd
 char = tOut
 GOSUB LCD_Out ' move the value to CGRAM
 PAUSE 100

 char = LcdCGRam + addr ' reset CGRAM pointer
 GOSUB LCD_Cmd
 GOSUB LCD_In ' read value from LCD
 tIn = char

 ' display results

 char = LcdLine1 + 5 ' show address @ L1/C5
 GOSUB LCD_Cmd
 temp = addr
 width = 2
 GOSUB Put_Val

 char = LcdLine1 + 13 ' show output @ L1/C13
 GOSUB LCD_cmd
 temp = tOut
 width = 3
 GOSUB Put_Val

 char = LcdLine2 + 13 ' show output @ L2/C13
 GOSUB LCD_Cmd
 temp = tIn
 width = 3
 GOSUB Put_Val
 PAUSE 1000

Using Character LCDs · Page 91

 GOTO Main ' do it again

' -----[Subroutines]---

LCD_Cmd:
 LOW RS ' enter command mode

LCD_Out:
 LcdBusOut = char.HIGHNIB ' output high nibble
 PULSOUT E, 3 ' strobe the Enable line
 LcdBusOut = char.LOWNIB ' output low nibble
 PULSOUT E, 3
 HIGH RS ' return to character mode
 RETURN

LCD_In:
 HIGH RS ' data command
 HIGH RW ' read
 LcdDirs = %0000 ' make data lines inputs
 HIGH E
 char.HIGHNIB = LcdBusIn ' get high nibble
 LOW E
 HIGH E
 char.LOWNIB = LcdBusIn ' get low nibble
 LOW E
 LcdDirs = %1111 ' make buss lines outputs
 LOW RW ' return to write mode
 RETURN

Put_Val:
 FOR idx = (width - 1) TO 0 ' display digits l-to-r
 char = (temp DIG idx) + "0" ' convert digit to ASCII
 GOSUB LCD_Out ' write to LCD
 NEXT
 RETURN

Behind the Scenes

This program demonstrates the versatility of the BASIC Stamp’s I/O lines and their
ability to be reconfigured mid-program. Writing to the LCD was covered in the last
two experiments. To read data back, the BASIC Stamp’s I/O lines that serve as the
LCD bus must be reconfigured as inputs. This is no problem for the BASIC Stamp.

Page 92 · StampWorks

Aside from the I/O reconfiguration, reading from the LCD requires the use of an
additional control line: RW. In most programs this line can be held low to allow
writing to the LCD. For reading from the LCD RAM the RW line is made high.

Using the RANDOM function this program generates an address that fits within the
CGRAM, as well a data byte to write to the LCD. The address is kept in the range of
0 to 63 by masking out the highest bits of the LOWBYTE; the HIGHBYTE is used as
the data to be written to the LCD.

The LCD’s CGRAM is normally used for custom character maps. For programs that
do not require custom characters, this area (up to 64 bytes) can be used as a
storage space by the BASIC Stamp. In programs that require fewer than eight
custom characters the remaining bytes of CGRAM can be used as off-board memory
(subtract eight bytes from the CGRAM for each custom character definition).

Reading data from the LCD is identical to writing: the address is set and the data is
retrieved. For this to take place, the LCD data lines must be reconfigured as inputs.
Pulsing the E (enable) line makes the data (one nibble at a time) available for the
BASIC Stamp. Once again, HIGHNIB and LOWNIB are used, this time to build a
single byte from the two nibbles returned during the read operation.

When the retrieved data is ready, the address, output data and input data are
written to the LCD for examination. A short subroutine, Put_Val, handles writing
numerical values to the LCD. To use this routine, move the cursor to the desired
location, put the value to be displayed in temp, the number of characters to display
in width, and then call Put_Val. The subroutine uses the DIG operator to extract a
digit from temp and adds 48 (the ASCII code for “0”) to convert the digit value to a
character so that it can be displayed on the LCD.

Moving Forward · Page 93

Moving Forward

The first sections of this book dealt specifically with output devices, because the
choice of output is often critical to the success of a project. By now, you should be
very comfortable with LEDs, 7-Segment displays, and even character LCD modules.
From this point forward we will work through a variety of experiments; some are
simple, others are somewhat complex, all of them will round your education as a
BASIC Stamp programmer and help build the confidence you need to develop your
own BASIC Stamp-controlled applications.

Remember, the key to success here is to complete each experiment and to take on
any challenge that is presented. Then, go further by challenging yourself. Each time
you modify a program you will learn something. It’s okay if your experiments don’t
work as expected the first time you run them, because you will still be learning. Be
patient and push yourself to learn a little more each day. Very soon you will find
yourself being considered an expert BASIC Stamp programmer.

Page 94 · StampWorks

EXPERIMENT #14: SCANNING AND DEBOUNCING MULTIPLE
INPUTS

This experiment will teach you how to debounce multiple BASIC Stamp inputs. With
modification, any number of inputs, from two to 16, can be debounced using this
method.

Look It Up: PBASIC Elements to Know

• ~ (Invert operator)
• DEBUG
• HOME (used with DEBUG)
• IBIN (used with DEBUG)
• LOWBIT() (variable modifier)

Building the Circuit

Moving Forward · Page 95

Program: SW21-EX14-Debounce.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates the simultaneous debouncing of multiple inputs.
' The input subroutine is easily adjusted to handle any number of inputs.

' -----[I/O Definitions]---

BtnBus VAR INA ' four inputs, pins 0 - 3

' -----[Variables]---

btns VAR Nib ' debounced inputs
idx VAR Nib ' loop counter

' -----[Program Code]--

Main:
 DO
 GOSUB Get_Buttons ' get debounced inputs
 DEBUG HOME,
 "Inputs = ", IBIN4 btns ' display in binary mode
 PAUSE 50
 LOOP

' -----[Subroutines]---

Get_Buttons:
 btns = %1111 ' enable all four inputs
 FOR idx = 1 TO 5
 btns = btns & ~BtnBus ' test inputs
 PAUSE 5 ' delay between tests
 NEXT
 RETURN

Behind the Scenes

When debouncing only one input, the BASIC Stamp’s BUTTON instruction works
perfectly well and even adds a couple of useful features (like auto-repeat). To
debounce two or more inputs, however, we need to create a bit of code. The

Page 96 · StampWorks

workhorse of this experiment is the subroutine Get_Buttons. As presented, it will
accommodate four normally-open, active-low inputs but it can easily be modified for
any number of inputs from two to 16.

The purpose of Get_Buttons is to ensure that the inputs stay pressed for at least
25 milliseconds with no contact “bouncing.” Debounced inputs will be returned in the
variable, btns, with a valid input represented by a “1” in the respective button
position.

The Get_Buttons routine starts by assuming that all button inputs will be valid, so
all the bits of btns variable are set to one. Then, using a FOR-NEXT loop, the inputs
are scanned and compared to the previous state. Since the inputs are active-low
(zero when pressed), the Invert operator (~) flips them. The And operator (&) is
used to update the current state. For a button to be valid, it must remain pressed
through the entire FOR-NEXT loop.

Here’s how the debouncing technique works: When a button is pressed, the input to
the BASIC Stamp will be zero. The Invert operator will flip zero to one. One “Anded”
with one is still one, so that button remains valid. If the button is not pressed, the
raw input to the BASIC Stamp will be one (because of the 10K pull-up to Vdd). One
is inverted to zero. Zero “Anded” with any number is zero and will cause the button
to remain invalid through the entire debounce loop.

The debounced button inputs are displayed in a DEBUG window with the IBIN4
modifier so that the value (state, pressed = “1”) of each button is clearly displayed.

Write Code like a Pro

Many programs will require the ability to “single shot” a button input, that is, to
activate some event or process only after the change-of-state of a button. By
keeping track of the last scan value we can report to the program which buttons
changed between the current scan and the last.

Moving Forward · Page 97

Here’s the modified subroutine:

Get_Buttons:
 nBtns = %1111 ' enable all four inputs
 FOR idx = 1 TO 5
 nBtns = nBtns & ~BtnBus ' test new inputs
 PAUSE 5 ' delay between tests
 NEXT
 xBtns = nBtns ^ oBtns & nBtns ' look for 0 -> 1 changes
 oBtns = nBtns ' save this scan
 RETURN

The real work is done by this line of code:

 xBtns = nBtns ^ oBtns & nBtns ' look for 0 -> 1 changes

The current button state (nBtns) is compared with the previous scan value (oBtns)
using the Exclusive OR (^) operator. This will cause a bit to be ‘1’ when there is a
difference between the previous scan and the current. This [comparison] value is
then ANDed with nBtns which holds ‘1’ for each pressed button. The result is that
xBtns will have a ‘1’ for each button that was ‘0’ on the last scan and is ‘1’ on this
scan.

Note that if the button remains pressed and Get_Buttons is called again, the
respective bit of xBtns will change from ‘1’ to ‘0’ since there was no change of
button state.

See listing SW21-EX14-Debounce-Adv.BS2 for a full demonstration.

Take it Further

Modify the program to scan, debounce, and display eight buttons (Hint: Use INL or
INH).

Page 98 · StampWorks

EXPERIMENT #15: COUNTING EVENTS

This experiment demonstrates an events-based program delay.

Look It Up: PBASIC Elements to Know

• CLS, CR, CRSRXY (used with DEBUG)

Building the Circuit

Program: SW21-EX15-Event_Count.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' Counts extenal events by wait for a low-to-high transition on the event
' input pin.

' -----[I/O Definitions]---

EventIn PIN 15 ' event input pin

' -----[Variables]---

nScan VAR Bit ' new scan (changed)
oScan VAR Bit ' old scan of input
xScan VAR Bit ' scan change

eCount VAR Word ' event count
target VAR Word ' target count value

' -----[Initialization]--

Reset:

Moving Forward · Page 99

 DEBUG CLS,
 "Started...", CR

' -----[Program Code]--

Main:
 target = 25 ' set target value
 GOSUB Wait_For_Count ' wait for 25 pulses
 DEBUG "Count complete."

 END

' -----[Subroutines]---

Wait_For_Count:
 DO
 nScan = EventIn ' capture input
 xScan = nScan ^ oScan & nScan ' look for 0 -> 1 change
 oScan = nScan ' save this scan

 IF (xScan = 1) THEN
 eCount = eCount + 1 ' add new event
 DEBUG CRSRXY, 0, 1,
 "Count = ", DEC eCount, CR
 ENDIF
 LOOP UNTIL (eCount = target)
 RETURN

Behind the Scenes

The purpose of the Wait_For_Count subroutine is to cause the program to wait
for a specified number of events. In an industrial setting, for example a packaging
system, we might need to run a conveyor belt until 100 boxes pass a sensor.

As you can see we’ve built upon the “pro” technique explored in the previous
chapter. At the top of the loop the input state is captured in nScan, and then
compared to the previous state (oScan) to detect a change (saved in xScan).
When the input has changed from ‘0’ to ‘1’ between scans the event count is
updated and displayed. The reason for capturing the input before the comparison is
to prevent the possibility of being affected by an input state change while processing
the comparison line.

Note that displaying the current event count in the middle of the Wait_For_Count
subroutine does put a limit on the rate of change the subroutine can accommodate.

Page 100 · StampWorks

This is due to DEBUG requiring several milliseconds to send its output to the Debug
Terminal window. Removing the DEBUG output (simple using conditional
compilation) will increase the events input rate that can be detected.

Note, too, that the subroutine expects a clean input. A noisy input could cause
spurious counts, leading to early termination of the subroutine. This is easily fixed by
adapting the Get_Buttons subroutine from the last experiment.

Scan_Input: ' use with "noisy" inputs
 nScan = 1
 FOR idx = 1 TO 5
 nScan = nScan & EventIn
 PAUSE 5
 NEXT
 xScan = nScan ^ oScan & nScan ' look for 0 -> 1 change
 oScan = nScan ' save this scan
 RETURN

Moving Forward · Page 101

EXPERIMENT #16: FREQUENCY MEASUREMENT

This experiment demonstrates how the BASIC Stamp can measure the frequency of
an input signal by using the COUNT function.

Look It Up: PBASIC Elements to Know

• COUNT
• #SELECT-#CASE-#ENDSELECT

Building the Circuit

Note: The 1 kΩ resistor is marked: brown-black-red.

Page 102 · StampWorks

Program: SW21-EX16-Freq_Measure.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program counts the number of events in one second and calculates
' frequency from it. Since frequency in Hertz is cycles per second, the
' number of cycles counted is the input frequency.

' -----[I/O Definitions]---

FreqIn PIN 15 ' frequency input pin

' -----[Constants]---

OneSec CON 1000 ' capture window = 1 sec

' -----[Variables]---

cycles VAR Word ' counted cycles

' -----[Program Code]--

Main:
 DO
 COUNT FreqIn, OneSec, cycles ' count for 1 second
 DEBUG HOME,
 "Frequency: ", DEC cycles, " Hz" ' display
 LOOP

Behind the Scenes

In the previous experiment, several lines of code were used to count pulses on an
input pin. That method works when counting to a specific number. Other programs
will want to count the number of pulses that arrive during a specified time period.
The BASIC Stamp’s COUNT function is designed for this purpose.

The frequency of an oscillating signal is defined as the number of cycles per second
and is expressed in Hertz. The BASIC Stamp’s COUNT function monitors the specified

Moving Forward · Page 103

pin for a given amount of time (the Duration parameter). To create a simple
frequency meter, the specified time window is set to 1000 milliseconds (one second).

Note the comparison between the BASIC Stamp output and the input frequency
measured with a Parallax USB Oscilloscope on the next page:

Page 104 · StampWorks

When using the COUNT function with a Duration of one second, the frequency
measurement is very accurate up to the specified input of the BASIC Stamp module
(input frequency varies from module-to-module).

Write Code like a Pro

COUNT is one of several BASIC Stamp functions that behave differently based on the
module being used. The BS2, for example, expresses the Duration parameter in
units of one millisecond, while the BS2p expressed this parameter in units of 0.287
milliseconds.

Moving Forward · Page 105

This is another situation where conditional compilation directives are particularly
useful. To accommodate COUNT using any BASIC Stamp 2 module, we can add this
block to our program:

#SELECT $STAMP
 #CASE BS2, BS2E
 DurAdj CON $100 ' Duration / 1
 #CASE BS2SX
 DurAdj CON $280 ' Duration / 0.400
 #CASE BS2P, BS2PX
 DurAdj CON $37B ' Duration / 0.287
 #CASE BS2PE
 DurAdj CON $163 ' Duration / 0.720
#ENDSELECT

Now that we have a multiplier for the Duration parameter, the COUNT code is
modified like this:

 COUNT FreqIn, OneSec */ DurAdj, cycles ' count for for 1 second

… and the program will behave in the same manner using an BS2-family module.

Take it Further

Improve the responsiveness (make it update more frequently) of this program by
changing the COUNT period. What other adjustment has to be made? How does this
change affect the ability to measure very low frequency signals?

Page 106 · StampWorks

EXPERIMENT #17: ADVANCED FREQUENCY MEASUREMENT

This experiment demonstrates how the BASIC Stamp can measure the frequency of
an input signal by using the PULSIN function.

Look It Up: PBASIC Elements to Know

• PULSIN
• DEC (used with DEBUG)
• CLREOL (used with DEBUG)

Building the Circuit

Use the same circuit as Experiment #16

Program: SW21-EX17-Freq_Measure-Adv.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program monitors and displays the frequency of a signal on 15. The
' period of the input cycle is measured in two halves: low, then high.
' Frequency is calculated using the formula F = 1 / Period.

' -----[I/O Definitions]---

FreqIn PIN 15 ' frequency input pin

' -----[Constants]---

Scale CON $200 ' 2.0 us per unit

' -----[Variables]---

pHigh VAR Word ' high pulse timing
pLow VAR Word ' low pulse timing
period VAR Word ' cycle time (high + low)
freq VAR Word ' frequency

Moving Forward · Page 107

' -----[Initialization]--

Reset:
 DEBUG CLS, ' setup report output
 "Period.(uS)... ", CR,
 "Freq (Hz)..... "

' -----[Program Code]--

Main:
 DO
 PULSIN FreqIn, 0, pLow ' get high side of input
 PULSIN FreqIn, 1, pHigh ' get low side of input
 period = (pLow + pHigh) */ Scale ' scale to uSecs
 freq = 62500 / period * 16 ' calculate frequency

 DEBUG CRSRXY, 15, 0, DEC period, CLREOL, ' display values
 CRSRXY, 15, 1, DEC freq, CLREOL
 LOOP

Behind the Scenes

In the last experiment, we learned that the frequency of a signal is defined as the
number of cycles per second. We created a simple frequency meter by counting the
number of pulses (cycles) in one second. This method works well, especially for low-
frequency signals. There will be times, however, when project requirements will
dictate a quicker response time for frequency measurement.

The frequency of a signal can be calculated from its period, or the time for one
complete cycle as shown in the illustration below:

By measuring the period of an incoming signal, its frequency can be calculated with
the equation (where the period is expressed in seconds):

Frequency = 1 / Period

Page 108 · StampWorks

The BASIC Stamp’s PULSIN function is designed to measure the width of an
incoming pulse. By using PULSIN to measure the high and low portions of an
incoming signal, its period and frequency can be calculated. The result of PULSIN
(on the BS2) is expressed in units of two microseconds. First the PULSIN values
are converted to µs by the following formula:

period = (pLow + pHigh) */ Scale

Scale refers to the units of the PULSIN command. Thus, the formula for calculating
frequency becomes:

Frequency = 1,000,000 / period (µs)

This creates a problem for BASIC Stamp math though, as values are limited to 16
bits (maximum value is 65,535). To fix the formula, we can divide 1,000,000 by 16
(62,500) and rewrite the formula like this:

Frequency = 62,500 / period (µs) * 16

This formula works with any BS2 module – after the raw measurements from
PULSIN have been converted to microseconds. This is the purpose of the Scale
constant in the program: it converts the raw input from PULSIN to microseconds for
the generalized frequency calculations.

Run the program and adjust the 10 kΩ potentiometer. Notice that the Debug
Terminal window is updated without delay and that there is no waiting as when
using COUNT to determine frequency. This method of measuring a frequency works
better at higher frequencies (above 100 Hz).

Moving Forward · Page 109

EXPERIMENT #18: A LIGHT CONTROLLED THEREMIN

This experiment demonstrates FREQOUT by creating a light-controlled Theremin (the
first electronic musical instrument ever produced). While the output from our BASIC
Stamp-based Theremin is not quite as haunting as the real thing, it is a fun project
and demonstrates the ability to use a non-standard input (light level) for program
control.

Look It Up: PBASIC Elements to Know

• FREQOUT

Building the Circuit

Note: The 220 Ω resistor is marked: red-red-brown.

Program: SW21-EX18-Theremin.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program uses RCTIME with a photocell to create a light-controlled
' Theremin.

' -----[I/O Definitions]---

Speaker CON 0 ' speaker output
PitchCtrl CON 1 ' pitch control input

Page 110 · StampWorks

' -----[Constants]---

TAdj CON $100 ' time adjust factor
FAdj CON $100 ' frequency adjust factor

Threshold CON 200 ' cutoff frequency to play
NoteTm CON 40 ' note timing

' -----[Variables]---

tone VAR Word ' frequency output

' -----[Program Code]--

Main:
 DO
 HIGH PitchCtrl ' discharge cap
 PAUSE 1 ' for 1 ms
 RCTIME PitchCtrl, 1, tone ' read the light sensor
 tone = tone */ FAdj ' scale input
 IF (tone > Threshold) THEN ' play?
 FREQOUT Speaker, NoteTm */ TAdj, tone
 ENDIF
 LOOP

Behind the Scenes

A Theremin is an interesting musical device used to create those weird, haunting
sounds often heard in old horror movies. This version uses the light falling onto a
photocell to create the output tone.

Since the photocell is a resistive device, RCTIME can be used to read its value.
FREQOUT is used to play the note. The constant, Threshold, is used to control the
cutoff point of the Theremin. When the photocell reading falls below this value, no
sound is played. This value should be adjusted to the point where the Theremin
stops playing when the photocell is not covered in ambient light.

Behind the Scenes…Going Deeper

You may wonder how the BASIC Stamp is able to create a musical note using a pure
digital output. The truth is that it gets a little help from the outside world. At the

Moving Forward · Page 111

front end of the PDB’s audio amplifier is a low-pass filter circuit that takes the pure
digital output (a special type of PWM output) from FREQOUT and smoothes it into a
nice sine wave that produces a clean musical note.

To see this in action, build the following circuit:

Using an oscilloscope, monitor the points marked “A” and “B” in the circuit while
running the following short program:

Main:
 FREQOUT Speaker, 1000, 440
 GOTO Main

On a stock BS2 this will generate a 440 Hz tone for one second. Note the digital
output at point “A” and the sine-wave produced after the filter circuit at point “B”
(the 10 kΩ resistor represents the audio amplifier input).

Page 112 · StampWorks

EXPERIMENT #19: SOUND EFFECTS (SFX)

This experiment uses DTMFOUT and FREQOUT to mimic telephone system sounds,
create sound effects, and even play a simple song.

Look It Up: PBASIC Elements to Know

• DTMFOUT
• INPUT

Building the Circuit

Program: SW21-EX19-Sound_FX.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' Demonstrates sound FX and simple music using FREQOUT and DTMFOUT.

' -----[I/O Definitions]---

Speaker PIN 0 ' speaker on pin 0

' -----[Constants]---

R CON 0 ' rest
C CON 33 ' ideal is 32.703
Cs CON 35 ' ideal is 34.648
D CON 37 ' ideal is 36.708
Ds CON 39 ' ideal is 38.891
E CON 41 ' ideal is 41.203
F CON 44 ' ideal is 43.654
Fs CON 46 ' ideal is 46.249

Moving Forward · Page 113

G CON 49 ' ideal is 48.999
Gs CON 52 ' ideal is 51.913
A CON 55 ' ideal is 55.000
As CON 58 ' ideal is 58.270
B CON 62 ' ideal is 61.735

N1 CON 500 ' whole note duration
N2 CON N1/2 ' half note
N3 CON N1/3 ' third note
N4 CON N1/4 ' quarter note
N8 CON N1/8 ' eighth note

TAdj CON $100 ' x 1.0 (time adjust)
FAdj CON $100 ' x 1.0 (freq adjust)

' -----[Variables]---

idx VAR Word ' loop counter
note1 VAR Word ' first tone for FREQOUT
note2 VAR Word ' second tone for FREQOUT
onTime VAR Word ' duration for FREQOUT
offTime VAR Word
oct1 VAR Nib ' octave for freq1 (1 - 8)
oct2 VAR Nib ' octave for freq2 (1 - 8)
eePntr VAR Byte ' EEPROM pointer
digit VAR Byte ' DTMF digit
clickDly VAR Word ' delay betweens "clicks"

' -----[EEPROM Data]---

Phone1 DATA "123-555-1212", 0 ' stored telephone numbers
Phone2 DATA "916-624-8333", 0

' -----[Program Code]--

Main:
 DEBUG CLS,
 "BASIC Stamp Sound FX Demo", CR, CR

Dial_Tone:
 DEBUG "Dial tone", CR
 onTime = 35 */ TAdj
 note1 = 35 */ FAdj
 FREQOUT Speaker, onTime, note1 ' "click"
 PAUSE 100
 onTime = 2000 */ TAdj
 note1 = 350 */ FAdj

Page 114 · StampWorks

 note2 = 440 */ FAdj
 FREQOUT Speaker, onTime, note1, note2 ' combine 350 Hz & 440 Hz

Dial_Phone1: ' dial phone from EE
 DEBUG "Dialing number: "
 eePntr = Phone1 ' initialize eePntr pointer
 GOSUB Dial_Phone

Phone_Busy:
 PAUSE 1000
 DEBUG CR, " - busy...", CR
 onTime = 400 */ TAdj
 note1 = 480 */ FAdj
 note2 = 620 */ FAdj
 FOR idx = 1 TO 8
 FREQOUT Speaker, onTime, note1, note2 ' combine 480 Hz and 620 Hz
 PAUSE 620
 NEXT
 onTime = 35 */ TAdj
 note1 = 35 */ FAdj
 FREQOUT Speaker, onTime, note1 ' "click"

Dial_Phone2:
 DEBUG "Calling Parallax: "
 eePntr = Phone2
 GOSUB Dial_Phone

Phone_Rings:
 PAUSE 1000
 DEBUG CR, " - ringing"
 onTime = 2000 */ TAdj
 note1 = 440 */ FAdj
 note2 = 480 */ FAdj
 FREQOUT Speaker, onTime, note1, note2 ' combine 440 Hz and 480 Hz
 PAUSE 4000
 FREQOUT Speaker, onTime, note1, note2 ' combine 440 Hz and 480 Hz
 PAUSE 2000

Camptown_Song:
 DEBUG CR, "Play a Camptown song", CR
 FOR idx = 0 TO 13
 LOOKUP idx, [G, G, E, G, A, G, E,
 R, E, D, R, E, D, R], note1
 LOOKUP idx, [4, 4, 4, 4, 4, 4, 4,
 4, 4, 4, 4, 4, 4, 4], oct1
 LOOKUP idx, [N2, N2, N2, N2, N2, N2, N2,
 N2, N2, N1, N2, N2, N1, N8], onTime
 GOSUB Play_1_Note
 NEXT

Howler:

Moving Forward · Page 115

 DEBUG "Howler -- watch out!!!", CR
 FOR idx = 1 TO 4
 onTime = 1000 */ TAdj
 note1 = 1400 */ FAdj
 note2 = 2060 */ FAdj
 FREQOUT Speaker, onTime, note1, note2 ' combine 1400 Hz and 2060 Hz
 onTime = 1000 */ TAdj
 note1 = 2450 */ FAdj
 note2 = 2600 */ FAdj
 FREQOUT Speaker, onTime, note1, note2 ' combine 2450 Hz and 2600 Hz
 NEXT

Roulette_Wheel:
 DEBUG "Roulette Wheel", CR
 onTime = 5 */ TAdj ' onTime for "click"
 note1 = 35 */ FAdj ' frequency for "click"
 clickDly = 250 ' delay between clicks
 FOR idx = 1 TO 8 ' spin up wheel
 FREQOUT Speaker, onTime, note1 ' click
 PAUSE clickDly
 clickDly = clickDly */ $00BF ' accelerate (speed * 0.75)
 NEXT
 FOR idx = 1 TO 10 ' spin stable
 FREQOUT Speaker, onTime, note1
 PAUSE clickDly
 NEXT
 FOR idx = 1 TO 20 ' slow down
 FREQOUT Speaker, onTime, note1
 PAUSE clickDly
 clickDly = clickDly */ $010C ' decelerate (speed * 1.05)
 NEXT
 FOR idx = 1 TO 30 ' slow down and stop
 FREQOUT Speaker, onTime, note1
 PAUSE clickDly
 clickDly = clickDly */ $0119 ' decelerate (speed * 1.10)
 NEXT

Computer_Beeps: ' looks great with randmom
LEDs
 DEBUG "1950's Sci-Fi Computer", CR
 FOR idx = 1 TO 50 ' run about 5 seconds
 onTime = 50 */ TAdj
 RANDOM note1 ' create random note
 note1 = (note1 // 2500) */ FAdj ' don't let note go to high
 FREQOUT Speaker, onTime, note1 ' play it
 PAUSE 100 ' short pause between notes
 NEXT

Space_Transporter:
 DEBUG "Space Transporter", CR
 onTime = 10 */ TAdj

Page 116 · StampWorks

 FOR idx = 5 TO 5000 STEP 5 ' frequency sweep up
 note1 = idx */ FAdj
 FREQOUT Speaker, onTime, note1, note1 */ 323
 NEXT
 FOR idx = 5000 TO 5 STEP 50 ' frequency sweep down
 note1 = idx */ FAdj
 FREQOUT Speaker, onTime, note1, note1 */ 323
 NEXT

 DEBUG CR, "Sound demo complete."
 INPUT Speaker

 END

' -----[Subroutines]---

Dial_Phone:
 DO
 READ eePntr, digit ' read a digit
 IF (digit = 0) THEN EXIT ' when 0, number is done
 DEBUG digit ' display digit
 IF (digit >= "0" AND digit <- "9") THEN ' don't digits
 onTime = 150 */ TAdj
 offTime = 75 */ TAdj
 DTMFOUT Speaker, onTime, offTime, [digit - 48]
 ENDIF
 eePntr = eePntr + 1 ' update eePntr pointer
 LOOP
 RETURN

Play_1_Note:
 note1 = note1 << (oct1 - 1) ' note + octave
 onTime = onTime */ TAdj
 note1 = note1 */ FAdj
 FREQOUT Speaker, onTime, note1 ' play it
 RETURN

Play_2_Notes:
 note1 = note1 << (oct1 - 1) ' note + octave
 note2 = note2 << (oct2 - 1) ' note + octave
 onTime = onTime */ TAdj
 note1 = note1 */ FAdj
 note2 = note2 */ FAdj
 FREQOUT Speaker, onTime, note1, note2 ' play both
 RETURN

Moving Forward · Page 117

Behind the Scenes

With a bit of programming creativity, the BASIC Stamp microcontroller is able to
create and mimic some very interesting sound effects, particularly those used in
telephone system. Since most of the sounds we hear on the telephone (other than
voice) are generated with two tones, the BASIC Stamp’s FREQOUT and DTMFOUT
functions can be used to generate the effects.

DTMFOUT is actually a specialized version of FREQOUT that plays two simultaneous
tones that are superimposed on each other. The purpose of DTMFOUT is to create
the dual-tones required to dial a telephone. The figure below shows the raw and
filtered output of DTMFOUT. In the filtered output the interaction of the two tones is
clearly visible.

Page 118 · StampWorks

The DTMF tones used in telephone systems are standardized, so instead of passing a
tone (or tones), the digit(s) to be dialed are passed as parameters. In actual dialing
applications, the DTMF on-time and off-time can be specified to deal with telephone
line quality.
This program also presents the BASIC Stamp’s basic musical ability by playing a
simple song. Constants for note frequency (in the first octave) and note timing
simplify the operational code. The Play_1_Note subroutine adjusts note frequency
for the specified octave. The musical quality can suffer a bit in the higher octaves
because of rounding errors. Using the ideal values shown, the constants table can be
expanded to create accurate musical notes. Keep in mind that each octave doubles
the frequency of a note.

Octave 2 = Octave 1 * 2
Octave 3 = Octave 2 * 2
Octave 4 = Octave 3 * 2

And so on…

Challenge

Convert (a portion of) your favorite song to play on the BASIC Stamp.

Moving Forward · Page 119

EXPERIMENT #20: INFRARED OBJECT DETECTION

This experiment demonstrates an interesting side-effect of using FREQOUT without
the audio filter circuit of Experiment #18; the effect allows us to modulate an
Infrared (IR) LED for use with an IR detector.

Look It Up: PBASIC Elements to Know

• Bit (variable type)

Building the Circuit

The StampWorks parts kit includes an IR LED (clear) and a 38.5 kHz detector. In
order to prevent “spill” from the LED, it should be placed in a protective shield as
shown in the diagram above.

Page 120 · StampWorks

Program: SW21-EX20-IR_Detect.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program uses FREQOUT without a filter to modulate an IR LED for
' detection by a demodulating receiver.

' -----[I/O Definitions]---

IrLed PIN 0 ' IR LED output
IrDectect PIN 1 ' detector input

' -----[Constants]---

IrMod CON 38500 ' 38.5 kHz (harmonic)
ModTime CON 1 ' 1 ms

NoDetect CON 1 ' detector is active-low

' -----[Variables]---

object VAR Bit

' -----[Program Code]--

Main:
 DO
 GOSUB Scan_IR
 IF (object = NoDetect) THEN
 DEBUG HOME, "All clear", CLREOL
 ELSE
 DEBUG HOME, "Intruder Alert!", CLREOL
 ENDIF
 PAUSE 100
 LOOP

' -----[Subroutines]---

Scan_IR:
 FREQOUT IrLed, ModTime, IrMod ' module IR LED
 object = IrDectect ' scan detector
 RETURN

Moving Forward · Page 121

Behind the Scenes

As explained in Experiment #18, the raw output of FREQOUT is designed to be
filtered (producing a very clean sine wave) before application to an audio amplifier.
If we remove the filter, the raw output will be filled with a lot of harmonic content
above the specified output frequency. The harmonic content happens to be strong
enough to modulate an IR LED.

By specifying 38.5 kHz for FREQOUT – which is actually above the legal value for a
frequency – what we get is a fundamental plus a harmonic at 38.5 kHz; this
harmonic is used to modulate the IR LED. Why modulate? Because the environment
is filled with natural and man-made IR signals, and by modulating and demodulating
at a specific frequency we are able to detect our source. The figure below shows the
harmonic spike created by FREQOUT; note that it is near enough to the target of
38.5 kHz to be useful.

The IR detector is special as well. Note that the FREQOUT instruction must end
before we can sample the output from the detector. The detector in use holds its
output long enough to allow the pin scan to occur.

Page 122 · StampWorks

Going Deeper

IR detection opens up a lot of possibilities with hand-held remote control. Yes, the
TV and other remotes we’ve become so accustomed to can be made useful in our
projects. This subject, however, requires a book unto itself – and that book is
available. Parallax engineer, Andy Lindsay, has written an excellent book titled IR
Remote for the Boe-Bot. While the book focuses on robotics applications, the remote
control code may be used with virtually any application where user input is required.
It’s prequel, Robotics with the Boe-Bot (also written by Andy) is another good source
of IR object detection techniques.

Moving Forward · Page 123

EXPERIMENT #21: ANALOG INPUT WITH PULSIN

This experiment demonstrates the ability to measure a resistive element using
PUSLIN and common oscillator circuit.

Building the Circuit

Note: The 0.01 µF capacitor is marked: 103.

Program: SW21-EX21-Analog_In.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program "reads" an analog value by using that component to control
' the output frequency of a 555-based oscillator. PULSIN is used to
' measure the high portion of the signal as it is controlled by the
' variable resistance.

' -----[I/O Definitions]---

Page 124 · StampWorks

PulseInput PIN 15 ' pulse in from 555

' -----[Constants]---

Scale CON $200 ' 2.0 us per unit

P90 CON $E666 ' 0.90
P75 CON $C000 ' 0.75
P50 CON $8000 ' 0.50
P25 CON $4000 ' 0.25
P10 CON $1999 ' 0.10

' -----[Variables]---

rValue VAR Word ' raw value
sValue VAR Word ' smoothed value

' -----[Initialization]--

Reset:
 DEBUG CLS,
 "Analog Input ", CR,
 "------------ ", CR,
 "Raw value... ", CR,
 "Filtered.... "

' -----[Program Code]--

Main:
 DO
 PULSIN PulseInput, 1, rValue ' get high portion of input
 rValue = rValue */ Scale ' convert to microseconds
 sValue = (rValue ** P50) + (sValue ** P50) ' apply digital filter

 DEBUG CRSRXY, 13, 2, DEC rValue, CLREOL, ' print results
 CRSRXY, 13, 3, DEC sValue, CLREOL

 PAUSE 50
 LOOP

Moving Forward · Page 125

Behind the Scenes

In this experiment the 555 is configured as an astable (free-running) oscillator.
Analyzing the output, the width of the high side of the signal is primarily controlled
by the resistance of the photocell. By measuring the high portion of the 555’s output
with PULSIN, the BASIC Stamp is able to determine the relative resistance of –
hence light falling on – the photocell.

The 555’s capacitor is charged through the CdS photocell and the 1K resistor while
the output (pin 3) is high. Once the threshold level is reached (about 2/3 Vdd) and
detected by pin 6 the 555 output and pin 7 will go low, causing the capacitor to
discharge through the 1K resistor. When the capacitor discharges to about 1/3 Vdd
and is detected by pin 2, the output goes back high and pin 7 is disconnected to
allow the capacitor to charge again. Since the CdS is only in the charge path (the
555 output is high), we only need to measure that side of the signal to determine
relative resistance.

The advantage to this scheme is that it is very fast acting; the disadvantage is that
quickly changing values can create challenges for some programs. We can slow the
changes with a bit of digital filtering. By adding a portion of the previous
measurement to a portion of the current measurement, we are able to control how
quickly the value will reach the new setting. The ratio of raw-to-filtered readings in
this equation will determine the responsiveness of the filter. The larger the raw
portion, the faster the input response. To dampen quickly-changing inputs, we
would use a small portion of the current reading with a large portion of the previous
reading. The key to correct digital filtering is to ensure that the relative percentages
add up to 100% (e.g. 25/75. 50/50, 90/10, etc.).

Page 126 · StampWorks

EXPERIMENT #22: ANALOG OUTPUT WITH PWM

This experiment demonstrates the creation of a stable analog output voltage using
PWM and an off-the-shelf op-amp.

Look It Up: PBASIC Elements to Know

• PWM

Building the Circuit

Note: The 10 kΩ resistor is marked: brown-black-orange.

The LM358 requires at least 6.5 volts on its Vcc pin (8) to provide a five-volt output
from PWM. By using the PDB’s Vin connection (near the RS-232 DCE port) and a 12-
volt power supply, this requirement is satisfied.

Moving Forward · Page 127

Program: SW21-EX22-Analog_Out.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates how the PWM command can be used with an opamp
' buffer to create a variable voltage output.

' -----[I/O Definitions]---

D2Aout PIN 0 ' analog out pin

' -----[Constants]---

CycAdj CON $100 ' x 1.0, cycle adjust
OnTime CON 5 ' 5 ms

' -----[Variables]---

level VAR Byte ' analog level
mVolts VAR Word ' output in millivolts

' -----[Initialization]--

Reset:
 DEBUG CLS,
 "Analog Output ", CR,
 "--------------- ", CR,
 "level.... ", CR,
 "mVolts... "

' -----[Program Code]--

Main:
 DO
 FOR level = 0 TO 255 ' increase voltage to LED
 PWM D2Aout, level, (OnTime */ CycAdj)
 GOSUB Show_Level
 NEXT
 FOR level = 255 TO 0 ' decrease voltage to LED
 PWM D2Aout, level, (OnTime */ CycAdj)
 GOSUB Show_Level
 NEXT
 LOOP ' do it again

Page 128 · StampWorks

' -----[Subroutines]---

Show_Level:
 mVolts = level */ $139B ' level * 19.6 mV
 DEBUG CRSRXY, 10, 2,
 DEC level, CLREOL,
 CRSRXY, 10, 3,
 DEC1 (mVolts / 1000), ".", DEC3 mVolts
 RETURN

Behind the Scenes

While most BASIC Stamp applications will deal with digital signals, some will require
analog output; a variable voltage between zero and some maximum voltage. The
BASIC Stamp’s PWM instruction is designed to generate an analog voltage when
combined with an R/C filter. The PWM instruction produces a series of pulses which
have a programmable on-time to off-time ratio (duty cycle). The output voltage of
the circuit corresponds directly to the Duty parameter of the PWM instruction – a
larger value for Duty will result in a higher output voltage. A Duty of 255 will charge
the capacitor to five volts.

In order to ensure that the capacitor is properly charged, the Duration parameter
should be set to at least five R/C time constants. In the circuit above, one time
constant is one millisecond (10 kΩ x 0.1 µF), so setting the Duration to 10
milliseconds guarantees the capacitor will be changed to the level set by Duty.

In this experiment, one half of the LM358 is configured as a voltage follower and
serves to provide a buffered output to the LED or other circuitry. The op-amp buffer
prevents the capacitor from discharging too quickly under load. The LED brightens
and dims because the changing voltage through its series resistor changes the
current through the LED. Notice that the LED seems to snap on and get brighter,
then dim to some level and snap off. This happens when the output of the LM358
crosses the forward voltage threshold (the minimum voltage for the LED to light) of
the LED (about 2.3 volts for the blue LEDs on the PDB – other LEDs will differ).

Moving Forward · Page 129

The two-channel oscilloscope screen capture below shows the unfiltered (directly
from BASIC Stamp) and filtered output (pin 1 of LM358) from PWM.

Note that the output from PWM lasts only while the instruction is active (set by
Duration), and even in a loop there will be breaks (will fall to 0 volts) on the output
pin. For this reason, the PWM instruction is not particularly suitable for motor speed
control applications.

Page 130 · StampWorks

EXPERIMENT #23: EXPANDED DIGITAL OUTPUTS WITH SHIFT
REGISTERS

This experiment demonstrates the expansion of BASIC Stamp outputs with a simple
shift register. Three I/O pins are used to control eight LEDs with a 74HC595 shift
register.

Look It Up: PBASIC Elements to Know

• SHIFTOUT
• MSBFIRST (used with SHIFTOUT)

Building the Circuit

Moving Forward · Page 131

Program: SW21-EX23-74HC595-1.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates a simple method of turning three BASIC Stamp
' I/O pins into eight digital outputs with a 74HC595 shift register.

' -----[I/O Definitions]---

Clock PIN 0 ' shift clock (74HC595.11)
SerData PIN 1 ' serial data (74HC595.14)
Latch PIN 2 ' output latch (74HC595.12)

' -----[Constants]---

DelayTime CON 100

' -----[Variables]---

pattern VAR Byte ' zig-zag pattern

' -----[Initialization]--

Reset:
 LOW Latch ' make output and low
 pattern = %00000001

' -----[Program Code]--

Main:
 DO
 GOSUB Out_595 ' put pattern on 74x595
 PAUSE DelayTime ' hold
 pattern = pattern << 1 ' shift pattern left
 LOOP UNTIL (pattern = %10000000)
 DO
 GOSUB Out_595
 PAUSE DelayTime
 pattern = pattern >> 1 ' shift pattern right
 LOOP UNTIL (pattern = %00000001)
 GOTO Main

Page 132 · StampWorks

' -----[Subroutines]---

Out_595:
 SHIFTOUT SerData, Clock, MSBFIRST, [pattern] ' send pattern to '595
 PULSOUT Latch, 5 ' latch outputs
 RETURN

Behind the Scenes

The BASIC Stamp is extraordinarily flexible in its ability to redefine the direction
(input or output) of its I/O pins, yet very few applications require this flexibility. For
the most part, microcontroller applications will define pins as either inputs or outputs
at initialization and the definitions will remain unchanged through the program.

We can use the fact that outputs are outputs and conserve valuable BASIC Stamp
I/O pins at the same time by using a simple component called a serial-in, parallel-out
shift register. In this experiment, the 74HC595 shift register is used. With just three
BASIC Stamp I/O pins, this program is able to control eight LEDs.

The 74HC595 converts a synchronous serial data stream to eight parallel outputs.
Synchronous serial data actually has two components: the serial data and a serial
clock. The BASIC Stamp’s SHIFTOUT instruction handles the details of the data and
clock lines and writes data to a synchronous device, in this case, the 74HC595. The
figure below illustrates the relationship between the clock and data signals for the
value $AF.

Moving Forward · Page 133

With the 74HC595, the data must be latched to the outputs after the shift process.
Latching is accomplished by briefly pulsing the Latch control line (low-high-low). This
feature prevents the 74HC595 outputs from “rippling” as new data is being shifted
into or through the device. Note that the Latch line is pulled low through a resistor;
this prevents noise from inadvertently latching invalid data to the 74HC595 outputs
while the BASIC Stamp is initializing and the I/O pins are in a high-impedance state
(floating).

Taking it Further

Being serial devices, shift registers can be cascaded, allowing the BASIC Stamp to
control dozens of 74HC595 outputs with the same three I/O pins.

Page 134 · StampWorks

Moving Forward · Page 135

To connect cascaded 74HC595s, the clock and latch lines are all tied together and
the QH’ serial output from one stage connects to the serial input of the next stage.

Program: SW21-EX23-74HC595-2.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates a simple method of turning three BASIC Stamp
' I/O pins into sixteen digital outputs with a 74HC595 shift register.

' -----[I/O Definitions]---

Clock PIN 0 ' shift clock (74HC595.11)
SerData PIN 1 ' serial data (74HC595.14)
Latch PIN 2 ' output latch (74HC595.12)

' -----[Constants]---

DelayTime CON 100

' -----[Variables]---

counter VAR Byte ' binary counter
pattern VAR Byte ' zig-zag pattern

' -----[Initialization]--

Reset:
 LOW Latch ' make output and low
 pattern = %00000001

' -----[Program Code]--

Main:
 DO
 counter = counter + 1 ' update counter
 GOSUB Out_595x2 ' put pattern on 74x595
 PAUSE DelayTime ' hold
 pattern = pattern << 1 ' shift pattern left
 LOOP UNTIL (pattern = %10000000)
 DO
 counter = counter + 1

Page 136 · StampWorks

 GOSUB Out_595x2
 PAUSE DelayTime
 pattern = pattern >> 1 ' shift pattern right
 LOOP UNTIL (pattern = %00000001)
 GOTO Main

' -----[Subroutines]---

Out_595x2:
 SHIFTOUT SerData, Clock, MSBFIRST, [counter] ' send counter to 595-2
 SHIFTOUT SerData, Clock, MSBFIRST, [pattern] ' send pattern to 595-1
 PULSOUT Latch, 5 ' latch outputs
 RETURN

Behind the Scenes

The 74HC595 has a serial output pin (9) that allows the cascading of multiple devices
for more outputs – the serial output from one 595 feeds the serial input of the next
device in line. This works by moving the data in QH to the QH’ output (9) on a new
clock pulse. When connecting cascaded 595s, the Clock and Latch pins should be
tied together to keep all devices synchronized.

In our program we must be concerned with the order of shifted values when working
with cascaded devices. Subsequent SHIFTOUT sequences will "push" the data
through each register until the data is loaded into the correct device. In the
illustration below the value intended for 595-2 is output first and will be shifted
through 595-1.

After the data has been output to all shift registers in the chain, the Latch pulse is
applied to transfer the new data to the 74HC595 output pins.

Moving Forward · Page 137

EXPERIMENT #24: EXPANDED DIGITAL INPUTS WITH SHIFT
REGISTERS

This experiment demonstrates the expansion of BASIC Stamp inputs with a simple
shift register – the 74HC165 which is a complementary device to the 74HC595 used
in Experiment #23.

Look It Up: PBASIC Elements to Know

• SHIFTIN
• MSBPRE (used with SHIFTIN)

Building the Circuit

Page 138 · StampWorks

Program: SW21-EX24-74HC165-1.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates a simple method of turning three BASIC Stamp
' I/O pins into eight digital inputs with a 74HC165 shift register.

' -----[I/O Definitions]---

Clock PIN 0 ' shift clock (74HC165.2)
SerData PIN 1 ' serial data (74HC165.7)
Load PIN 2 ' output latch (74HC165.1)

' -----[Constants]---

DelayTime CON 100

' -----[Variables]---

switches VAR Byte ' switch data

' -----[Initialization]--

Reset:
 HIGH Load ' make output and high
 DEBUG CLS,
 "Switches 76543210", CR,
 "-------- --------", CR,
 "Status "

' -----[Program Code]--

Main:
 DO
 GOSUB Get_165 ' get switch inputs
 DEBUG CRSRXY, 10, 2, BIN8 switches ' display current status
 PAUSE DelayTime ' pad the loop a bit
 LOOP

' -----[Subroutines]---

Get_165:
 PULSOUT Load, 5 ' load switch inputs
 SHIFTIN SerData, Clock, MSBPRE, [switches] ' shift them in
 RETURN

Moving Forward · Page 139

Behind the Scenes

The experiment demonstrates SHIFTIN, the complementary function to SHIFTOUT.
In this case, three BASIC Stamp I/O pins are used to read the state of eight DIP
switches. To read the data from the 74HC165, the parallel inputs are latched by
briefly pulsing the Load line (high-low-high), then using SHIFTIN to move the data
into the BASIC Stamp.

Note that the DIP-switches are pulled-up to Vdd, so setting them to the closed
position puts a logic low (0) on the shift register inputs. By using the Q\ (inverted
Data Out) pin from the 74HC165, the switch data arrives at the BASIC Stamp with
"1" bit indicating that a switch is closed.

Taking it Further

As with the 74HC595, we can cascade the 74HC165 to create more inputs with the
same three I/O pins. Connect your choice of inputs to the circuit below:

Page 140 · StampWorks

Moving Forward · Page 141

Program: SW21-EX24-74HC165-2.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates a simple method of turning three BASIC Stamp
' I/O pins into sixteen digital inputs with two 74HC165 shift registers
' that have been cascaded.

' -----[I/O Definitions]---

Clock PIN 0 ' shift clock (74HC165.2)
SerData PIN 1 ' serial data (74HC165.7)
Load PIN 2 ' output latch (74HC165.1)

' -----[Constants]---

DelayTime CON 100

' -----[Variables]---

xInputs VAR Word ' external inputs

' -----[Initialization]--

Reset:
 HIGH Load ' make output and high
 DEBUG CLS,
 "XInputs FEDCBA9876543210", CR,
 "------- ----------------", CR,
 "Status "

' -----[Program Code]--

Main:
 DO
 GOSUB Get_165x2 ' get inputs
 DEBUG CRSRXY, 10, 2, BIN16 xInputs ' display current status
 PAUSE DelayTime ' pad the loop a bit
 LOOP

' -----[Subroutines]---

Get_165x2:
 PULSOUT Load, 5 ' load inputs
 SHIFTIN SerData, Clock, MSBPRE, [xInputs\16] ' shift them in
 RETURN

Page 142 · StampWorks

Behind the Scenes

This program is very similar to 74HC595 cascading in that the serial output from one
shift register is fed into the serial input of the next device up the chain. It is
important to note that cascaded stages are connected using the non-inverted output;
only the stage connected directly to the BASIC Stamp uses the inverted output (all
data passing through will be inverted here).

In the program the Get_165x2 subroutine has been updated to accommodate the
second 74HC165. Since a Word variable was defined for the external inputs, the bit
modifier is used with SHIFTIN; this allows all sixteen bits to be collected at one
time. The bit modifier is only required when the number of bits differs from eight
(default bit count).

We could also define separate Byte variables for each device. The code fragment
below shows how we could handle this situation:

Get_165x2:
 PULSOUT Load, 5 ' load inputs
 SHIFTIN SerData, Clock, MSBPRE, [switches, buttons]
 RETURN

In this example, the variable called switches would be loaded with the data from
the first shift register in the chain (i.e., the device connected to the BASIC Stamp).

Moving Forward · Page 143

EXPERIMENT #25: MIXED IO WITH SHIFT REGISTERS

This experiment demonstrates the ability to mix the 74HC595 and 74HC165 and use
the fewest number of BASIC Stamp I/O pins.

Building the Circuit

Note: The 4.7 kΩ resistor is marked: yellow-violet-red.

Page 144 · StampWorks

Program: SW21-EX25-Mixed_IO.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates the ability to use the 74HC595 and 74HC165
' together with the fewest number of BASIC Stamp IO pins. This is
' accomplished by placing a 4.7K resistor between the data out (pin 7) of
' the 74HC165 and the data in (pin 14) of the 74HC595. The serial data
' pin from the BASIC Stamp connects to the 74HC595.

' -----[I/O Definitions]---

Clock PIN 0 ' shift clock
SerData PIN 1 ' serial data (74HC595.14)
Latch PIN 2 ' output latch (74HC595.12)
Load PIN 3 ' input load (74HC165.1)

' -----[Constants]---

DelayTime CON 100

' -----[Variables]---

xInputs VAR Byte ' external inputs

' -----[Initialization]--

Reset:
 LOW Latch
 HIGH Load
 DEBUG CLS,
 "XInputs 76543210", CR,
 "------- --------", CR,
 "Status "

' -----[Program Code]--

Main:
 DO
 GOSUB Get_165 ' get inputs
 GOSUB Put_595 ' move to extended outputs
 DEBUG CRSRXY, 10, 2, BIN8 xInputs ' display current status
 PAUSE DelayTime ' pad the loop a bit
 LOOP

Moving Forward · Page 145

' -----[Subroutines]---

Get_165:
 PULSOUT Load, 5 ' load inputs
 SHIFTIN SerData, Clock, MSBPRE, [xInputs] ' shift them in
 RETURN

Put_595:
 SHIFTOUT SerData, Clock, MSBFIRST, [xInputs] ' send inputs to 595
 PULSOUT Latch, 5 ' latch 595 outputs
 INPUT SerData ' float data I/O line
 RETURN

Behind the Scenes

This program is a fairly simple combination of the previous experiments – with one
critical detail: the placement of a 4.7 kΩ resistor between the 74HC165 data output
pin and the 74HC595 data input pin. The reason that this is required is the 74HC165
data output pin is just that, an output, and if that pin were connect directly to the
BASIC Stamp a data collision could occur (when the BASIC Stamp puts the serial
data pin in output mode for SHIFTOUT) that would cause a short circuit. The
resistor provides a load that safely limits the current between the BASIC Stamp had
the 74HC165.

The resistor also gives the BASIC Stamp a load to drive its output across, so no
matter what the state of the 74HC165 output pin, the data input of the 74HC595 will
always be correct. Do not leave the 4.7 kΩ resistor out of the circuit; otherwise your
BASIC Stamp module could be damaged. Notice that the serial data line is made an
input (floating) at the end of the Put_595 subroutine. This stops current flow
between the BASIC Stamp and the 74HC165 when the pins are in opposite states.

Page 146 · StampWorks

EXPERIMENT #26: HOBBY SERVO CONTROL

This experiment demonstrates the control of a standard hobby servo. Hobby servos
frequently are used with microcontrollers in amateur robotics and animatronics.

Look It Up: PBASIC Elements to Know

• MAX (maximum operator)
• SDEC, SDEC1 – SDEC16 (used with DEBUG)

Building the Circuit

Moving Forward · Page 147

Program: SW21-EX26-Servo_Control.BS2

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program shows how to control a standard servo with the BASIC Stamp.
' Servo position is controlled by reading position of a potentiometer that
' is part of opposing RCTIME networks.

' -----[I/O Definitions]---

PotCW PIN 0 ' clockwise pot input
PotCCW PIN 1 ' counter-cw pot input
Servo PIN 2 ' servo control pin

' -----[Constants]---

Scale CON $00C6 ' to scale RCTIME values
Center CON 1500 ' servo center position
PwAdj CON $0080 ' pulse width adjust (0.5)

' -----[Variables]---

rcRt VAR Word ' rc reading - right
rcLf VAR Word ' rc reading - left
diff VAR Word ' difference
sPos VAR Word ' servo position
pWidth VAR Word ' pulse width for servo

' -----[Initialization]--

Reset:
 LOW Servo ' initialize for PULSOUT

' -----[Program Code]--

Main:
 HIGH PotCW ' read clockwise position
 PAUSE 1
 RCTIME PotCW, 1, rcRt

 HIGH PotCCW ' read ccw position
 PAUSE 1

Page 148 · StampWorks

 RCTIME PotCCW, 1, rcLf

 rcRt = (rcRt */ Scale) MAX 500 ' scale RCTIME to 0-500
 rcLf = (rcLf */ Scale) MAX 500
 sPos = rcLf - rcRt ' position (-500 to 500)
 pWidth = (Center + sPos) ' finalize pulse width

 PULSOUT Servo, (pWidth */ PwAdj) ' move the servo
 PAUSE 20 ' servo refresh delay

 GOTO Main

Behind the Scenes

Hobby servos are specialized electromechanical devices used most frequently to
position the control surfaces of model aircraft. The position of the servo output shaft
is determined by the width of an incoming control pulse. The control pulse is typically
between one and two milliseconds wide. The servo will center when the control
signal is 1.5 milliseconds. In order to maintain its position, the servo must be
periodically updated. The typical update frequency is about 50 times per second, or
every 20 milliseconds as shown in the illustration below

The BASIC Stamp’s PULSOUT command is ideal command for controlling hobby
servos. In this experiment, two RCTIME circuits are constructed around a single 10K
potentiometer. This configuration allows the code to split the potentiometer (at the
wiper), measuring each side independently. By doing this we are able to determine
the relative position of the potentiometer. The readings from each side are scaled to
between 0 and 500 with the */ and MAX operators. By subtracting one side from the
other, a servo position value between –500 and +500 is returned.

Moving Forward · Page 149

The value for the constant Scale is determined empirically. After constructing the
circuit, insert appropriate DEBUG statements to display the raw potentiometer
readings from both sides (they may not match exactly due to component
differences). Take the lower of the two values and divide that into 500 (desired
output). Convert this fractional value to the */ operand by multiplying by 256.

Example:

 Raw RCTIME value: 645
 250 / 645 = 0.775
 0.775 x 256 = 198 (this is the value called Scale)

The difference between the two scaled RCTIME values is added to the centering
position of 1500 (microseconds). Remember that on the BASIC Stamp 2 module,
PULSOUT works in two-microsecond units. What this means is that the pulse width
value needs to be divided by two in order to create the correct pulse output for the
servo. This is done by using the */ with the PwAdj constant set to $0080 (0.5).

This program demonstrates that the BASIC Stamp does indeed work with negative
numbers. You can see the value of sPos by inserting this line after the calculation:

 DEBUG Home, "Position: ", SDEC sPos, " "

Negative numbers are stored in two’s complement format. The SDEC (signed
decimal) modifier prints standard decimal with the appropriate sign.

Challenge

Replace the potentiometer with two photocells and update the code to cause the
servo to point toward at the brightest light source.

Can you think of a method that uses two potentiometers and two servos to create a
sun tracker?

Page 150 · StampWorks

EXPERIMENT #27: STEPPER MOTOR CONTROL

This experiment demonstrates the control of a small 12-volt stepper motor. Stepper
motors convert a pattern of inputs and the rate-of-change of those inputs into
precise rotational motion. The rotational angle and direction for each change (step)
is determined by the construction of the motor as well as the step pattern input.
Stepper motors are used as precision positioning devices in robotics and industrial
control applications.

Look It Up: PBASIC Elements to Know

• ABS
• MIN (minimum operator)

Building the Circuit

Remove the servo from Experiment #26 and add a stepper motor as shown below.

Moving Forward · Page 151

Program: SW21-EX27-Stepper_Control.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates simple stepper motor control. A potentiometer
' allows for speed and direction control. Using the L293D driver, this
' program will work with unipolar and bipolar stepper motors.

' -----[I/O Definitions]---

PotCW PIN 0 ' clockwise pot input
PotCCW PIN 1 ' counter-cw pot input
Coils VAR OUTB ' output to stepper coils

' -----[Constants]---

Scale CON $100 ' to scale RCTIME

Mitsumi CON 48 ' steps/rev by type
Howard CON 100

RevSteps CON Mitsumi ' steps per revolution
NumSteps CON 4 ' use 4-step sequence
LastStep CON NumSteps - 1 ' last step in sequence

#DEFINE Testing = 0 ' 1 for POT testing

' -----[Variables]---

idx VAR Byte ' loop counter
stpIdx VAR Nib ' step pointer
stpDelay VAR Byte ' delay for speed control

rcRt VAR Word ' rc reading - right
rcLf VAR Word ' rc reading - left
diff VAR Word ' difference in readings

' -----[EEPROM Data]---

' __
' ABAB
' -----
Step1 DATA %1100
Step2 DATA %0110

Page 152 · StampWorks

Step3 DATA %0011
Step4 DATA %1001

' -----[Initialization]--

Setup:
 DIRB = %1111 ' make P4..P7 outputs
 stpDelay = 5 ' set step delay

' -----[Program Code]--

Demo:
 FOR idx = 1 TO RevSteps ' 1 rev forward
 GOSUB Step_Fwd
 NEXT
 PAUSE 200

 FOR idx = 1 TO RevSteps ' 1 rev back
 GOSUB Step_Rev
 NEXT
 PAUSE 200

Main:
 HIGH PotCW ' read clockwise position
 PAUSE 1
 RCTIME PotCW, 1, rcRt

 HIGH PotCCW ' read ccw position
 PAUSE 1
 RCTIME PotCCW, 1, rcLf

 rcRt = (rcRt */ Scale) MAX 600 ' set speed limits
 rcLf = (rcLf */ Scale) MAX 600
 diff = ABS (rcRt - rcLf) ' get difference
 stpDelay = 100 - (diff / 6) MIN 2 ' calculate step delay

 IF (diff < 25) THEN ' allow for dead band
 GOTO Main
 ELSE ' do a step
 IF (rcLf < rcRt) THEN
 GOSUB Step_Fwd
 ELSE
 GOSUB Step_Rev
 ENDIF
 ENDIF

 GOTO Main ' repeat

Moving Forward · Page 153

' -----[Subroutines]---

' Turn stepper clockwise one full step

Step_Fwd:
 stpIdx = stpIdx + 1 // NumSteps ' point to next step
 GOTO Do_Step

' Turn stepper counter-clockwise one full step

Step_Rev:
 stpIdx = stpIdx + LastStep // NumSteps ' point to previous step
 GOTO Do_Step

' Read new step data and output to pins

Do_Step:
 READ (Step1 + stpIdx), Coils ' output new coil data
 PAUSE stpDelay ' pause between steps
 RETURN

Behind the Scenes

Stepper motors differ from standard DC motors in that they do not spin freely when
power is applied. For a stepper motor to rotate, the power source must be
continuously pulsed in specific patterns. The step sequence (pattern) determines the
direction of the stepper’s rotation. The time between sequence steps determines the
rotational speed. Each step causes the stepper motor to rotate a fixed angular
increment. The stepper motor supplied with the current StampWorks kit rotates 7.5
degrees per step. This means that one full rotation (360 degrees) of the stepper
requires 48 steps. Use the table below as a guide to the motor connections.

Manufacturer Mitsumi Howard Industries
Degrees per Step 7.5 3.6
Steps per Revolution 48 100
Phase 1 Brown White
Phase 2 Orange Red
Phase 3 Black Green
Phase 4 Yellow Brown
Common Red Black

Page 154 · StampWorks

The step sequences for the motor are stored in DATA statements. The Step_Fwd
subroutine will read the next sequence from the table to be applied to the coils. The
StepRev subroutine is identical except that it will read the previous step. Note the
trick with the modulus (//) operator used in StepRev. By adding the maximum
value of the sequence to the current value and then applying the modulus operator,
the sequence goes in reverse. As a review, here’s the modulus math for full steps
(four steps per cycle):

0 + 3 // 4 = 3
3 + 3 // 4 = 2
2 + 3 // 4 = 1
1 + 3 // 4 = 0

This experiment reads both sides of the 10K potentiometer to determine its relative
position. The differential value between the two readings is kept positive by using
the ABS function. The position is used to determine the rotational direction and the
strength of the position is used to determine the rotational speed. Remember, the
shorter the delay between steps, the faster the stepper will rotate. A dead-band
check is used to cause the motor to stop rotating when the RCTIME readings are
nearly equal.

Taking It Further

Surplus stepper motors are very easy to come by, and the experimenter is often
faced with two challenges: 1) How to control a bipolar (4-wire) stepper motor and,
2) How to determine the coil sequence of an unknown motor.

By using the L293D the first challenge is nullified; the L293D is a push-pull driver
(versus the ULN2x03 that only sinks current) and will work – without any
modifications to the code – with unipolar and bipolar stepper motors.

The second challenge can be overcome with a multimeter. Create a table with the
wire colors as column and row headings, jotting down the resistance measured
between the wires. For example:

Moving Forward · Page 155

 Yel Blk Org Brn Red
Yel x
Blk 225 x
Org 225 225 x
Brn 225 225 225 x
Red 112 112 112 112 x

Note how that when the Red wire is part of a pair the resistance is half the other
readings; this is the common wire. Some unipolar motors have six wires. In this
case, two of the wires will be common.

To determine the wiring sequence, follow these steps:

1. Connect the coil wires in any order. Run the program; if it moves smoothly,
you’re done.

2. If Step 1 doesn’t work, swap the #1 and #4 wire connections. Retest.
3. If Step 2 doesn’t work, swap the #2 and #3 wire connections. The motor

should now run.

If the motor is spinning in the direction opposite of what is expected, swap the #1
and #4 leads, and the #2 and #3 leads. The motor should now be spinning
smoothly and in the desired direction.

Challenge

Rewrite the program to run the motor in half steps. Keep in mind that while half
steps provide greater position accuracy, the motor torque is reduced and may not be
able to move devices connected to it. Here’s the step sequence:

Step1 = %1000
Step2 = %1100
Step3 = %0100
Step4 = %0110
Step5 = %0010
Step6 = %0011
Step7 = %0001
Step8 = %1001

Page 156 · StampWorks

EXPERIMENT #28: VOLTAGE MEASUREMENT

This experiment demonstrates the use of the popular ADC0831 analog-to-digital
converter IC to read a variable voltage input

Look It Up: PBASIC Elements to Know

• MSBPOST (used with SHIFTIN)

Building the Circuit

Program: SW21-EX28-ADC0831-Simple.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates reading a variable voltage with an ADC0831
' analog-to-digital converter chip. This program uses a Vref input of
' 5.000 volts (Vdd) for a bit resolution of 19.6 millivolts.

' -----[I/O Definitions]---

CS PIN 0 ' chip select (ADC0831.1)
Clock PIN 1 ' clock (ADC0831.7)

Moving Forward · Page 157

DataIn PIN 2 ' data (ADC0831.6)

' -----[Constants]---

Cnts2Mv CON $139C ' x 19.6 (to millivolts)

' -----[Variables]---

result VAR Byte ' result of conversion
mVolts VAR Word ' millivolts

' -----[Initialization]--

Reset:
 DEBUG CLS, ' create report screen
 "ADC.... ", CR,
 "volts... "

' -----[Program Code]--

Main:
 DO
 GOSUB Read_0831 ' read the ADC
 mVolts = result */ Cnts2Mv ' convert to millivolts

 DEBUG HOME, ' report
 CRSRXY, 9, 0, DEC result, CLREOL,
 CRSRXY, 9, 1, DEC mVolts DIG 3,
 ".", DEC3 mVolts

 PAUSE 100
 LOOP

' -----[Subroutines]---

Read_0831:
 LOW CS ' enable ADC
 SHIFTIN DataIn, Clock, MSBPOST, [result\9] ' read ADC
 HIGH CS ' disable ADC
 RETURN

Page 158 · StampWorks

Behind the Scenes

Previous projects have used RCTIME to read resistive components. This is a form of
analog input, but isn’t voltage measurement. For that, the BASIC Stamp needs help
from an external device. The simplest way to measure a variable voltage is with an
analog-to-digital converter.

In this experiment, the National Semiconductor ADC0831 is used to convert a voltage
(0 – 5) to a synchronous serial signal that can be read by the BASIC Stamp with
SHIFTIN. One thing of note about the Read_0831 subroutine is that we specify
nine bits in SHIFTIN, even though the result is only eight bits? Why?

The ADC0831 requires one pulse on the clock line after being activated to do the
voltage conversion. The next eight clock pulses move the data out of the device as
shown in the illustration below:

The first clock pulse (gray) after the CS line goes low causes the ADC0831 to do the
voltage conversion. The MSBPOST mode is used with SHIFTIN as the data bits are
presented MSB first, and after the clock line falls. The POST modes sample the data
line after each clock pulse.

The voltage measurement – which is actually the positive difference between the
Vin+ (pin 2) and Vin- (pin 3) pins – will be a value between 0 and 255 (Vref). In our
first application we have connected Vin- to ground and Vref to Vdd; this gives us a
voltage span of 5.00 volts. Dividing five (volts) by 255, we find that each bit in the
result is equal to 19.6 millivolts. For display purposes, the result is converted to
millivolts by multiplying by 19.6 (result */ $139C).

Moving Forward · Page 159

A neat trick with DEBUG is used to display the variable, mVolts. The DIG 3
operation prints the whole volts and the DEC3 modifier prints the fractional volts
(rightmost three digits).

Reconnect the circuit as shown below and rerun the program.

Now use a multimeter to measure the voltage between pins 2 and 3 of the ADC0831.
Note that when the voltage on pin 3 is higher than pin 2, the output will be zero.

Taking It Further

As stated earlier, the voltage-per-bit for the ADC output is determined by the voltage
applied to Vref. Reconnect the circuit as shown below, and set the voltage on the
Vref pin to 2.55 volts (confirm with a multimeter).

Page 160 · StampWorks

By reducing the Vref voltage the resolution per output bit is increased. With a Vref
of 2.55 volts, the voltage per bit is 0.01 volts, nearly twice as when 5.00 volts was
used for Vref, and the conversion to millivolts is simplified. This configuration is
useful for sensors like the GP2D12 distance sensor that has a voltage output of 0 to
2.4 volts.

Before running the program modify the Cnts2Mv constant to reflect the Vref
change. With each bit equal to 0.01 volts (1/100) we can multiply by 10 to convert
to millivolts (1/1000).

Cnts2Mv CON $0A00 ' x 10 (to millivolts)

Note that as the ADC0831 cannot measure below zero volts (floor value is 0), it
cannot measure above Vref. If the differential voltage between pins 2 and 3 is
greater than Vref, the output will be limited to 255. Keep this limitation in mind for
designs where the voltage input could move above Vref.

Moving Forward · Page 161

EXPERIMENT #29: TEMPERATURE MEASUREMENT

This experiment demonstrates the use of a popular digital temperature sensor IC:
the DS1620. Accurate temperature measurement is a necessary component of
environmental control applications (heating and air conditioning).

Look It Up: PBASIC Elements to Know

• LSBFIRST (used with SHIFTOUT)
• LSBPRE (used with SHIFTIN)
• BYTE0, BYTE1 (variable modifier)

Building the Circuit

Program: SW21-EX29-DS1620-Simple.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program measures temperature using the Dallas Semiconductor DS1620
' temperature sensor. Resolution is 0.5 degrees Celsius.

' -----[I/O Definitions]---

Page 162 · StampWorks

DQ CON 0 ' DS1620.1 (data I/O)
Clock CON 1 ' DS1620.2
Reset CON 2 ' DS1620.3

' -----[Constants]---

RdTmp CON $AA ' read temperature
WrHi CON $01 ' write TH (high temp)
WrLo CON $02 ' write TL (low temp)
RdHi CON $A1 ' read TH
RdLo CON $A2 ' read TL
RdCntr CON $A0 ' read counter
RdSlope CON $A9 ' read slope
StartC CON $EE ' start conversion
StopC CON $22 ' stop conversion
WrCfg CON $0C ' write config register
RdCfg CON $AC ' read config register

DegSym CON 186 ' degrees symbol

' -----[Variables]---

tempIn VAR Word ' raw temperature
sign VAR tempIn.BIT8 ' 1 = negative temperature

tC VAR Word ' Celsius
tF VAR Word ' Fahrenheit

' -----[Initialization]--

Setup:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [WrCfg, %10] ' use with CPU; free-run
 LOW Reset
 PAUSE 10
 HIGH Reset
 SHIFTOUT DQ, Clock, LSBFIRST, [StartC] ' start conversions
 LOW Reset

 DEBUG CLS,
 "DS1620 ", CR,
 "---------"

' -----[Program Code]--

Main:
 DO

Moving Forward · Page 163

 GOSUB Read_DS1620 ' get the temperature

Display_C:
 DEBUG CRSRXY, 0, 2,
 (tC.BIT15 * 13 + " "),
 DEC (ABS tC / 10), ".", DEC1 (ABS tC),
 DegSym, " C", CLREOL

Display_F:
 DEBUG CRSRXY, 0, 3,
 (tF.BIT15 * 13 + " "),
 DEC (ABS tF / 10), ".", DEC1 (ABS tF),
 DegSym, " F", CLREOL

 PAUSE 1000 ' delay between readings
 LOOP

' -----[Subroutines]---

Read_DS1620:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [RdTmp] ' give command to read temp
 SHIFTIN DQ, Clock, LSBPRE, [tempIn\9] ' read it in
 LOW Reset ' release the DS1620

 tempIn.BYTE1 = -sign ' extend sign bit
 tC = tempIn * 5 ' convert to tenths

 IF (tC.BIT15 = 0) THEN ' temp C is positive
 tF = tC */ $01CC + 320 ' convert to F
 ELSE ' temp C is negative
 tF = 320 - ((ABS tC) */ $01CC) ' convert to F
 ENDIF
 RETURN

Behind the Scenes

The largest organ of the human body is the skin and it is most readily affected by
temperature. Little wonder then that so much effort is put into environmental control
systems (heating and air conditioning).

This experiment uses the Dallas Semiconductor DS1620 digital
thermometer/thermostat chip. This chip measures temperature and makes it
available to the BASIC Stamp through a synchronous serial interface. The DS1620 is

Page 164 · StampWorks

an intelligent device and, once programmed, is capable of stand-alone operation
using the THi, TLo, and TCom control outputs.
The connections to the DS1620 are similar to other synchronous serial devices, with
the exception of the 1K resistor in the DQ line. Do not leave this out; the DQ pin of
the DS1620 is bi-directional so it could – under the right conditions – be an output
and in the opposite state of the BASIC Stamp pin that it connects to. This condition
could lead to damage to one device or the other. The 1K resistor limits the current
between the BASIC Stamp and the DS1620 to a safe level should a programming
error occur.

The DS1620 requires initialization before use. In active applications like this, the
DS1620 is configured for free running with a CPU. After the configuration data is sent
to the DS1620, a delay of 10 milliseconds is required so that the configuration can be
written to the DS1620’s internal EEPROM (this delay is required after any write to the
EEPROM). After the delay, the DS1620 is instructed to start continuous conversions.
This will ensure a current temperature reading when the BASIC Stamp requests it.
The DS1620 requires about one second to complete a temperature conversion, so
access to new temperature should be no more frequent than every second.

To retrieve the current temperature, the Read Temperature ($AA) command byte is
sent to the DS1620. Then the latest conversion value is read back. The data returned
is nine bits wide, and holds the temperature in half-degrees Celsius units. Bit8
indicates the sign of the temperature. If negative (sign bit is 1), the other eight bits
hold the two’s-complement value of the temperature.

The sign bit is extended to the upper byte of tempIn to allow positive or negative
values in the equations that follow. This is required because the BASIC Stamp stores
negative values in 16-bit two’s complement format, but only nine bits are returned
from the DS1620. You see how the sign gets properly extended with the following
test program:

 DEBUG BIN8 -0, CR, ' %00000000 (positive)
 BIN8 -1 ' %11111111 (negative)

With a full (signed) 16-bit value in tempIn, the Celsius temperature is calculated by
multiplying tempIn by five. If the current temperature was 22.5 degrees C, tC
would now hold 225.

Moving Forward · Page 165

To convert from Celsius (in tenths) to Fahrenheit (also in tenths) a modification of
the standard temperature equation is used:

Ftenths = (Ctenths * 1.8) + 320

Note that 32 degrees from the standard equation has also been converted to tenths.

For the conversion of negative temperatures the order of elements in the equation is
reversed. The reason for this is that negative numbers cannot be divided in PBASIC.
The ABS operator is used to convert the intermediate result to a positive value.
When subtracted from 320 the result will be properly aligned (and signed); some
negative values in the Celsius range are still positive in Fahrenheit.

The display routine uses a little trick that looks at Bit15 of the value; if Bit15 is one
then the temperature is negative and a “-“ will precede the temperature reading,
otherwise a space will be printed.

Page 166 · StampWorks

Taking It Further

The DS1620 has thermostat outputs that can be used to control other devices.
These outputs are typically used in stand-alone mode, but will also work
autonomously when the DS1620 is connected to the BASIC Stamp or another host.
Connect two LEDs to the DS1620 THi and TLo outputs as shown below:

With the LEDs connected, add the following code after the DS1620 initialization:

Set_Alarms:
 HIGH Reset
 tC = (THi - 32 */ $008E) * 2 ' convert to 0.5 C
 SHIFTOUT DQ, Clock, LSBFIRST, [WrHi, tC\9] ' write high temp
 LOW Reset
 PAUSE 10
 HIGH Reset
 tC = (TLo - 32 * 5 / 9) * 2
 SHIFTOUT DQ, Clock, LSBFIRST, [WrLo, tC\9] ' write low temp
 LOW Reset
 PAUSE 10

Behind the Scenes

The THi output will go high when the current temperature is at or above the value
stored in the high-temperature register. The TLo output will go high when the
current temperature is at or below the low-temperature register.

Moving Forward · Page 167

In the program the constants THi and TLo are used to set the high and low
temperature thresholds. These values are expressed in whole degrees Fahrenheit,
and are converted to half-degrees Celsius before being written to the appropriate
register.

Chalf = (F - 32) x 5 / 9 x 2

Finally, note that as in the setup of the configuration register, a 10 millisecond
PAUSE is required after every EEPROM write. Once the thresholds are written to the
thermostat registers the THi and TLo outputs will operate independently and without
further program interface. The BASIC Stamp can read the configuration register to
get the status of the DS1620 THi and TLo outputs. See Experiment #30.

Page 168 · StampWorks

EXPERIMENT #30: HIGH RESOLUTION TEMPERATURE
MEASUREMENT

This experiment demonstrates advanced use of the DS1620 temperature sensor,
allowing for high resolution (0.05 degrees C) measurements.

Building the Circuit

Use the circuit from Experiment #29.

Program: SW21-EX30-DS1620-HiRes.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program measures temperature using the Dallas Semiconductor DS1620
' temperature sensor. Resolution is <0.05 degrees Celsius.
'
' NOTE: After downloading program, power must be cycled for proper
' operation.

' -----[I/O Definitions]---

DQ CON 0 ' DS1620.1 (data I/O)
Clock CON 1 ' DS1620.2
Reset CON 2 ' DS1620.3

' -----[Constants]---

RdTmp CON $AA ' read temperature
WrHi CON $01 ' write TH (high temp)
WrLo CON $02 ' write TL (low temp)
RdHi CON $A1 ' read TH
RdLo CON $A2 ' read TL
RdCntr CON $A0 ' read counter
RdSlope CON $A9 ' read slope
StartC CON $EE ' start conversion
StopC CON $22 ' stop conversion
WrCfg CON $0C ' write config register
RdCfg CON $AC ' read config register

DegSym CON 186 ' degrees symbol

Moving Forward · Page 169

' -----[Variables]---

tempIn VAR Word ' raw temperature
config VAR Byte ' configuration register
done VAR config.BIT7 ' 1 when conversion done
tHiFlag VAR config.BIT6 ' 1 when temp >= THi
tLoFlag VAR config.BIT5 ' 1 when temp <= TLo
busy VAR config.BIT4 ' 1 when EE update writing
cRem VAR Word ' count remaining
slope VAR Word ' slope (counts per degree)

tC VAR Word ' Celsius
tF VAR Word ' Fahrenheit

' -----[Initialization]--

Setup:
 HIGH Reset ' alert DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [WrCfg, %11] ' with CPU, one-shot mode
 LOW Reset ' release DS1620
 PAUSE 10

 DEBUG CLS,
 "DS1620-HR ", CR,
 "----------"

' -----[Program Code]--

Main:
 DO
 GOSUB Read_DS1620_HR ' get hi-res temperature

Display_C:
 DEBUG CRSRXY, 0, 2,
 (tC.BIT15 * 13 + " "),
 DEC (ABS tC / 100), ".", DEC2 (ABS tC),
 DegSym, " C", CLREOL

Display_F:
 DEBUG CRSRXY, 0, 3,
 (tF.BIT15 * 13 + " "),
 DEC (ABS tF / 100), ".", DEC2 (ABS tF),
 DegSym, " F", CLREOL

 LOOP

Page 170 · StampWorks

' -----[Subroutines]---

Read_DS1620_HR: ' get hi-resolution temp
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [StartC] ' start conversion
 LOW Reset ' release the DS1620
 DO
 HIGH Reset
 SHIFTOUT DQ, Clock, LSBFIRST, [RdCfg] ' read config register
 SHIFTIN DQ, Clock, LSBPRE, [config\8]
 LOW Reset
 LOOP UNTIL (done = 1) ' wait for conversion

 HIGH Reset
 SHIFTOUT DQ, Clock, LSBFIRST, [RdTmp] ' read raw temperature
 SHIFTIN DQ, Clock, LSBPRE, [tempIn\9]
 LOW Reset

 HIGH Reset
 SHIFTOUT DQ, Clock, LSBFIRST, [RdCntr] ' read counter
 SHIFTIN DQ, Clock, LSBPRE, [cRem\9]
 LOW Reset

 HIGH Reset
 SHIFTOUT DQ, Clock, LSBFIRST, [RdSlope] ' read slope
 SHIFTIN DQ, Clock, LSBPRE, [slope\9]
 LOW Reset

 tempIn = tempIn >> 1 ' remove half degree bit
 tempIn.BYTE1 = -tempIn.BIT7 ' extend sign bit
 tC = tempIn * 100 ' convert to 100ths
 tC = tC - 25 + (slope - cRem * 100 / slope) ' fix fractional temp

 IF (tC.BIT15 = 0) THEN
 tF = tC */ $01CC + 3200 ' convert pos C to Fahr
 ELSE
 tF = 3200 - ((ABS tC) */ $01CC) ' convert neg C to Fahr
 ENDIF
 RETURN

Behind the Scenes

Digging deeper into the mechanics of the DS1620 we find that temperature is
derived by using two temperature-controlled oscillators. When one oscillator rolls-
over within a gate period determined by the other, the temperature counter – which
has been preloaded with -55 degrees C – gets incremented. Fractional temperatures
can be determined by looking at the count remaining at the end of a conversion

Moving Forward · Page 171

cycle and comparing this to another register called the slope accumulator. The
purpose of the slope accumulator is to correct the non-linear behavior of the
oscillators over temperature.
For high-resolution temperature measurements we can read the temperature,
remove the half-degree bit (which was estimated by the DS1620 circuit), and then
calculate the fractional portion using the values from the slope and counts remaining
registers. The following equation is used to derive high-resolution temperature from
the DS1620:

 tC = (tempIn / 2) – 0.25 + ((slope – remaining) / slope)

To use the DS1620 in this mode requires a slightly different initialization sequence: in
order to read the slope and counts remaining registers, the DS1620 must be
programmed for one-shot mode. Note that if the DS1620 had been previously
programmed for continuous conversion (as in Experiment #29) the power must be
cycled after reprogramming for one-shot mode before the DS1620 will respond
properly.

In one-shot mode the temperature is read by sending the StartC command ($EE)
and then continuously reading the configuration register until Bit7 goes high – this
indicates the end of the conversion cycle. When the cycle is complete the
temperature, counts remaining, and slope registers can be read from the DS1620.
Note that the configuration register that is used to signal the end of the conversion
also holds flags for the THi and TLo outputs of the DS1620.

The high resolution conversion begins by removing the half-degree bit – this is
accomplished by shifting tempIn right by one (When dividing or multiplying by
powers of two (2, 4, 8, 16, …) it is more efficient to use shift operators instead of *
or /). The next step is to extend the sign bit so that tempIn holds a correct 16-bit
value. The shift operation just used has moved the sign bit; it is now located in Bit7.
The temperature is then converted to 100ths to maintain the resolution available
from the process, and the equation above is applied to derive tC. Note that the
parameters of the high-resolution have also been converted for 100ths. If the
current temperature was 23.75 degrees C, tC would now hold 2375.

Page 172 · StampWorks

Moving Forward · Page 173

EXPERIMENT #31: ADVANCED 7-SEGMENT MULTIPLEXING

This experiment demonstrates the use of 7-segment displays with an external
multiplexing controller. Multi-digit seven-segment displays are frequently used on
vending machines to display the amount of money entered.

Building the Circuit

Connect four pushbuttons to P4-P7 (see Experiment #14) and add the multiplexing
circuit below.

Page 174 · StampWorks

Program: SW21-EX31-MC14489.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program is a coin counter -- it will count nickels, dimes, quarters,
' and dollars using pushbutton inputs. The "bank" is displayed on four
' 7-segment LED displays that are controlled with a MC14489.

' -----[I/O Definitions]---

Clock PIN 0 ' shift clock (MC14489.11)
SerData PIN 1 ' serial data (MC14489.12)
Enable PIN 2 ' enable (MC14489.10)
Coins VAR INB ' coin inputs (P4 - P7)

' -----[Constants]---

FullValue CON 500 ' bank full = $5.00

' Hex values for Letters

Ltr_F CON $F ' display in Hex mode

' Special Decode characters

Blank CON $0 ' display in Special mode
Ltr_U CON $A
Ltr_L CON $5

' -----[Variables]---

money VAR Word ' current money count
idx VAR Nib ' loop counter
deposit VAR Nib ' coins deposited
nickel VAR deposit.BIT0 ' bit values of deposit
dime VAR deposit.BIT1
quarter VAR deposit.BIT2
dollar VAR deposit.BIT3

config VAR Byte ' decode configuration
dpCtrl VAR Nib ' decimal point control
segs5 VAR Nib ' segs - digit 5
segs4 VAR Nib
segs3 VAR Nib
segs2 VAR Nib
segs1 VAR Nib ' segs - digit 1

Moving Forward · Page 175

' -----[Initialization]--

Reset:
 HIGH Enable ' disable MC14489
 GOSUB Show_The_Money ' initialize display segs
 config = %00110001 ' use 3 digits, hex mode
 GOSUB Update_Cfg

' -----[Program Code]--

Main:
 DO
 GOSUB Get_Coins ' wait for coins
 LOOP UNTIL (deposit > 0)

 money = money + (nickel * 5) ' add coins
 money = money + (dime * 10)
 money = money + (quarter * 25)
 money = money + (dollar * 100)
 GOSUB Show_The_Money ' update the display
 PAUSE 250
 IF (money < FullValue) THEN Main ' scan until full

 DO
 PAUSE 500
 config.BIT0 = ~config.BIT0 ' toggle display
 GOSUB Update_Cfg
 LOOP

' -----[Subroutines]---

Get_Coins:
 deposit = %1111 ' enable all coin inputs
 FOR idx = 1 TO 10
 deposit = deposit & ~Coins ' test inputs
 PAUSE 5 ' delay between tests
 NEXT
 RETURN

' Display money value until that value meets or
' exceeds the bank limit.

Show_The_Money:
 IF (money < FullValue) THEN ' show money count
 dpCtrl = %1011 ' display bright, show DP
 segs5 = Blank
 segs4 = Blank

Page 176 · StampWorks

 segs3 = money DIG 2 ' dollar digit
 segs2 = money DIG 1 ' tens digit
 segs1 = money DIG 0 ' ones digit
 GOSUB Update_Segs
 ELSE ' show "FULL"
 config = Blank
 GOSUB Update_Cfg
 config = %11101111 ' setup for "FULL"
 dpCtrl = %1000 ' display bright, no DPs
 segs5 = Blank
 segs4 = Ltr_F ' F
 segs3 = Ltr_U ' U (Special Decode)
 segs2 = Ltr_L ' L (Special Decode)
 segs1 = Ltr_L ' L (Special Decode)
 GOSUB Update_Segs ' show message
 GOSUB Update_Cfg ' display on
 ENDIF
 RETURN

' Update MC14489 configuration register

Update_Cfg:
 LOW Enable ' enable MC14489
 SHIFTOUT SerData, Clock, MSBFIRST, [config] ' send config register
 HIGH Enable ' disable MC14489
 RETURN

' Update MC14489 decimal point control and segments registers

Update_Segs:
 LOW Enable
 SHIFTOUT SerData, Clock, MSBFIRST, [dpCtrl\4,
 segs5\4, segs4\4, segs3\4, segs2\4, segs1\4]
 HIGH Enable
 RETURN

Behind the Scenes

As demonstrated in Experiment #10, 7-segment display multiplexing requires a lot of
effort that consumes most of the computational resources of the BASIC Stamp.
Enter the Motorola MC14489 display multiplexer. By using just three BASIC Stamp
I/O pins it will effectively control up to five 7-segment displays. The interface is
simple, allowing the display of numbers (all hex values), a few letters (those that can
be displayed on a 7-segment LED), and a few special characters (e.g., dash, degrees

Moving Forward · Page 177

symbol, etc). The MC14489 can also be configured to control up to 25 discrete LEDs
(using No Decode mode).
The MC14489 connects to the LED displays in a straightforward way; pins A through
H connect to segments A through G and the decimal point of all of the common-
cathode displays. Pins BANK 1 through BANK 5 connect to the individual cathodes of
each of the displays (Digit 0 – Digit 4). If you use fewer than five digits, omit the
highest digit number(s). For example, this experiment uses four digits, numbered 0
through 3, so Digit 4 need not be connected.

When the MC14449 is used with seven-segment displays, it can be configured to
automatically convert binary-coded decimal (BCD) values into appropriate patterns of
segments – this is called Hex Decode mode. This makes the display of decimal and
hexadecimal numbers quite simple. The MC14489 also has a Special Decode mode
that displays a few letters and symbols. Finally, there is a No Decode mode wherein
the bits used for a digit register are output directly (but only to segments A-D;
segments E-G are turned off in No Decode mode).

The key to getting information into a display controlled by the MC14489 is
understanding the configuration register and how the bits interact to control the
display decoding. The table below is a review of the configuration register bits and
how they affect the display:

Bit0 0 = display blank; 1 = display on
Bit1 0 = Hex Decode for Bank 1; 1 = Depends on Bit6
Bit2 0 = Hex Decode for Bank 2; 1 = Depends on Bit6
Bit3 0 = Hex Decode for Bank 3; 1 = Depends on Bit6
Bit4 0 = Hex Decode for Bank 4; 1 = Depends on Bit7
Bit5 0 = Hex Decode for Bank 5; 1 = Depends on Bit7
Bit6 0 = No Decode; 1 = Special Decode for Bank1 – Bank 3
Bit7 0 = No Decode; 1 = Special Decode for Bank4 – Bank 5

Sending data to the MC14489 happens one of two ways: 1) the eight bit
configuration register is sent, or 2) 24 bits (six nibbles) that hold display information
are transmitted. There are no addresses for the data as with other synchronous
serial devices; the MC14489 properly routes information sent to it based on the size
of the packet.

Page 178 · StampWorks

For the counter program we initially want to use Hex (numeric) decoding for digits
0 – 2, blank digits 3 and 4, and set the decimal point to be on digit 2. The proper
configuration register value for this requirement is %00110001 (review the
configuration bit table above). The Update_Cfg subroutine handles sending the
configuration register to the MC14489.

The decimal point is controlled by one of the six nibble-sized registers passed to the
MC14489 for display. The position of the decimal point(s) – if used – is transmitted
using the Update_Segs subroutine along with the control values for each of the
display digits.

Most of the work takes place in the subroutine called Show_The_Money. When the
money count is less than 500, the value will be displayed on the 7-segment LEDs.
The routine scans through each digit of money and sends the digit position and value
(from the DIG operator) to the MC14489. Since the display shows dollars and cents,
the decimal point on the third digit is enabled.

When the value of money reaches or passes 500, the display will change to “FULL.”
This is accomplished by setting Banks 1 – 3 (digits 0 – 2) to Special Decode so that
the letters “U” and “L” can be displayed. The letter “F” is part of the hexadecimal
number set so Bank 4 (digit 3) is left in Hex Decode mode.

The main loop of the program is simple: it scans the switch inputs with Get_Coins
and updates the money count for each switch pressed. When the “bank” is full, the
program enters an infinite loop that toggles the display bit of the configuration
register; this is a simple way to flash the display without modifying display contents.

Challenge

Modify the code in Experiment #28 to display the input voltage on the seven-
segment displays.

Moving Forward · Page 179

EXPERIMENT #32: I2C COMMUNICATIONS

This experiment demonstrates the BASIC Stamp’s ability to communicate with other
devices through the use of the popular Philips I2C protocol. The experiment uses
this protocol to write and read data to a serial EEPROM using high- and low-level I2C
routines which can be used to communicate with any I2C device.

Building the Circuit

Program: SW21-EX32-24LC32.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates essential I2C interfacing by connecting to
' a 24LC32 EEPROM. The connections in the program conform to the BS2p
' I2CIN and I2COUT instructions.

' -----[I/O Definitions]---

SDA PIN 8 ' I2C serial data line
SCL PIN 9 ' I2C serial clock line

' -----[Constants]---

Page 180 · StampWorks

Ack CON 0 ' acknowledge bit
Nak CON 1 ' no ack bit

EE24LC32 CON %1010 << 4 ' device ID

' -----[Variables]---

slvAddr VAR Byte ' I2C slave address
devNum VAR Nib ' device number (0 - 7)
addrLen VAR Nib ' bytes in word addr (0 - 2)
wrdAddr VAR Word ' word address

i2cData VAR Byte ' data to/from device
i2cWork VAR Byte ' work byte for TX routine
i2cAck VAR Bit ' Ack bit from device

test VAR Nib
outVal VAR Byte
inVal VAR Byte
fails VAR Word

' -----[Initialization]--

Reset:
 #IF ($STAMP >= BS2P) #THEN
 #ERROR "Please use BS2p version: SW21-EX32-24LC32.BSP"
 #ENDIF

Setup:
 devNum = %000 ' chip select (%000 - %111)
 slvAddr = EE24LC32 | (devNum << 1) ' setup slave ID
 addrLen = 2 ' 2 bytes in word address

 DEBUG CLS,
 "24LC32 Demo ", CR,
 "---------------", CR,
 "Address... ", CR,
 "Output.... ", CR,
 "Input..... ", CR,
 "Status.... ", CR,
 "Errors.... "

' -----[Program Code]--

Main:
 fails = 0
 FOR wrdAddr = 0 TO 4095 ' test all locations
 DEBUG CRSRXY, 11, 2, DEC4 wrdAddr

Moving Forward · Page 181

 FOR test = 0 TO 3 ' use four patterns
 LOOKUP test, [$FF, $AA, $55, $00], outVal
 DEBUG CRSRXY, 11, 3, IHEX2 outVal
 i2cData = outVal
 GOSUB Write_Byte
 PAUSE 10
 GOSUB Read_Byte
 inVal = i2cData
 DEBUG CRSRXY, 11, 4, IHEX2 inVal,
 CRSRXY, 11, 5
 IF (inVal = outVal) THEN
 DEBUG "Pass "
 ELSE
 fails = fails + 1
 DEBUG "Fail ", CRSRXY, 11, 6, DEC fails
 EXIT ' terminate location
 ENDIF
 PAUSE 10
 NEXT
 NEXT
 IF (fails = 0) THEN
 DEBUG CRSRXY, 11, 6, "None. All locations test good."
 ENDIF
 END

' =====[High Level I2C Subroutines]=======================================

' Random location write
' -- pass device slave address in "slvAddr"
' -- pass bytes in word address (0, 1 or 2) in "addrLen"
' -- word address to write passed in "wrdAddr"
' -- data byte to be written is passed in "i2cData"

Write_Byte:
 GOSUB I2C_Start ' send Start
 i2cWork = slvAddr & %11111110 ' send slave ID (write)
 GOSUB I2C_TX_Byte
 IF (i2cAck = Nak) THEN Write_Byte ' wait until not busy
 IF (addrLen > 0) THEN
 IF (addrLen = 2) THEN
 i2cWork = wrdAddr.BYTE1 ' send word address (1)
 GOSUB I2C_TX_Byte
 ENDIF
 i2cWork = wrdAddr.BYTE0 ' send word address (0)
 GOSUB I2C_TX_Byte
 ENDIF
 i2cWork = i2cData ' send data
 GOSUB I2C_TX_Byte
 GOSUB I2C_Stop
 RETURN

Page 182 · StampWorks

' Random location read
' -- pass device slave address in "slvAddr"
' -- pass bytes in word address (0, 1 or 2) in "addrLen"
' -- word address to write passed in "wrdAddr"
' -- data byte read is returned in "i2cData"

Read_Byte:
 GOSUB I2C_Start ' send Start
 IF (addrLen > 0) THEN
 i2cWork = slvAddr & %11111110 ' send slave ID (write)
 GOSUB I2C_TX_Byte
 IF (i2cAck = Nak) THEN Read_Byte ' wait until not busy
 IF (addrLen = 2) THEN
 i2cWork = wrdAddr.BYTE1 ' send word address (1)
 GOSUB I2C_TX_Byte
 ENDIF
 i2cWork = wrdAddr.BYTE0 ' send word address (0)
 GOSUB I2C_TX_Byte
 GOSUB I2C_Start
 ENDIF
 i2cWork = slvAddr | %00000001 ' send slave ID (read)
 GOSUB I2C_TX_Byte
 GOSUB I2C_RX_Byte_Nak
 GOSUB I2C_Stop
 i2cData = i2cWork
 RETURN

' -----[Low Level I2C Subroutines]---------------------------------------

' *** Start Sequence ***

I2C_Start: ' I2C start bit sequence
 INPUT SDA
 INPUT SCL
 LOW SDA

Clock_Hold:
 DO : LOOP UNTIL (SCL = 1) ' wait for clock release
 RETURN

' *** Transmit Byte ***

I2C_TX_Byte:
 SHIFTOUT SDA, SCL, MSBFIRST, [i2cWork\8] ' send byte to device
 SHIFTIN SDA, SCL, MSBPRE, [i2cAck\1] ' get acknowledge bit
 RETURN

Moving Forward · Page 183

I2C_RX_Byte_Nak:
 i2cAck = Nak ' no Ack = high
 GOTO I2C_RX

I2C_RX_Byte:
 i2cAck = Ack ' Ack = low

I2C_RX:
 SHIFTIN SDA, SCL, MSBPRE, [i2cWork\8] ' get byte from device
 SHIFTOUT SDA, SCL, LSBFIRST, [i2cAck\1] ' send ack or nak
 RETURN

' *** Stop Sequence ***

I2C_Stop: ' I2C stop bit sequence
 LOW SDA
 INPUT SCL
 INPUT SDA
 RETURN

Behind the Scenes

The I2C-bus is a two-wire, synchronous bus that uses a Master-Slave relationship
between components. The Master initiates communication with the Slave and is
responsible for generating the clock signal. If requested to do so, the Slave can send
data back to the Master. This means the data pin (SDA) is bi-directional and the
clock pin (SCL) is [usually] controlled exclusively by the Master.

The transfer of data between the Master and Slave works like this:

Master sending data
• Master initiates transfer
• Master addresses Slave
• Master sends data to Slave
• Master terminates transfer

Master receiving data
• Master initiates transfer
• Master addresses Slave
• Master receives data from Slave
• Master terminates transfer

Page 184 · StampWorks

The I2C specification actually allows for multiple Masters to exist on a common bus
and provides a method for arbitrating between them. That's a bit beyond the scope
of what we need to do so we're going to keep things simple. In our setup, the BS2
(or BS2e or BS2sx) will be the Master and anything connected to it will be a Slave.

You'll notice in I2C schematics that the SDA (serial data) and SCL (serial clock) lines
are pulled up to Vdd (usually through 4.7 kΩ). The specification calls for device bus
pins to be open drain. To put a high on either line, the associated bus pin is made
an input (floats) and the pull-up takes the line to Vdd. To make a line low, the bus
pin pulls it to Vss (ground).

This scheme is designed to protect devices on the bus from a short to ground. Since
neither line is driven high, there is no danger. We're going to cheat a bit. Instead of
writing code to pull a line low or release it (certainly possible – I did it), we're going
to use SHIFTOUT and SHIFTIN to move data back and forth. Using SHIFTOUT and
SHIFTIN is faster and saves precious code space. If you're concerned about a bus
short damaging the BASIC Stamp's SDA or SCL pins during SHIFTOUT and
SHIFTIN, you can protect each of them with a 220 ohm resistor. If you’re careful
with your wiring and code this won’t be necessary.

Low Level I2C Code

At its lowest level, the I2C Master needs to do four things:

• Generate a Start condition
• Transmit 8-bit data to the Slave
• Receive 8-bit data from Slave – with or without Acknowledge
• Generate Stop condition

A Start condition is defined as a high-to-low transition on the SDA line while the SCL
line is high. All transmissions begin with a Start condition. A Stop condition is
defined as a low-to-high transition of the SDA line while the clock line is high. A Stop
condition terminates a transfer and can be used to abort it as well.

Moving Forward · Page 185

There is a brief period when the Slave device can take control of the SCL line. If a
Slave is not ready to transmit or receive data, it can hold the SCL line low after the
Start condition. The Master can monitor this to wait for the Slave to be ready. At
the speed of the BS2, monitoring the clock line usually isn't necessary but the
capability to monitor “clock hold” is built into the I2C_Start subroutine just to be
safe.

For our experiments we'll be using 7-bit addressing (see figure below) where the
upper seven bits of the slave address byte contain the device type and address, and
bit zero holds the data direction: "0" indicating a device write; "1" indicating a device
read. What follows the slave address will vary, depending on the device and the
type of request. Most I2C devices have one or two address bytes which will be
followed by the data byte(s) to write to or read from the device

Data is transferred eight bits at a time, sending the MSB first. After each byte, the
I2C specification calls for the receiving device to acknowledge the transmission by
bringing the bus low for the ninth clock. The exception to this is when the Master is
the receiver and is receiving the final byte from the Slave. In this case, there is no
Acknowledge bit sent from Master to Slave.

Sending and receiving data from a specific slave always requires a Start condition,
sending the Slave address and finally, the Stop condition. What happens between

Page 186 · StampWorks

the Slave address and the Stop are dependent on the device and the application
process.
What you'll need to do is get the data sheet for the I2C device you want to connect
to. You will find that most data sheets for I2C-compatible parts have very clear
protocol definitions – usually in graphic form – that make implementing the low-level
I2C routines very simple.

The experiment uses the low-level I2C routines to implement the Write_Byte and
Read_Byte routines. These routines are generalized to work with any I2C device,
allowing the slave address, number of address bytes, and the address to read or
write (if required). Note that each routine begins with an I2C Start condition and is
terminated with the Stop condition. The code in between sends the device
command/type code, the address to deal with and then actually deals with (writes or
reads) the data. While this takes a few lines of code, it is actually very
straightforward.

The core of the demo program loops through the available addresses of the 24LC32
EEPROM, writing and reading back four distinct bit patterns. If the value read back
does not match the value written, a variable called fails is incremented. The Debug
Terminal window gives current status of the program as shown below. Note that
with 4096 addresses and four writes and reads at each address, this program takes a
bit of time to run through to completion.

Moving Forward · Page 187

Page 188 · StampWorks

EXPERIMENT #33: USING A REAL-TIME CLOCK

This experiment uses the I2C framework developed in Experiment #32 to
communicate with a DS1307 Real-Time Clock chip. RTC time capability and
management is important for time-of-day oriented applications, and applications that
require the measurement of elapsed time.

Look It Up: PBASIC Elements to Know

• HEX, HEX1 – HEX4 (used with DEBUG)

Building the Circuit

Connect four pushbuttons to P4-P7 (see Experiment #14) and connect the DS1307
as shown below:

Moving Forward · Page 189

Program: SW21-EX33-DS1307.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates the access and control of an external real-
' time-clock chip, the DS1307.

' -----[I/O Definitions]---

SDA PIN 0 ' I2C serial data line
SCL PIN 1 ' I2C serial clock line

BtnBus VAR INB ' four inputs, pins 4 - 7

' -----[Constants]---

Ack CON 0 ' acknowledge bit
Nak CON 1 ' no ack bit

DS1307 CON %1101 << 4

' -----[Variables]---

slvAddr VAR Byte ' I2C slave address
devNum VAR Nib ' device number (0 - 7)
addrLen VAR Nib ' bytes in word addr (0 - 2)
wrdAddr VAR Word ' word address

i2cData VAR Byte ' data to/from device
i2cWork VAR Byte ' work byte for TX routine
i2cAck VAR Bit ' Ack bit from device

secs VAR Byte ' DS1307 time registers
mins VAR Byte
hrs VAR Byte
day VAR Byte ' weekday
date VAR Byte ' day in month, 1 - 31
month VAR Byte
year VAR Byte
control VAR Byte ' SQW I/O control

btns VAR Nib ' debounced button inputs
btnBack VAR btns.BIT3 ' roll back
btnDay VAR btns.BIT2 ' +/- day
btnHr VAR btns.BIT1 ' +/- hours
btnMn VAR btns.BIT0 ' +/- minutes

idx VAR Nib ' loop control

Page 190 · StampWorks

pntr VAR Byte ' ee pointer
char VAR Byte ' character for display

' -----[EEPROM Data]---

DayNames DATA "SunMonTueWedThuFriSat"

' -----[Initialization]--

Reset:
 #IF ($STAMP >= BS2P) #THEN
 #ERROR "Please use BS2p version: SW21-EX33-DS1307.BSP"
 #ENDIF

Setup:
 slvAddr = DS1307 ' 1 byte in word address
 addrLen = 1

 DEBUG CLS,
 "DS1307 Demo", CR,
 "-----------"

Reset_Clock:
 GOSUB Get_Buttons ' scan buttons
 idx = btns & %0011 ' isolate hrs & mins
 IF (idx = %11) THEN ' if both pressed, reset
 secs = $00
 mins = $00
 hrs = $06 ' 6:00 AM
 day = $07 ' Saturday
 date = $01 ' 1st
 month = $01 ' January
 year = $05 ' 2005
 control = 0 ' disable SQW output
 GOSUB Set_Clock ' block write clock regs
 ENDIF

' -----[Program Code]--

Main:
 GOSUB Get_Clock ' read DS1307
 hrs = hrs & $3F
 DEBUG CRSRXY, 0, 2,
 HEX2 hrs, ":", HEX2 mins, ":", HEX2 secs, CR
 GOSUB Print_Day
 PAUSE 100

 GOSUB Get_Buttons
 IF (btns > %0000) THEN ' button pressed?
 IF (btns <> %1000) THEN ' ignore back only
 hrs = hrs.NIB1 * 10 + hrs.NIB0 ' BCD to decimal

Moving Forward · Page 191

 mins = mins.NIB1 * 10 + mins.NIB0

 IF (btnBack = 0) THEN ' increment values
 day = ((day - 1) + btnDay // 7) + 1 ' keep 1 - 7
 hrs = hrs + btnHr // 24 ' keep 0 - 23
 mins = mins + btnMn // 60 ' keep 0 - 59
 ELSE
 day = ((day - 1) + (btnDay * 6) // 7) + 1
 hrs = hrs + (btnHr * 23) // 24
 mins = mins + (btnMn * 59) // 60
 ENDIF

 hrs = (hrs / 10 << 4) + (hrs // 10) ' decimal to BCD
 mins = (mins / 10 << 4) + (mins // 10)
 secs = $00
 GOSUB Set_Clock ' update DS1307
 ENDIF
 ENDIF

 GOTO Main

' -----[Subroutines]---

Get_Buttons:
 btns = %1111 ' enable all four inputs
 FOR idx = 1 TO 5
 btns = btns & ~BtnBus ' test inputs
 PAUSE 5 ' delay between tests
 NEXT
 RETURN

Print_Day:
 pntr = DayNames + ((day - 1) * 3) ' point to 1st char
 FOR idx = 0 TO 2 ' print 3 letters
 READ (pntr + idx), char ' read letter
 DEBUG char ' print it
 NEXT
 RETURN

' Do a block write to clock registers

Set_Clock:
 GOSUB I2C_Start ' send Start
 i2cWork = slvAddr & %11111110 ' send slave ID (write)
 GOSUB I2C_TX_Byte
 IF (i2cAck = Nak) THEN Set_Clock ' wait until not busy
 i2cWork = 0 ' point at secs register
 GOSUB I2C_TX_Byte
 FOR idx = 0 TO 7 ' write secs to control

Page 192 · StampWorks

 i2cWork = secs(idx)
 GOSUB I2C_TX_Byte
 NEXT
 GOSUB I2C_Stop
 RETURN

' Do a block read from clock registers

Get_Clock:
 GOSUB I2C_Start ' send Start
 i2cWork = slvAddr & %11111110 ' send slave ID (write)
 GOSUB I2C_TX_Byte
 IF (i2cAck = Nak) THEN Get_Clock ' wait until not busy
 i2cWork = 0 ' point at secs register
 GOSUB I2C_TX_Byte
 GOSUB I2C_Start
 i2cWork = slvAddr | %00000001 ' send slave ID (read)
 GOSUB I2C_TX_Byte
 FOR idx = 0 TO 6 ' read secs to year
 GOSUB I2C_RX_Byte
 secs(idx) = i2cWork
 NEXT
 GOSUB I2C_RX_Byte_Nak ' read control
 control = i2cWork
 GOSUB I2C_Stop
 RETURN

' =====[High Level I2C Subroutines]=======================================

' Random location write
' -- pass device slave address in "slvAddr"
' -- pass bytes in word address (0, 1 or 2) in "addrLen"
' -- word address to write passed in "wrdAddr"
' -- data byte to be written is passed in "i2cData"

Write_Byte:
 GOSUB I2C_Start ' send Start
 i2cWork = slvAddr & %11111110 ' send slave ID (write)
 GOSUB I2C_TX_Byte
 IF (i2cAck = Nak) THEN Write_Byte ' wait until not busy
 IF (addrLen > 0) THEN
 IF (addrLen = 2) THEN
 i2cWork = wrdAddr.BYTE1 ' send word address (1)
 GOSUB I2C_TX_Byte
 ENDIF
 i2cWork = wrdAddr.BYTE0 ' send word address (0)
 GOSUB I2C_TX_Byte
 ENDIF
 i2cWork = i2cData ' send data
 GOSUB I2C_TX_Byte

Moving Forward · Page 193

 GOSUB I2C_Stop
 RETURN

' Random location read
' -- pass device slave address in "slvAddr"
' -- pass bytes in word address (0, 1 or 2) in "addrLen"
' -- word address to write passed in "wrdAddr"
' -- data byte read is returned in "i2cData"

Read_Byte:
 GOSUB I2C_Start ' send Start
 IF (addrLen > 0) THEN
 i2cWork = slvAddr & %11111110 ' send slave ID (write)
 GOSUB I2C_TX_Byte
 IF (i2cAck = Nak) THEN Read_Byte ' wait until not busy
 IF (addrLen = 2) THEN
 i2cWork = wrdAddr.BYTE1 ' send word address (1)
 GOSUB I2C_TX_Byte
 ENDIF
 i2cWork = wrdAddr.BYTE0 ' send word address (0)
 GOSUB I2C_TX_Byte
 GOSUB I2C_Start
 ENDIF
 i2cWork = slvAddr | %00000001 ' send slave ID (read)
 GOSUB I2C_TX_Byte
 GOSUB I2C_RX_Byte_Nak
 GOSUB I2C_Stop
 i2cData = i2cWork
 RETURN

' -----[Low Level I2C Subroutines]--

' *** Start Sequence ***

I2C_Start: ' I2C start bit sequence
 INPUT SDA
 INPUT SCL
 LOW SDA

Clock_Hold:
 DO : LOOP UNTIL (SCL = 1) ' wait for clock release
 RETURN

' *** Transmit Byte ***

I2C_TX_Byte:
 SHIFTOUT SDA, SCL, MSBFIRST, [i2cWork\8] ' send byte to device
 SHIFTIN SDA, SCL, MSBPRE, [i2cAck\1] ' get acknowledge bit
 RETURN

Page 194 · StampWorks

' *** Receive Byte ***

I2C_RX_Byte_Nak:
 i2cAck = Nak ' no Ack = high
 GOTO I2C_RX

I2C_RX_Byte:
 i2cAck = Ack ' Ack = low

I2C_RX:
 SHIFTIN SDA, SCL, MSBPRE, [i2cWork\8] ' get byte from device
 SHIFTOUT SDA, SCL, LSBFIRST, [i2cAck\1] ' send ack or nak
 RETURN

' *** Stop Sequence ***

I2C_Stop: ' I2C stop bit sequence
 LOW SDA
 INPUT SCL
 INPUT SDA
 RETURN

Behind the Scenes

While it is possible to implement rudimentary timekeeping functions in code with
PAUSE, problems arise when BASIC Stamp needs to handle other activities. This is
especially true when an application needs to handle time, day, and date. The
cleanest solution is an external real-time clock. In this experiment, we’ll use the
Maxim-Dallas DS1307. Like the 24LC32, the DS1307 connects to its host though an
I2C bus. Unlike the 24LC32, however, it is not addressable, so only one DS1307 can
exist on a given I2C bus.

Once programmed the DS1307 runs by itself and accurately keeps track of seconds,
minutes, hours, day of week, date, month, year (with leap year compensation
through the year 2100), and a control register for the SQW output. As a bonus, the
DS1307 contains 56 bytes of RAM (registers $08 - $3E) that can be used for general-
purpose storage. And for projects that use main’s power, the DS1307 is easily
backed-up by a 3v Lithium battery (good for up to 10 years).

Like most I2C devices, the DS1307 is register-based, that is, each element of the
time and date is stored in its own register (memory address). For convenience, two

Moving Forward · Page 195

modes of reading and writing are available: register and block. With register access,
individual elements can be written or read. With block access we take advantage of
the automatic incrementing of the DS1307’s internal address pointer; this allows
groups of bytes to be written to or read from the DS1307 by specifying the starting
address of the block.

Of note are the Set_Clock and Get_Clock subroutines that use block mode to
read and write blocks of eight bytes from/to the DS1307. Also note that these
subroutines take advantage of the fact that PBASIC allows the RAM space to be
treated like an array – even when an array is not explicitly declared. You’ll see in
both routines that secs is used as the base of the array. What this means is that the
minutes register corresponds to secs(1), hours to secs(2), etc. The listing below
shows the how the clock registers are mapped to the implicit secs() array

secs VAR Byte ' secs(0)
mins VAR Byte ' secs(1)
hrs VAR Byte ' secs(2)
day VAR Byte ' secs(3)
date VAR Byte ' secs(4)
month VAR Byte ' secs(5)
year VAR Byte ' secs(6)
control VAR Byte ' secs(7)

As you can see in the listing, the array elements are based on the declaration order
of the same variable type; changing the order of declaration will change the position
within the array. This is a very powerful technique as PBASIC does not allow the
aliasing of declared array elements. Using the technique above gives us the greatest
possible programming flexibility.

There is a small variation in the Set_Clock and Get_Clock subroutines having to
do with the I2C protocol specification. In Set_Clock, all time registers are written
to the DS1307 in a loop (using the secs array). In Get_Clock, though, only the
first seven bytes are read in the loop; the final byte is read after. The reason for this
is that the I2C specification requires a Nak after the final read operation.

This program demonstrates the conversion of BCD to decimal values, and back. The
DS1307 stores clock registers as BCD which can be directly displayed using the HEX2
modifier with DEBUG, but cannot be modified mathematically. The NIB modifier
available for Byte and Word variables makes BCD-to-Decimal conversion a snap:

Page 196 · StampWorks

decVal = (bcdVal.NIB1 * 10) + bcdVal.NIB0

Once a value has been adjusted, the conversion back to BCD is equally simple:

bcdVal = (decVal / 10 << 4) + bcdVal // 10

Of the four pushbuttons connected, three are used to advance the minutes, hours,
and day (the seconds are reset when any other element is changed). To roll an
element back, the fourth button is held down. Note how the modulus operator is
used and keeps each element update to a single line of code.

Taking It Further

In applications where time-based math is concerned, a simple solution – if minutes
resolution is adequate – is to convert the time to a single value in minutes:

 rawTime = (hours * 60) + minutes

This will result in a value of 0 (midnight) to 1439 (23:59 or 11:59 PM). With this
single value mathematic operations are simplified. Getting back to hours and
minutes is simple too:

 hours = rawTime / 60
 hours = rawTime // 60

This will result in 24-hour time format. For 12 hour format, calculate hours like this:

 hours = 12 – (24 – (rawTime / 60) // 12)

To determine the state of AM/PM, simply look at the rawTime value; AM times are
between 0 and 719, PM times are between 720 and 1439.

Challenge

Reconnect the MC11489 multiplexer and display the running time on the 7-segment
LEDs.

Moving Forward · Page 197

EXPERIMENT #34: SERIAL COMMUNICATIONS WITH A PC

This experiment demonstrates the BASIC Stamp’s ability to communicate with other
computers through any of its IO pins. It also demonstrates the ability to store
nonvolatile information in the BASIC Stamp’s EEPROM space.

Look It Up: PBASIC Elements to Know

• SERIN
• SEROUT
• WAIT (SERIN modifier)
• SELECT-CASE
• WRITE

Building the Circuit

Page 198 · StampWorks

Program: SW21-EX34-Serial_IO.BS2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' This program demonstrates serial communications with a PC, using flow
' control to ensure the BASIC Stamp is ready before the PC attempts to
' send new information.

' -----[I/O Definitions]---

TX PIN 15 ' transmit to PC
RTS PIN 14 ' Request To Send
RX PIN 13 ' receive from PC
CTS PIN 12 ' Clear To Send

DQ CON 4 ' DS1620.1 (data I/O)
Clock CON 5 ' DS1620.2
Reset CON 6 ' DS1620.3

LEDs VAR OUTA ' LED outputs

' -----[Constants]---

T2400 CON 396 ' True for inverter
T9600 CON 84
T38K4 CON 6

SevenBit CON $2000
Inverted CON $4000
Open CON $8000
Baud CON T9600

CMenu CON $FF ' show command menu
CGetId CON $F0 ' get string ID
CSetId CON $F1 ' set string ID
CTemp CON $A0 ' get DS1620,display raw count
CTmpC CON $A1 ' get DS1620 - display in C
CTmpF CON $A2 ' get DS1620 - display in F
CGetLeds CON $B0 ' get digital output status
CSetLeds CON $B1 ' set LED outputs

RdTmp CON $AA ' read temperature
WrHi CON $01 ' write TH (high temp)
WrLo CON $02 ' write TL (low temp)
RdHi CON $A1 ' read TH
RdLo CON $A2 ' read TL

Moving Forward · Page 199

RdCntr CON $A0 ' read counter
RdSlope CON $A9 ' read slope
StartC CON $EE ' start conversion
StopC CON $22 ' stop conversion
WrCfg CON $0C ' write config register
RdCfg CON $AC ' read config register

' -----[Variables]---

cmd VAR Byte ' command from PC/terminal
eeAddr VAR Byte ' EE address pointer
param VAR Byte ' parameter to/from
tempIn VAR Word ' raw data from DS1620
sign VAR tempIn.BIT8 ' 1 = negative temperature
tC VAR Word ' degrees C in tenths
tF VAR Word ' degrees F in tenths

' -----[EEPROM Data]---

ID DATA "StampWorks 2.1", CR ' CR-terminated string

' -----[Initialization]--

Setup:
 DIRA = %1111 ' LED pins are outputs

 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [WrCfg, %10] ' use with CPU; free-run
 LOW Reset
 PAUSE 10
 HIGH Reset
 SHIFTOUT DQ, Clock, LSBFIRST, [StartC] ' start conversions
 LOW Reset

 GOSUB Show_Menu

' -----[Program Code]--

Main:
 cmd = 0
 SERIN RX\CTS, Baud, [WAIT ("?"), HEX cmd] ' wait for ? and command

 SELECT cmd ' process command entry
 CASE CMenu
 GOSUB Show_Menu ' refresh menu

 CASE CGetId

Page 200 · StampWorks

 GOSUB Show_ID ' show ID string

 CASE CSetId
 GOSUB Set_ID ' set new ID
 GOSUB Show_ID ' confirm new ID

 CASE CTemp
 GOSUB Show_Temp ' show raw counts

 CASE CTmpC
 GOSUB Show_Temp_C ' show tC (tenths)

 CASE CTmpF
 GOSUB Show_Temp_F ' show tF (tenths)

 CASE CGetLeds
 GOSUB Show_Leds ' show LED status

 CASE CSetLeds
 GOSUB Set_Leds ' set LED status
 GOSUB Show_Leds ' confirm new status

 CASE ELSE
 SEROUT TX\RTS, Baud, ["Invalid command.", CR]
 ENDSELECT

 GOTO Main

' -----[Subroutines]---

Show_Menu:
 SEROUT TX\RTS, Baud, [CLS,
 "========================", CR,
 " StampWorks Monitor ", CR,
 "========================", CR,
 "?FF - Show Menu", CR,
 "?F0 - Display ID", CR,
 "?F1 - Set ID", CR,
 "?A0 - DS1620 (Raw count)", CR,
 "?A1 - Temperature (C)", CR,
 "?A2 - Temperature (F)", CR,
 "?B0 - Display LED Status", CR,
 "?B1 - Set LEDs", CR,
 CR,
 "Please enter a command.", CR, CR]
 RETURN

Show_ID:
 SEROUT TX\RTS, Baud, ["ID = "] ' label output

Moving Forward · Page 201

 eeAddr = ID ' point to first character
 DO
 READ eeAddr, param ' read a character
 SEROUT TX\RTS, Baud, [param] ' print it
 eeAddr = eeAddr + 1 ' point to next
 LOOP UNTIL (param = CR)
 RETURN

Set_ID:
 eeAddr = ID ' point to ID location
 DO
 SERIN RX\CTS, Baud, [param] ' get character from PC
 WRITE eeAddr, param ' write to EE
 eeAddr = eeAddr + 1 ' point to next location
 LOOP UNTIL (param = CR) ' CR = end of new ID
 RETURN

Show_Temp: ' display raw counts
 GOSUB Read_DS1620 ' read temperature
 tempIn = tempIn & $1FF ' return to 9 bits
 SEROUT TX\RTS, Baud, ["DS1620 = ", DEC tempIn, CR]
 RETURN

Show_Temp_C:
 GOSUB Read_DS1620
 param = tC.BIT15 * 2 + "+" ' create sign char
 SEROUT TX\RTS, Baud, ["TempC = ", ' label
 param, ' display sign
 DEC (ABS tC / 10), ".", ' whole degrees
 DEC1 (ABS tC), CR] ' fractional degrees
 RETURN

Show_Temp_F:
 GOSUB Read_DS1620
 param = tF.BIT15 * 2 + "+" ' create sign char
 SEROUT TX\RTS, Baud, ["TempF = ", ' label
 param, ' display sign
 DEC (ABS tF / 10), ".", ' whole degrees
 DEC1 (ABS tF), CR] ' fractional degrees
 RETURN

Read_DS1620:
 HIGH Reset ' alert the DS1620
 SHIFTOUT DQ, Clock, LSBFIRST, [RdTmp] ' give command to read temp
 SHIFTIN DQ, Clock, LSBPRE, [tempIn\9] ' read it in
 LOW Reset ' release the DS1620

Page 202 · StampWorks

 tempIn.BYTE1 = -sign ' extend sign bit
 tC = tempIn * 5 ' convert to tenths

 IF (tC.BIT15 = 0) THEN ' temp C is positive
 tF = tC */ $01CC + 320 ' convert to F
 ELSE ' temp C is negative
 tF = 320 - ((ABS tC) */ $01CC) ' convert to F
 ENDIF
 RETURN

Show_Leds:
 SEROUT TX\RTS, Baud, ["Status = ", BIN4 LEDs, CR]
 RETURN

Set_Leds:
 SERIN RX\CTS, Baud, [BIN param] ' use binary input
 LEDs = param.LOWNIB ' set the outputs
 RETURN

Behind the Scenes

Without asynchronous serial communications the world would not be what it is
today. Businesses would be hard pressed to exchange information with each other.
There would be no ATMs for checking our bank accounts and withdrawing funds.
There would be no Internet.

Previous experiments have used synchronous serial communications. In that scheme,
two lines are required: clock and data. The benefit is the automatic synchronization
of sender and receiver. The downside is that it requires at least two wires to send a
message in one direction.

Asynchronous serial communications requires only a single wire to transmit a
message. What is necessary to allow this scheme is that both the sender and
receiver must agree on the communications speed before the transmission can be
received. Some "smart" systems can detect the communications speed (baud rate),
the BASIC Stamp cannot.

In this experiment we’ll use SEROUT to send information to a terminal program and
SERIN to take data in. The input will usually be a command and sometimes the
command will be accompanied with new data. Note that the SERIN connection is
actually defined as two pins:

SERIN RX\CTS, Baud, [WAIT ("?"), HEX cmd]

Moving Forward · Page 203

The CTS connection tells the PC that the BASIC Stamp is ready to receive data.
Remember that the BASIC Stamp does not buffer serial data and if the PC sent a
byte when the BASIC Stamp was busy processing another instruction that byte would
be lost.

After initializing the LED outputs and the DS1620, the program enters the main loop
and waits for input from the terminal program. First, SERIN waits for the "?"
character to arrive, ignoring everything else until that happens. The question mark,
then, is what signifies the start of a query. Once a question mark arrives, the HEX
modifier causes the BASIC Stamp to look for valid hex characters (0 - 9, A - F). The
arrival of any non-hex character (usually a carriage return [Enter] when using a
terminal) tells the BASIC Stamp to stop accepting input (to the variable called cmd)
and continue on.

What actually has happened is that the BASIC Stamp has used the SERIN instruction
to do a text-to-numeric conversion. Now that a command is available, the program
uses SELECT-CASE to process valid commands, and sends a message to the
terminal if the command entered is not used by the program.

For valid commands the BASIC Stamp responds to a request sending a text string
using SEROUT. As with SERIN, flow control is used with SEROUT as well. The RTS
(Request To Send) connection allows the PC to let the BASIC Stamp know that it is
ready to receive data.

Each of the response strings consists of a label, the equal sign, the value of that
particular parameter and finally, a carriage return. When using a terminal program,
the output is easily readable. Something like this:

ID = StampWorks 2.1

The carriage return at the end of the output gives us a new line when using a
terminal program and serves as an "end of input" when we process the input with
our own program (similar to StampPlot Lite). The equal sign can be used as a
delimiter when another computer program communicates with the BASIC Stamp.
We’ll use it to distinguish the label from its value.

Most of the queries are requests for information. Two of them, however, can modify
information that is stored in the BASIC Stamp.

Page 204 · StampWorks

The first command is "?F1" which will allow us to write a string value to the BASIC
Stamp’s EEPROM (in a location called ID). When $F1 is received as a command
value, the program jumps to the subroutine called Set_ID. On entry to Set_ID, the
EE pointer called eeAddr is initialized, and then the BASIC Stamp waits for a
character to arrive. Notice that no modifier is used here. Since terminal programs
and the BASIC Stamp represent characters using ASCII codes, we don’t have to do
anything special. When a character does arrive, WRITE is used to put the character
into EEPROM and the address pointer is incremented. If the last character was a
carriage return (13), the program displays the new string (using the code at
Show_ID), otherwise it loops back and waits for another character.

The second modifying query is “?B1” which allows us to set the status of four LEDs.
Take a look at the subroutine called Set_Leds. This time, the BIN modifier of
SERIN is used so that we can easily define individual bits we wish to control. By
using the BIN modifier, our input will be a string of ones and zeros (any other
character will terminate the binary input). In this program, a “1” will cause the LED
to turn on and a “0” will cause the LED to turn off. Here’s an example of using the B1
query.

?B1 0011<CR>

The figure below shows an actual on-line session using the BASIC Stamp’s Debug
Terminal window.

Moving Forward · Page 205

To run the experiment, follow these steps:

1. Remove components from previous experiment.
2. Enter and download the program
3. Remove power from PDB and build the circuit
4. Move the programming cable to the RS-232 DCE port (if required)
5. Open a Debug Terminal window by clicking on the Debug icon; select the

com port connected to the RS-232 DCE connector, and then check RTS
6. Set the PDB power switch to on.

Challenge (for PC programmers)

Write a PC program that interfaces with this experiment.

Page 206 · StampWorks

EXPERIMENT #35: (BONUS) BS2PX ADC

This experiment takes advantage of the comparator feature available in the BS2px
microcontroller. By applying a known voltage (using PWM) to one side of the
comparator it can be used to determine an unknown voltage on the other input.

Look It Up: PBASIC Elements to Know

• COMPARE (BS2px only)

Building the Circuit

Program: SW21-EX35-BS2px-ADC.BPX
' {$STAMP BS2px}
' {$PBASIC 2.5}

' -----[Program Description]---
'
' Creates a simple 8-bit ADC with the BS2px using the internal comparator.

Moving Forward · Page 207

' -----[I/O Definitions]---

Vin PIN 1 ' unknown voltage input
DacIn PIN 2 ' input from R/C DAC
DacOut PIN 3 ' DAC via PWM + R/C

' -----[Variables]---

adcVal VAR Byte ' adc value (0 - 255)
bias VAR Byte ' bias for ADC conversion
result VAR Bit ' comparator result bit
mVolts VAR Word ' input in millivolts

' -----[Initialization]--

Check_Stamp:
 #IF ($STAMP <> BS2PX) #THEN
 #ERROR "This program requires the BS2px"
 #ENDIF

Setup:
 DEBUG CLS,
 "BS2px ADC Demo", CR,
 "==============", CR,
 "Raw..... ", CR,
 "Volts... "

' -----[Program Code]--

Main:
 DO
 GOSUB Get_ADC ' read comparator ADC
 mVolts = adcVal */ $139B ' convert to millivolts

 DEBUG CRSRXY, 9, 2, ' show results
 DEC adcVal, " ",
 CRSRXY, 9, 3,
 DEC1 (mVolts / 1000), ".",
 DEC3 mVolts

 PAUSE 250
 LOOP

' -----[Subroutines]---

' Simple ADC conversion
' -- outputs voltage on P3 until it crosses voltage on P2

Page 208 · StampWorks

Get_ADC:
 adcVal = 0 ' clear ADC
 bias = 128 ' start in middle
 DO
 adcVal = adcVal + bias ' add bias to adc result
 PWM DacOut, adcVal, 15 ' output new test value
 COMPARE 2, result ' check comparator
 IF (result = 1) THEN ' if unknown lower than test
 adcVal = adcVal - bias ' -- reduce adcVal
 ENDIF
 bias = bias / 2 ' check next half
 LOOP UNTIL (bias = 0)
 RETURN

Behind the Scenes

A comparator is a circuit used to compare two voltages; when the voltage on the +
(noninverting) input of the comparator is greater than the voltage on the –
(inverting) input, the output will be high, otherwise it is low. Using this behavior an
unknown voltage can be determined by applying a known voltage to the other side
of the comparator and checking the output.

This process can, of course, be done with any BASIC Stamp and an external
comparator. For this experiment we will take advantage of the built-in comparator
feature of the BS2px. By doing so we use just three I/O pins and a few standard
components.

A simplistic method for determining the unknown voltage would be a loop that
essentially sneaks up on the unknown voltage:

Get_ADC_Simple: ' slow version
 adcVal = 0
 DO
 PWM DacOut, adcVal, 15 ' output new value
 COMPARE 2, result ' check comparator
 IF (result = 1) THEN EXIT ' voltage found
 adcVal = adcVal + 1 ' increment result
 LOOP UNTIL (adcVal = 255)
 RETURN

The problem with this strategy is the length of conversion when the unknown voltage
is biased toward the high side of the scale. The solution this problem is a technique

Moving Forward · Page 209

called a binary search. In simple terms a binary search is able to eliminate half the
available possibilities in a single test. With this method a large number of
possibilities can be checked with very few tests.

In the Get_ADC subroutine the variable called bias is used to split the available
possibilities, hence it starts at 128 before entering the loop. In the working part of
the test loop bias is added to adcVal – this voltage is output via PWM to one side
of the comparator.

If the unknown voltage is lower than the current test voltage (in adcVal), the
current value of bias is removed before bias is divided for the next test. The new
value of bias is added to adcVal and the comparator is checked again. This process
is repeated until bias is divided down to zero – this takes eight iterations of the test
loop to “find” the unknown voltage, no matter what that voltage is. This is far
quicker than the slow method presented above.

The table below illustrates the test loop with a voltage input of 3.3 volts (168
counts):

Step bias adcVal (counts) adcVal (volts) Remove bias?
1 128 128 2.50 No
2 64 192 3.76 Yes
3 32 160 3.14 No
4 16 176 3.45 Yes
5 8 168 3.29 No
6 4 172 3.37 Yes
7 2 170 3.33 Yes
8 1 169 3.31 Yes

End 0 168 3.29

Note that the input is actually determined by Step 5, but the nature of the algorithm
requires it to run all the way through until bias is divided down to zero.

Page 210 · StampWorks

Power PBASIC · Page 211

Power PBASIC

Before I close, I’d like to share a few things that I think separate Power PBASIC
programmers from the rest of the field. Simple things, really, yet highly effective
and, sadly, usually underutilized. It’s up to you to master or adopt these strategies,
but I think that if you do you will be rewarded for your efforts.

Adopt “The Elements of PBASIC Style”

I know I harp on about this, and I do it for a very good reason: in the 12 years I’ve
been writing programs for BASIC Stamp microcontrollers I find that most
programmers create bugs through sloppy programming practice. Adopt the
philosophy that neatness counts and your programs will have fewer bugs – I know
this from experience.

Be Stingy with Variable Declarations

Many programmers, especially those born after the invention of the personal
computer, have learned programming on platforms with resources far greater than
that of the BASIC Stamp microcontroller, and along the way have never really
worried about managing variable space. These programmers usually don’t take very
long to find that techniques used in their PC programs don’t fly on the BASIC Stamp
(or other small micros).

Analyze your programs and declare variable type as required by the code. If a
variable has an upper limit of 10, use a Nib, not a Byte or Word as this would simply
be wasting variable space.

Arrays are Implicit – Take Advantage

A question that frequently comes up is, “How can I alias an element of an array?”
The answer is: you can’t – at least when you declare an array like this:

colors VAR Byte(3)

Page 212 · StampWorks

With just a little more effort we can have the same array and have aliases to
elements in it. Here’s how:

colors VAR Byte
red VAR colors
green VAR Byte
blue VAR Byte

The variable called colors can still be treated like an array:

 colors(0) = 50
 colors(1) = 10
 colors(2) = 35

This section of code does exactly the same thing:

 red = 50
 green = 10
 blue = 35

This works because the BASIC Stamp variable space can be treated as an implicit
array. The size of the elements will depend on the variable one selects as the base.
The other key to this trick is that the compiler declares variables of the same type in
the order they appear in your listing. In this example the variables colors and red
occupy the same space in memory, with green and blue following in that order.

Overlay Variables to Save Code

Let’s say you have two sets of byte-sized flag variables. You could define them like
this:

flags0 VAR Byte
flags1 VAR Byte

This works fine, of course, but you can save a bit of code and execution speed by
aliasing these bytes to a single Word variable like this:

flags VAR Word
flags0 VAR flags.BYTE0
flags1 VAR flags.BYTE1

Power PBASIC · Page 213

The second declaration consumes no more variable space than the first, but allows
access to all flags with one line of code:

flags = 0

This saves program space and improves execution speed because the PBASIC
interpreter only has to fetch one instruction from the program EEPROM, whereas the
previous declaration would require separate lines of code to set both variables; each
line requires access to the program EEPROM and affects program speed. Yes, this
seems like a very small thing, but remember: a lot of small things in a program add
up to better performance.

Learn to Use the Variable Modifiers

Another common question is, “How can I convert from BCD to decimal, and then
back?” While these conversions can be done with standard programming
techniques, the use of PBASIC variable modifiers makes it much simpler. First, let’s
convert a variable from BCD to decimal:

 decVal = bcdVal.NIB1 * 10 + bcdVal.NIB0

How easy is that? Since BCD uses nibbles for digit storage, this seems to be the
most obvious solution yet many programmers user more complicated code for not
mastering variable modifiers. Going the other direction (decimal to BCD) is equally
easy:

 bcdVal = ((decVal DIG 1) << 4) + (decVal DIG 0)

Another useful variable modifier is the LOWBIT() array. This modifier lets us access
any bit inside any variable using a variable index. If, for example, you needed to
count the number of set bits in a Word, you could do it like this:

Count_Bits:
 bitCount = 0
 FOR idx = 0 TO 15
 bitCount = bitCount + wordVar.LOWBIT(idx)
 NEXT

Page 214 · StampWorks

I/O Pins are Variables Too

Remember that I/O pins are variables (INS and OUTS) and when doing simple
scanning there is no need to use an intermediary variable. Instead of:

Main:
 DO
 startStatus = IN3
 LOOP WHILE (startStatus = 1)

… you can declare an input with the PIN type declaration and do it directly:

StartBtn PIN 3

Main:
 DO : LOOP WHILE (StartBtn = 1)

I don’t typically advocate putting multiple statements on a single line, but this is one
of those cases (an empty DO-LOOP) where it is the cleaner approach.

We can extend this with combinatorial logic. Let’s say, for example, that you want to
count the number of times two discrete inputs are both high while running a loop.
Here’s the Power PBASIC style for doing that:

Count_Buttons:
 btnCount = 0
 FOR idx = 1 TO 250
 btnCount = btnCount + (Btn1 & Btn2)
 PAUSE 40
 NEXT

This works because we want to add one to the count variable when both buttons are
pressed. By combining Btn1 and Btn2 with a logical AND we reduce the
parenthetical statement to zero or one, and the only time one will be returned is
when both buttons are pressed (assuming active-high inputs).

You Can do Fractions with the */ and ** Operators

The */ and ** operators allow the BASIC Stamp to multiply by fractional values.
The result will of course be an integer, but these operators will still simplify the
process, and oftentimes improve the accuracy of the result (over standard multiply
and divide techniques).

Power PBASIC · Page 215

When would you use */ versus **? When your fractional result is greater than one,
*/ is usually the operator of choice. When the fractional value is less than one then
** will give the best resolution.

To use */, multiply the fractional value by 256 and use this as the operand for */.

Pi CON $0324

Then…

 area = radius * radius */ Pi

When you need to multiply by a value less than one, especially very small values, the
** operator is best. When using ** you multiply your fractional value by 65536 and
use that result as the ** operand.

 scale = rawInput ** 25 ' x 0.00038146

Master the Modulus (//) Operator

Modulus is very simple to use, yet I still see lots of programmers doing this:

 count = count + 1
 IF (count = 10) THEN
 count = 0
 ENDIF

Why? Isn’t this version simpler?

 count = (count + 1) // 10

Rollover is easy, what about rolling under (from zero back to some maximum).
That’s easy too:

 count = (count + 9) // 10

This looks different, but behaves just like:

 IF (count < 0) THEN
 count = count – 1
 ELSE
 count = 0
 ENDIF

Page 216 · StampWorks

What happened to the -1? It was applied to the divisor and that value is added to
the intermediate result.

The key to mastering modulus is remembering that it will return a value between
zero and the divisor used. Let’s say you want to generate a pseudo-random number
between 20 and 50 when a button is pressed. Here’s how:

Main:
 DO
 RANDOM randVal
 LOOP UNTIL (StartBtn = Pressed)
 selection = randVal // 31 + 20

Do you see how this works? The span between 20 and 50 is 30, so we use 31 as the
divisor for modulus.

Use Conditional Compilation

BASIC Stamp microcontrollers have been around a few years, and as would be
expected, new models are faster and have more features than the older ones. The
BASIC Stamp IDE allows for conditional compilation so that you can construct a code
that will run on any BS2 module. The most common problem for BASIC Stamp
programmers when moving from one module to another is with SERIN and SEROUT.
By using conditional compilation to define baudmode constants these problems are
eliminated. The code fragment below is abbreviated from the definitions provided in
my standard programming template (Template.BS2).

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Power PBASIC · Page 217

SevenBit CON $2000
Inverted CON $4000
Open CON $8000
Baud CON T9600

Conditional compilation also simplifies the removal of debugging code – code you
would normally have to delete or “comment out” before finalizing your program.

#DEFINE _DebugMode = 1

 #IF (_DebugMode = 1) #THEN
 DEBUG HOME, DEC status
 #ENDIF

By changing the value of _DebugMode to zero the DEBUG statements (enclosed in
#IF-#THEN-#ENDIF blocks) are removed and can just as easily be restored.

Break Your Program into Tasks

Since the BASIC Stamp runs an interpreter, interrupts are not possible. How, then,
does one create a program that can be responsive to short-term events? The
answer is to take advantage of ON-GOSUB and setup your core program like this:

Main:
 DO
 GOSUB Critical_Task
 ON task GOSUB Task0, Task1, Task2
 task = task + 1 // NumTasks
 LOOP

Critical_Task:
 ' task code
 RETURN

Task0:
 ' task 0 code
 RETURN

Task1:
 ' task 1 code
 RETURN

Task2:
 ' task 1 code
 IF (Emergency) THEN
 GOSUB Special_Task
 ENDIF

Page 218 · StampWorks

 RETURN

Special_Task:
 ' special task code
 RETURN

This simple, yet powerful framework can be applied to virtually any application. In
the Main loop the subroutine called Critical_Task is executed through every
iteration of the loop, with the currently-selected task following. Under “normal”
circumstances the order of execution would be:

Critical_Task
Task0
Critical_Task
Task1
Critical_Task
Task2

Note that all task code is embedded in subroutines. This design allows a task to be
called from any point in the program – even from another task. Note that Task2
has the ability to check for an emergency condition and if that condition exists can
call Special_Task.

The key to using this framework is to break your program into small, lean tasks. By
doing this, your program will have the best responsiveness and the greatest amount
of flexibility.

Striking Out on Your Own · Page 219

Striking Out on Your Own

Congratulations, you’re a BASIC Stamp programmer! So what’s next? Well, that’s up
to you. Many new programmers get stuck when it comes to developing their own
projects. Don’t worry, this is natural – and there are ways out of being stuck. The
following workflow tips and resources will help you succeed in bringing your good
ideas to fruition.

Plan Your Work, Work Your Plan

You’ve heard it a million times: plan, plan, and plan. Nothing gets a programmer into
more trouble than bad or inadequate planning. This is particularly true with the
BASIC Stamp as resources are so limited. Most of the programs we’ve fixed were
“broken” due to bad planning and poor formatting which lead to errors.

Talk It Out

Talk yourself through the program. Don’t just think it through, talk it through. Talk
to yourself–out loud–as if you were explaining the operation of the program to a
fellow programmer. Often, just hearing our own voice is what makes the difference.
Better yet, talk it out as if the person you’re talking to isn’t a programmer. This will
force you to explain details. Many times we take things for granted when we’re
talking to ourselves or others of similar ability.

Write It Out

Design the details of your program on a white (dry erase) board before you sit down
at your computer. And use a lot of colors. You’ll find working through a design
visually will offer new insights, and the use of this medium allows you to write code
snippets within your functional diagrams.

Design with “Sticky Notes”

Get out a pad of small “sticky notes”. Write module names or concise code fragments
on individual notes and then stick them up on the wall. Now stand back and take a

Page 220 · StampWorks

look. Then move them around. Add notes, take some away; just do what feels right
to you. This exercise works particularly well with groups. How do you know when
you’re done? When the sticky notes stop moving! It’s a good idea to record the final
outcome before starting your editor. Another tip: this trick works even better when
combined with writing it out (above). You can draw lines between and around notes
to indicate program flow or logical groupings. If it’s not quite right, just erase the
lines or move some notes. Try this trick; it really does work.

Going Beyond the Box

By now, your appetite for BASIC Stamp projects has probably grown well beyond
what you ever expected. So where do you turn now? Don’t worry; there are many
BASIC Stamp and related resources available, both in print and on the Internet.
Here’s a list to get you started:

Books & Magazines

Microcontroller Application Cookbooks by Matt Gilliland
Microcontroller Projects with BASIC Stamps by Al Williams
Getting Started In Electronics by Forrest Mims
Engineer’s Notebook by Forrest Mims
Nuts & Volts Magazine “Stamp Applications” column

Internet Sites

• www.parallax.com (Parallax main site)
• www.emesystems.com/BS2index.htm (Tracy Allen’s BASIC Stamp resources

– very technical)
• www.al-williams.com (Al Williams web site)
• www.seetron.com (Scott Edwards Electronics web site)
• www.hth.com/losa (List of Stamp Applications – great idea source)

