
SCAS097B - DECEMBER 1989 - REVISED APRIL 1996

- Members of the Texas Instruments
  Widebus™ Family
- Inputs Are TTL-Voltage Compatible
- 3-State Outputs Drive Bus Lines Directly
- Flow-Through Architecture Optimizes PCB Layout
- Distributed V<sub>CC</sub> and GND Configuration to Minimize High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Packages Using 25-mil Center-to-Center Pin Spacings, Thin Shrink Small-Outline (DGG) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Packages Using 25-mil Center-to-Center Pin Spacings

### description

The SN54ACT16245 and 74ACT16245 are 16-bit bus transceivers organized as dual-octal noninverting 3-state transceivers and designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

SN54ACT16245 . . . WD PACKAGE 74ACT16245 . . . DGG OR DL PACKAGE (TOP VIEW)

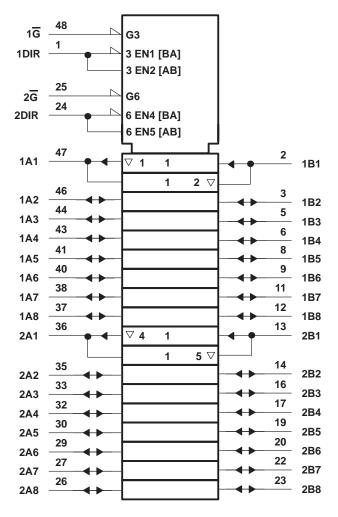


The devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The enable  $(\overline{G})$  input can be used to disable the devices so that the buses are effectively isolated.

The SN54ACT16245 is characterized for operation over the full military temperature range of –55°C to 125°C. The 74ACT16245 is characterized for operation from –40°C to 85°C.

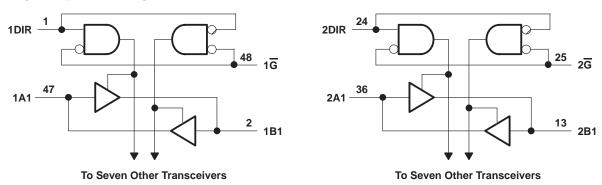
#### **FUNCTION TABLE**

|   | TROL<br>UTS | OPERATION       |
|---|-------------|-----------------|
| G | DIR         |                 |
| L | L           | B data to A bus |
| L | Н           | A data to B bus |
| Н | X           | Isolation       |




Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.




## logic symbol†



<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

# logic diagram (positive logic)





SCAS097B - DECEMBER 1989 - REVISED APRIL 1996

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| Supply voltage, V <sub>CC</sub>                                           |                                  |
|---------------------------------------------------------------------------|----------------------------------|
| Input voltage range, V <sub>I</sub> (see Note 1)                          |                                  |
| Output voltage range, V <sub>O</sub> (see Note 1)                         | 0.5 V to V <sub>CC</sub> + 0.5 V |
| Input clamp current, $I_{IK}$ ( $V_I < 0$ or $V_I > V_{CC}$ )             |                                  |
| Output clamp current, $I_{OK}$ ( $V_O < 0$ or $V_O > V_{CC}$ )            |                                  |
| Continuous output current, $I_O$ ( $V_O = 0$ to $V_{CC}$ )                |                                  |
| Continuous current through V <sub>CC</sub> or GND                         | ±400 mA                          |
| Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note | 2): DGG package 0.85 W           |
| , , , , , , , , , , , , , , , , , , ,                                     | DL package 1.2 W                 |
| Storage temperature range, T <sub>sta</sub>                               | . •                              |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

### recommended operating conditions (see Note 3)

|                |                                    | SN54AC | Γ16245 | 74ACT | 16245 | UNIT |
|----------------|------------------------------------|--------|--------|-------|-------|------|
|                |                                    | MIN    | MAX    | MIN   | MAX   | UNII |
| Vcc            | Supply voltage (see Note 4)        | 4.5    | 5.5    | 4.5   | 5.5   | V    |
| VIH            | High-level input voltage           | 2      |        | 2     |       | V    |
| VIL            | Low-level input voltage            |        | 0.8    |       | 0.8   | V    |
| ٧ <sub>I</sub> | Input voltage                      | 0      | VCC    | 0     | VCC   | V    |
| Vo             | Output voltage                     | 0      | VCC    | 0     | VCC   | V    |
| loh            | High-level output current          |        | -24    |       | -24   | mA   |
| loL            | Low-level output current           |        | 24     |       | 24    | mA   |
| Δt/Δν          | Input transition rise or fall rate | 0      | 10     | 0     | 10    | ns/V |
| TA             | Operating free-air temperature     | -55    | 125    | -40   | 85    | °C   |

NOTES: 3. Unused inputs should be tied to V<sub>CC</sub> through a pullup resistor of approximately 5 kΩ or greater to keep them from floating.



NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>2.</sup> The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

<sup>4.</sup> All V<sub>CC</sub> and GND pins must be connected to the proper voltage power supply.

# SN54ACT16245, 74ACT16245 **16-BIT BUS TRANSCEIVERS** WITH 3-STATE OUTPUTS

SCAS097B - DECEMBER 1989 - REVISED APRIL 1996

### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

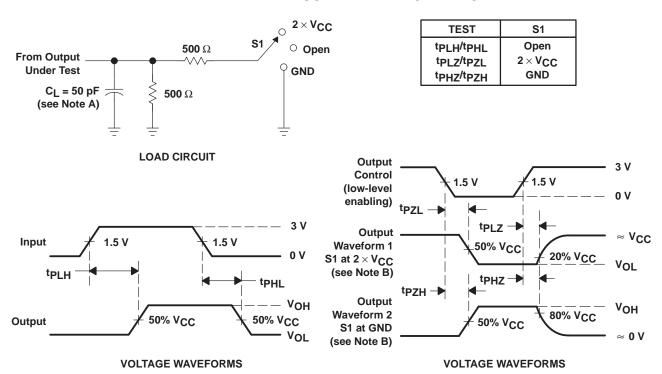
| DAI             | RAMETER                   | TEST CONDITIONS                                               | V     | T,   | λ = 25°C | ;    | SN54AC | Γ16245 | 74ACT | 16245 | UNIT |  |
|-----------------|---------------------------|---------------------------------------------------------------|-------|------|----------|------|--------|--------|-------|-------|------|--|
| TANAMETER       |                           | TEST CONDITIONS                                               | VCC   | MIN  | TYP      | MAX  | MIN    | MAX    | MIN   | MAX   | ONIT |  |
| Vari            |                           | I <sub>OH</sub> = -50 μA                                      | 4.5 V | 4.4  |          |      | 4.4    |        | 4.4   |       |      |  |
|                 |                           | ΙΟΗ = -30 μΑ                                                  | 5.5 V | 5.4  |          |      | 5.4    |        | 5.4   |       |      |  |
|                 |                           | I <sub>OH</sub> = -24 mA                                      | 4.5 V | 3.94 |          |      | 3.94   |        | 3.8   |       | V    |  |
| VOH             |                           | 10H = -24 IIIA                                                | 5.5 V | 4.94 |          |      | 4.94   |        | 4.8   |       | V    |  |
|                 |                           | $I_{OH} = -50 \text{ mA}^{\dagger}$                           | 5.5 V |      |          |      | 3.85   |        |       |       |      |  |
|                 |                           | $I_{OH} = -75 \text{ mA}^{\dagger}$                           | 5.5 V |      |          |      |        |        | 3.85  |       |      |  |
| VOL             |                           | I <sub>OL</sub> = 50 μA                                       | 4.5 V |      |          | 0.1  |        | 0.1    |       | 0.1   |      |  |
|                 |                           | ΙΟΓ = 30 μΑ                                                   | 5.5 V |      |          | 0.1  |        | 0.1    |       | 0.1   |      |  |
|                 |                           | I <sub>OL</sub> = 24 mA                                       | 4.5 V |      |          | 0.36 |        | 0.5    |       | 0.44  | V    |  |
|                 |                           | IOL = 24 IIIA                                                 | 5.5 V |      |          | 0.36 |        | 0.5    |       | 0.44  | '    |  |
|                 |                           | $I_{OL} = 50 \text{ mA}^{\dagger}$                            | 5.5 V |      |          |      |        | 1.65   |       |       | ]    |  |
|                 |                           | $I_{OL} = 75 \text{ mA}^{\dagger}$                            | 5.5 V |      |          |      |        |        |       | 1.65  |      |  |
| Ц               | Control inputs            | $V_I = V_{CC}$ or GND                                         | 5.5 V |      |          | ±0.1 |        | ±1     |       | ±1    | μΑ   |  |
| loz             | A or B ports <sup>‡</sup> | $V_O = V_{CC}$ or GND                                         | 5.5 V |      |          | ±0.5 |        | ±10    |       | ±5    | μΑ   |  |
| Icc             |                           | $V_I = V_{CC}$ or GND, $I_O = 0$                              | 5.5 V |      |          | 8    |        | 160    |       | 80    | μΑ   |  |
| ΔlCC§           |                           | One input at 3.4 V,<br>Other inputs at GND or V <sub>CC</sub> | 5.5 V |      |          | 0.9  |        | 1      |       | 1     | mA   |  |
| Ci              | Control inputs            | V <sub>I</sub> = V <sub>CC</sub> or GND                       | 5 V   |      | 4.5      |      |        |        |       |       | pF   |  |
| C <sub>io</sub> | A or B ports              | $V_O = V_{CC}$ or GND                                         | 5 V   |      | 16       |      |        |        |       |       | pF   |  |

<sup>†</sup> Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

### switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM    | то       | T,  | գ = 25°C | ;    | SN54AC1 | Γ16245 | 74ACT | UNIT |      |
|------------------|---------|----------|-----|----------|------|---------|--------|-------|------|------|
| TANAMETER        | (INPUT) | (OUTPUT) | MIN | TYP      | MAX  | MIN     | MAX    | MIN   | MAX  | ONIT |
| <sup>t</sup> PLH | A or B  | B or A   | 3.2 | 6.9      | 9.3  | 3.2     | 11.5   | 3.2   | 10.5 | nc   |
| <sup>t</sup> PHL | AOIB    | B OF A   | 2.6 | 6.4      | 9.2  | 2.6     | 11.1   | 2.6   | 10.2 | ns   |
| <sup>t</sup> PZH | G       | B or A   | 2.7 | 6.4      | 9.1  | 2.7     | 10.9   | 2.7   | 10   |      |
| <sup>t</sup> PZL | G       |          | 3.4 | 7.4      | 10.5 | 3.4     | 12.6   | 3.4   | 11.6 | ns   |
| <sup>t</sup> PHZ | G       | B or A   | 5.8 | 9.2      | 11.6 | 5.8     | 13.4   | 5.8   | 12.6 | 20   |
| <sup>t</sup> PLZ | G       | B OF A   | 5.5 | 8.5      | 10.8 | 5.5     | 12.7   | 5.5   | 11.8 | ns   |

# operating characteristics, V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C


|                                                   | PARAMETER                                     | TEST COI                | TYP         | UNIT         |    |    |
|---------------------------------------------------|-----------------------------------------------|-------------------------|-------------|--------------|----|----|
| C . Power dissination conscitance per transceiver | Outputs enabled                               | C <sub>1</sub> = 50 pF, | f = 1 MHz   | 52           | рF |    |
| Cpd                                               | Power dissipation capacitance per transceiver | Outputs disabled        | CL = 50 pr, | I = I IVITIZ | 10 | pΓ |



<sup>‡</sup> For I/O ports, the parameter IOZ includes the input leakage current I<sub>I</sub>.

<sup>§</sup> This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or VCC.

### PARAMETER MEASUREMENT INFORMATION



NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz,  $Z_O = 50 \Omega$ ,  $t_f = 3 \text{ ns}$ ,  $t_f = 3 \text{ ns}$ .
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms





25-Oct-2016

#### PACKAGING INFORMATION

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty |                            | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking                             | Samples |
|------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|--------------------------------------------|---------|
|                  | (1)    | 0=5          |                    |      |                | (2)                        | (6)              | (3)                |              | (4/5)                                      |         |
| 5962-9202301MXA  | ACTIVE | CFP          | WD                 | 48   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9202301MX<br>A<br>SNJ54ACT16245W<br>D | Samples |
| 74ACT16245DGGR   | ACTIVE | TSSOP        | DGG                | 48   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ACT16245                                   | Samples |
| 74ACT16245DGGRE4 | ACTIVE | TSSOP        | DGG                | 48   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ACT16245                                   | Samples |
| 74ACT16245DGGRG4 | ACTIVE | TSSOP        | DGG                | 48   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ACT16245                                   | Samples |
| 74ACT16245DL     | ACTIVE | SSOP         | DL                 | 48   | 25             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ACT16245                                   | Samples |
| 74ACT16245DLG4   | ACTIVE | SSOP         | DL                 | 48   | 25             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ACT16245                                   | Samples |
| 74ACT16245DLR    | ACTIVE | SSOP         | DL                 | 48   | 1000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ACT16245                                   | Samples |
| 74ACT16245DLRG4  | ACTIVE | SSOP         | DL                 | 48   | 1000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ACT16245                                   | Samples |
| SNJ54ACT16245WD  | ACTIVE | CFP          | WD                 | 48   | 1              | TBD                        | A42              | N / A for Pkg Type | -55 to 125   | 5962-9202301MX<br>A<br>SNJ54ACT16245W<br>D | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.



## PACKAGE OPTION ADDENDUM

25-Oct-2016

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

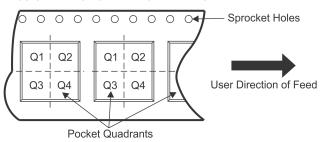
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# PACKAGE MATERIALS INFORMATION

www.ti.com 11-Mar-2017


## TAPE AND REEL INFORMATION





|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

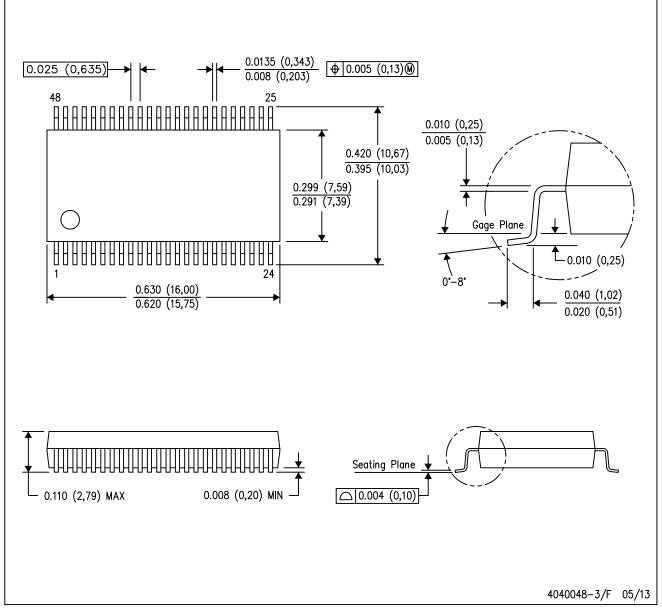


#### \*All dimensions are nominal

| Device         | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| 74ACT16245DGGR | TSSOP           | DGG                | 48 | 2000 | 330.0                    | 24.4                     | 8.6        | 13.0       | 1.8        | 12.0       | 24.0      | Q1               |
| 74ACT16245DLR  | SSOP            | DL                 | 48 | 1000 | 330.0                    | 32.4                     | 11.35      | 16.2       | 3.1        | 16.0       | 32.0      | Q1               |

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 11-Mar-2017




#### \*All dimensions are nominal

| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| 74ACT16245DGGR | TSSOP        | DGG             | 48   | 2000 | 367.0       | 367.0      | 45.0        |
| 74ACT16245DLR  | SSOP         | DL              | 48   | 1000 | 367.0       | 367.0      | 55.0        |

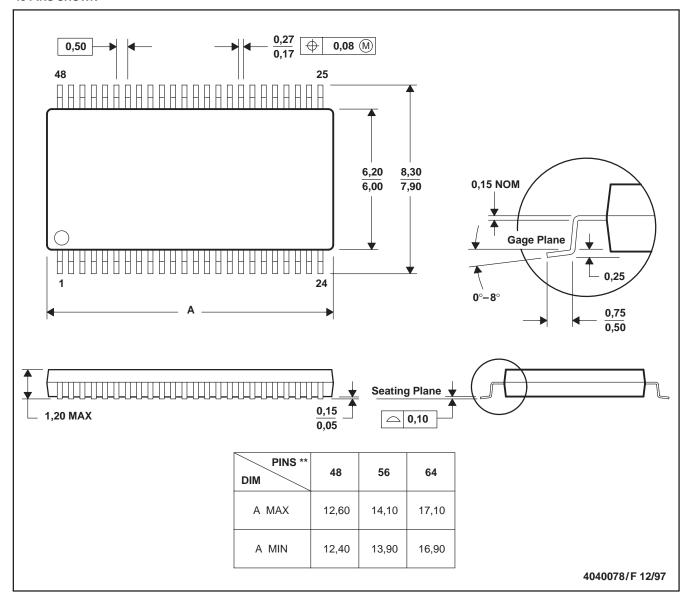
# DL (R-PDSO-G48)

# PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118


PowerPAD is a trademark of Texas Instruments.



### DGG (R-PDSO-G\*\*)

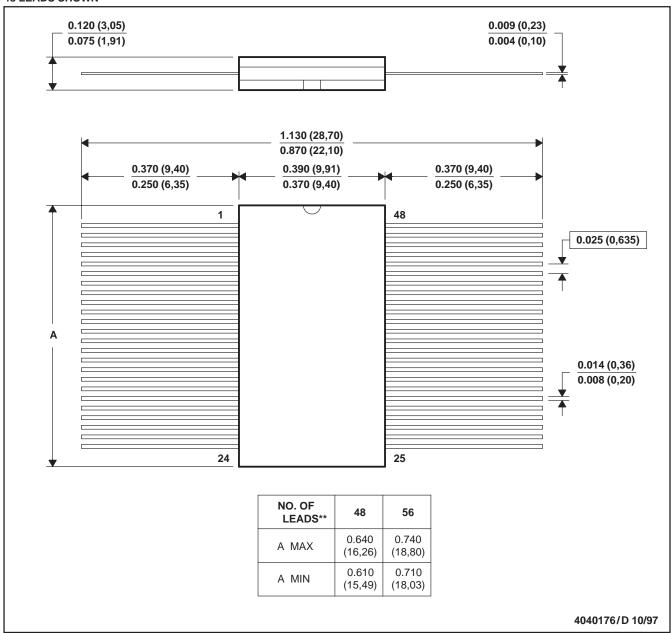
### PLASTIC SMALL-OUTLINE PACKAGE

#### **48 PINS SHOWN**



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

### WD (R-GDFP-F\*\*)

#### **CERAMIC DUAL FLATPACK**

### **48 LEADS SHOWN**



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only
- E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

#### IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products <a href="http://www.ti.com/sc/docs/stdterms.htm">http://www.ti.com/sc/docs/stdterms.htm</a>), evaluation modules, and samples (<a href="http://www.ti.com/sc/docs/sampterms.htm">http://www.ti.com/sc/docs/sampterms.htm</a>).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated