




Skill Level:  Beginner

ADXL345 Quickstart Guide
by zagGrad | January 10, 2011 |

Description:
The ADXL345 is a small, thin, low power, 3-axis accelerometer with high resolution
(13-bit) measurement at up to ±16 g. Digital output data is formatted as 16-bit twos
complement and is accessible through either a SPI (3- or 4-wire) or I2C digital
interface. The ADXL345 is well suited to measure the static acceleration of gravity in
tilt-sensing applications, as well as dynamic acceleration resulting from motion or
shock. Its high resolution (4 mg/LSB) enables measurement of inclination changes
less than 1.0°. Several special sensing functions are provided. Activity and inactivity
sensing detect the presence or lack of motion and if the acceleration on any axis
exceeds a user-set level. Tap sensing detects single and double taps. Free-fall
sensing detects if the device is falling. These functions can be mapped to one of two
interrupt output pins. An integrated, patent pending 32-level first in, first out (FIFO)
buffer can be used to store data to minimize host processor intervention. Low power
modes enable intelligent motion-based power management with threshold sensing
and active acceleration measurement at extremely low power dissipation.

Features:
• 2.0-3.6VDC Supply Voltage
• Ultra Low Power: 40uA in measurement mode, 0.1uA in standby@ 2.5V
• Tap/Double Tap Detection
• Free-Fall Detection
• SPI and I2C interfaces

Downloads:
• ADXL345 Basic Arduino Code

• ADXL345 Advanced Arduino Code
• ADXL345 Advanced Processing Code

Hooking it Up:
This section of the guide illustrates how to connect an Arduino to the ADXL345
breakout board. The following is a table describing which pins on the Arduino should
be connected to the pins on the accelerometer:

Arduino Pin ADXL345 Pin
10 CS
11 SDA
12 SDO
13 SCL

3V3 VCC

Gnd GND

Here is a diagram in case you like pictures!

Beginner Sample Code:
Let's look at a sketch to get the ADXL345 up and running with an Arduino. You can
download the sketch in its entirety here. Below we'll examine what the different
sections of this code does.





This is the initialization section of the sketch. It's pretty basic really. Here's what's
happening.

1. The SPI.h library is added to the sketch. SPI is a communication protocol used
by Arduino to communicate to the ADLX345.

2. A variable named CS is created to store the pin number of the Chip Select
signal.

3. Variables are created for several of the ADXL345 registers. These variables
store the address of the indicated registers and are used to set and retrieve
values from the accelerometer. The datasheet shows all of the registers
available on the ADXL345 and their addresses.

4. Variables are created that will hold information that has been retrieved from the
accelerometer.

The main section of the sketch is split into two parts: the setup and the loop. The
setup section is used to configure different aspects of the Arduino to communicate
with the ADXL345. At the end of the setup section two functions are used to put the
accelerometer into the mode we want to use (+/-4g detection, and enable
measurement mode). The functions will be discussed in the next section of the
sketch.

The loop does most of the work in the sketch. Here's what's going on in the loop:

1. Arduino reads 6 register values from the ADXL345 using the readRegister
function. This command reads the x, y and z acceleration values from the
accelerometer and stores them in the buffer named "values" that was created
in the initialization section of the sketch.

2. When values are read from the accelerometer they are returned in bytes. A
byte is only 8 bits, but the accelerometer reports acceleration with up to 10 bits!
In order to see the correct acceleration value we have to concatenate two bytes
together. The x, y and z acceleration values are determined by concatenating
the bytes from the values buffer.





3. The acceleration values are printed to the serial terminal
4. The sketch waits for 10ms before executing the loop again. This will allow the

loop to run at roughly 100 hz.

The readRegister command is used to read values from the ADXL345. When using
the readRegister function three variables must be given to the function: the
registerAddress where reading should start from, the number of registers that should
be read in sequence, and the buffer where the values should be stored. When
reading a register from the ADXL345 the address must be modified so that the 8th bit
is set high. If more than 1 register is to be read the 7th bit must also be set high. The
function accomplishes this task in the first two lines. After that the function is very
similar to the writeRegister function. The CS pin is set low to start an SPI sequence,
then the address is transferred. After that a loop is used to read the specified number
of registers from the accelerometer and the values are stored in the specified buffer.
Finally the CS pin is set high to end the SPI sequence and the function is complete.

Once you've hooked the ADXL345 up to an Arduino as specified in the Hook Up
section of the guide, download the sketch. After opening the sketch in the Arduino
IDE just load it to your board and open the terminal from Arduino. You'll see the X,Y
and Z acceleration values start scrolling in the terminal window.

Advanced Sample Code:
Once you understand how to read and write from registers to the ADXL345 there are
some really cool functions that you might want to experiment with. In this section we'll
look at a sketch that can detect single and double taps, and will convert the x,y and z
acceleration values to Gs (a unit of measurement corresponding to 1g). This project
will use both an Arduino sketch to interface with the ADXL345 and a Processing
sketch so that we can interpret the data. You can download the Arduino sketch here





and the Processing sketch here. In order for the sketch to work properly you'll
need to add a wire from the INT1 pin on the ADXL345 to pin D2 on the Arduino.
Let's look at some of the special parts of this sketch.

//Create an interrupt that will trigger when a tap is detected.
attachInterrupt(0, tap, RISING);

//Put the ADXL345 into +/­ 4G range by writing the value 0x01
to the DATA_FORMAT register.
 writeRegister(DATA_FORMAT, 0x01);

//Send the Tap and Double Tap Interrupts to INT1 pin
 writeRegister(INT_MAP, 0x9F);
//Look for taps on the Z axis only.

 writeRegister(TAP_AXES, 0x01);
//Set the Tap Threshold to 3g

 writeRegister(THRESH_TAP, 0x38);
//Set the Tap Duration that must be reached

it R i t (DURATION 0 10)
This code has been added to the setup() section of the sketch. It's a bit different from
the setup() section of the ADXL345_Basic example because we're setting the
ADXL345 up to detect a single and double tap event. When the accelerometer
detects a tap or a double tap we want the INT1 pin to go high, then when the event is
handled the INT1 pin will go back low.

When the INT1 pin goes high on the ADXL345 we want to the Arduino to generate an
interrupt. In order to do this we use the attachInterrupt() function; we tell the function
that we want an interrupt to occur on the Arduino Interrupt 0 (pin D2) when the pin
goes from low to high, and we want the Arduino to execute the tap function when this
occurs. We'll look at the tap() function later on.

After the interrupt is created we need to configure the ADXL345 to recognize single
and double tap events. In order to make this configuration we must change the values
in the following registers: INT_MAP, TAP_AXES, THRESH_TAP, DURATION,
LATENT and WINDOW. You can read the 'TAP DETECTION' section of the
datasheet to see why these values were assigned to their registers. Basically, though,
the ADXL345 has been configured so that if a single or double tap is detected the
INT1 pin will go from low to high; once the interrupt is handled the INT1 pin will go
back low.





In the final project we'll want two types of outputs. If a single tap is detected the
Arduino will output the raw accelerometer values for x,y and z; just like in the
ADXL345_Basic example. However if the ADXL345 detects a double tap we want the
Arduino to output the actual G values of the x,y and z axis. In order to find the G
values from the raw accelerometer data we must scale the original values. To find the
scale we need to know two things: the number of bits used to represent the original
values and the range of acceleration values that can be represented. The ADXL345 is
set up to measure the values with 10 bits. We've set the range to +/- 4 g, or an 8g
range. The scale is found by dividing the total range by the number that can be
represented in 10 bits.

Once we know the scale all we have to do is multiply the raw accelerometer data by
the scale to find the number of gs. The variables xg, yg and zg are float variables so
that they can hold decimal numbers.

When the tap() interrupt function runs (we'll cover this next) it assigns a value to the
tagType variable. The variable is assigned '1' if a single tap was detected and '2' if a
double tap was detected. If a single tap was detected the Arduino will write the word
"SINGLE" to the terminal followed by the x,y and z accelerometer values. If a double
tap was detected Arduino will write the word "DOUBLE" to the terminal followed by
the g values for the x,y and z axis. After printing the values to the terminal we disable
the interrupt for a little while; this prevents the Arduino from detecting any 'echoed'
interrupts that may occur while the ADXL345 is still vibrating from the tap event.

void tap(void){
//Clear the interrupts on the ADXL345

 readRegister(INT_SOURCE, 1, values);
if(values[0] & (1<<5))tapType=2;
else tapType=1;;

}

Because of the way the attachInterrupt() function was called the tap() function will be
used whenever Arduino sees an interrupt occur on pin D2. This function is fairly
straightforward: Arduino reads the INT_SOURCE register on the ADXL345 and stores
the value in the 'values' buffer. The INT_SOURCE register tells us if the interrupt
came from a single tap or a double tap event. Depending on which kind of tap set of
the interrupt we assign the tapType variable with a 1 or a 2.

Download the Arduino sketch and the Processing sketch. After you've connected the
ADXL345 to the Arduino as specified in the Hooking It Up section, and added a wire
from the INT1 pin on the ADXL345 to pin D2 on the Arduino, open Arduino and
download the sketch to your board. Then open processing and run the
ADXL345_Advanced processing sketch. You may have to change the serial port in
the sketch to reflect which port your Arduino is plugged into. If everything has been
done correctly the Processing window will output the words "Single Tap" to the screen
along with the raw accelerometer values when you tap the ADXL345; likewise
"Double Tap" and the G values will be displayed when you double tap the ADXL345.

2/12/2015https://www.sparkfun.com/tutorials/240

