




- AMR Sensor with 180° period
- For the use at moderate field strengths
- High accuracy
- Reliable SO8-package
- Qualified for automotive applications

### **DESCRIPTION**

The KMT37 is a magnetic field sensor based on the anisotropic magneto resistance effect, i.e. it is sensing the **magnetic field direction** independently on the magnetic field strength for applied field strengths H>=14 kA/m. The sensor contains two parallel supplied Wheatstone bridges, which enclose a sensitive angle of 45 degrees.



A rotating magnetic field in the surface parallel to the chip (x-y plane) will deliver two independent sinusoidal output signals, one following a  $\cos(2\alpha)$  and the second following a  $\sin(2\alpha)$  function,  $\alpha$  being the angle between sensor and field direction (see Figure 2).

### **FEATURES**

- Contactless angular position
- Design optimized linearity
- High accuracy
- Low cost, low power
- Self diagnosis feature
- User has complete control over signal evaluation
- Reliable SO8-Package
- High rotational speed possible
- Extended operating temperature range (-40 °C to +150 °C)
- Ideal for harsh environments due to magnetic sensing principle
- RoHS compliant (lead free)

#### **APPLICATIONS**

- Absolute and incremental angle measurement
- Motor motion control
- Robotics
- Camera positioning
- Potentiometer replacement
- Position measurement in medical applications
- Automotive (steering angle, torque, etc.)



## **CHARACTERISTIC VALUES**

| Parameter                | Condition                                        | Symbol                            | Min                                                                       | Тур   | Max    | Unit   |  |
|--------------------------|--------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------|-------|--------|--------|--|
| Absolute maximum ratings |                                                  |                                   |                                                                           |       |        |        |  |
| Supply voltage           |                                                  | V <sub>CC</sub>                   |                                                                           |       | 10     | V      |  |
| Operating temperature    |                                                  | T <sub>OP</sub>                   | -40                                                                       |       | +150   | °C     |  |
| Storage temperature      |                                                  | T <sub>ST</sub>                   | -50                                                                       |       | +150   | °C     |  |
| Operating conditions     |                                                  |                                   |                                                                           |       |        |        |  |
| Supply voltage           |                                                  | V <sub>CC</sub>                   | 0                                                                         | 5     | 8.5    | V      |  |
| Applied magnetic field   |                                                  | Н                                 | 14                                                                        | 25    | 400    | kA/m   |  |
| General parameters       | General parameters                               |                                   |                                                                           |       |        |        |  |
| Bridge resistance        | T = 25 °C                                        | R <sub>B</sub>                    | 2.4                                                                       | 3.0   | 3.6    | kΩ     |  |
| max. signal amplitude    | T = 25 °C, H = 25 kA/m                           | ΔV/V <sub>CC</sub>                | 9                                                                         | 11    | 13     | mV/V   |  |
| Offset voltage 2)        | T = 25 °C, H = 25 kA/m                           | V <sub>OFF</sub> /V <sub>CC</sub> | -1                                                                        |       | +1     | mV/V   |  |
| Hysteresis 1)            |                                                  | ∐vct                              |                                                                           | 0.1   | 0.4    | deg    |  |
| (Repeatability)          |                                                  | 11951                             |                                                                           | 0.05  | 0.1    |        |  |
| Accuracy 1)              | H = 14 kA/m                                      | Δα                                |                                                                           | 0.1   | 0.5    | deg    |  |
|                          | H = 25 kA/m                                      |                                   |                                                                           | 0.05  | 0.15   |        |  |
| TC of amplitude          | H = 25 kA/m, 3)                                  | TC <sub>SV</sub>                  | -0.4                                                                      | -0.35 | -0.3   | %/K    |  |
| TC of bridge resistance  | 3)                                               | TC <sub>BR</sub>                  | +0.3                                                                      | +0.35 | +0.4   | %/K    |  |
| TC of offset voltage     | H = 25 kA/m, 1), 2)                              | TC <sub>Voff</sub>                | -4                                                                        | 0     | +4     | μV/V/K |  |
| Amplitude synchronism    | H = 25 kA/m, 4)                                  | k                                 | 99.5                                                                      | 100   | 100.5  | %      |  |
| Sensitivity              | H = 25 kA/m, 4),                                 | Sα1 or                            | $\Delta V_n/V_{CC}$ [mV/V] x $\pi$ / 180° $\frac{\text{mV/V}}{\text{eg}}$ |       | mV/V/d |        |  |
| (zero crossing)          | $\alpha 1 = 135^{\circ}, \ \alpha 2 = 0^{\circ}$ | Sa2                               |                                                                           |       | eg     |        |  |
| Peak output voltage      | $H = 25 \text{ kA/m}, V_{CC} = 5 \text{ V}, 4)$  | V <sub>po</sub> n                 | 45                                                                        | 55    | 65     | mV/V   |  |

- 1) Hysteresis and accuracy are depending nearly inversely proportional on the magnetic field strength. The accuracy is defined as the max. angular difference between actual field angle and measured angle calculated from the third and fifth harmonics of the Fourier spectrum. The hysteresis is defined as angular difference between left and right turn.
- 2) Offset voltages are calculated by measuring both output voltages at several field angles between 0 and 360°, then drawing a diagram with the output voltages as axis and fitting a circle to the signal points. The Offsets are the coordinates of the circle center.
- 3) Reference temperature (Temp. with parameter value = 100%) Tref = -25 °C, calculated from values at -25 °C and +125 °C.
- 4) This parameter is given for reference only and is not measured on a regular basis.



## **BLOCK DIAGRAM**

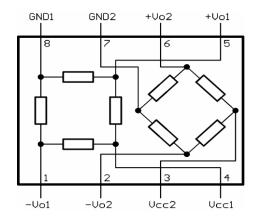
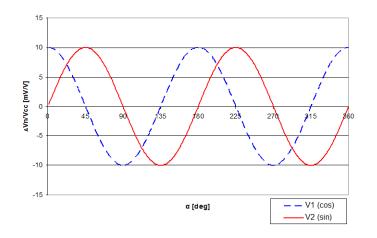




Figure 1: internal and external connections

## **TYPICAL PERFORMANCE CURVES**



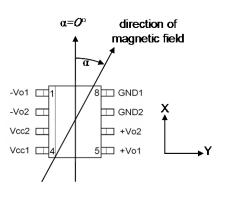
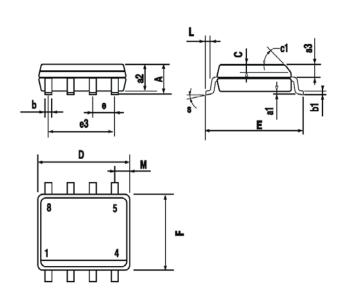




Figure 2: Characteristic curves for KMT37



## **SENSOR OUTLINE**



| DINA  | mm         |      |      | inch  |       |       |
|-------|------------|------|------|-------|-------|-------|
| DIM.  | MIN.       | TYP. | MAX  | MIN.  | TYP.  | MAX   |
| Α     |            |      | 1.75 |       |       | 0.069 |
| a1    | 0.1        |      | 0.25 | 0.004 |       | 0.010 |
| a2    |            |      | 1.65 |       |       | 0.065 |
| a3    | 0.65       |      | 0.85 | 0.026 |       | 0.033 |
| b     | 0.35       |      | 0.48 | 0.014 |       | 0.019 |
| b1    | 0.19       |      | 0.25 | 0.007 |       | 0.010 |
| С     | 0.25       |      | 0.5  | 0.010 |       | 0.020 |
| c1    | 45° (typ.) |      |      |       |       |       |
| D (1) | 4.8        |      | 5.0  | 0.189 |       | 0.197 |
| E     | 5.8        |      | 6.2  | 0.228 |       | 0.244 |
| е     |            | 1.27 |      |       | 0.050 |       |
| e3    |            | 3.81 |      |       | 0.150 |       |
| F (1) | 3.8        |      | 4.0  | 0.150 |       | 0.157 |
| L     | 0.4        |      | 1.27 | 0.016 |       | 0.050 |
| М     |            |      | 0.6  |       |       | 0.024 |
| S     | 8° (max.)  |      |      |       |       |       |

Figure 3: SO8-Package

## **PIN ASSIGNMENT**

| Pin | Symbol           | Function                         |  |
|-----|------------------|----------------------------------|--|
| 1   | -V <sub>o1</sub> | negative output bridge 1         |  |
| 2   | -V <sub>o2</sub> | negative output bridge 2         |  |
| 3   | $V_{cc2}$        | positive supply voltage bridge 2 |  |
| 4   | $V_{cc1}$        | positive supply voltage bridge 1 |  |
| 5   | +V <sub>o1</sub> | positive output bridge 1         |  |
| 6   | +V <sub>o2</sub> | positive output bridge 2         |  |
| 7   | GND <sub>2</sub> | negative supply voltage bridge 2 |  |
| 8   | GND₁             | negative supply voltage bridge 1 |  |

### **SOLDER PROFILE**

Recommended solder reflow process according to IPC/JEDEC J-STD-020D (Pb-Free Process)



### **ORDERING CODE**

| DEVICE | DELIVERY FORM | MOQ                | PART NUMBER |
|--------|---------------|--------------------|-------------|
| КМТ37  | TnR           | 1 Reel (2500 pcs.) | G-MRCO-037  |
| KMT37  | Tube          | 1 Tube             | on request  |

### ORDERING INFORMATION

| NORTH AMERICA                                                                                                                                                              | EUROPE                                                                                                                                                        | ASIA                                                                                                                                                                                                                      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Measurement Specialties, Inc. 1000 Lucas Way Hampton, VA 23666 United States Phone: +1-800-745-8008 Fax: +1-757-766-4297 Email: sales@meas-spec.com Web: www.meas-spec.com | MEAS Deutschland GmbH Hauert 13 D-44227 Dortmund Germany Phone: +49-(0)231-9740-0 Fax: +49-(0)231-9740-20 Email: info.de@meas-spec.com Web: www.meas-spec.com | Measurement Specialties China Ltd. No. 26, Langshan Road High-tech Park (North) Nanshan District, Shenzhen 518057 China Phone: +86-755-33305088 Fax: +86-755-33305099 Email: info.cn@meas-spec.com Web: www.meas-spec.com |  |  |

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.