CCS C Compiler Manual

PCD

AP % g
Wt N P

July 2016

inc

ALL RIGHTS RESERVED.
Copyright Custom Computer Services, Inc. 2016

PCD 07202016.doc

Table of Contents

Overview.........
C Compiler...

Technical Support
Directoriescccceevvveeenne

File FOrmats.......ccccoeiiiiiiiieiieeieiiieeeen
Invoking the Command Line Compiler
PCW Overview
Menu

Debugging Windows
Status Bar.........ccceeeevinenn.
Output Messages
Program Syntax
OVETAIl STIUCTUIE.....eeeeiiiee ettt ettt e e s e e e e annreeeas
(0] 1010 41= 0| SR PP P PP PPPPPPRRPT
Trigraph Sequences
MUIEIPIE PrOJECE FlES ...
Multiple Compilation UNILSuueiiiiiiiii e
Full Example Program
SHALEMIENTS ...t e e e e e e e e e e s e
Statements
| FUTTTPRR

Expressions
Constants
Identifiers
Operators

Table of Contents

OPEratOr PrECEAEBNCE ...ttt e e e e e e et e e e e e s e e eeeaeeeanes
Data DefiNitiONS.......ccooiiiiii

Data Definitions..................

Type Specifiers..................

Type Qualifiers

Enumerated Types.............

Structures and Unions

Using Program Memory for Data
NAMEA REGISTEIS ...ttt e e s e e e ees
Function DEfiNItIONooovviiiiiieeeeee
Function Definition
Overloaded FUNCLHONSoooeieieieeeeeee e
REfErENCE PArameLEerSovuiii ittt e e et e e e e e e s ra e s
Default Parameters............
Variable Argument Lists
Functional Overview..............

Analog Comparator
CANBUS.......coooiiiiie

Data Signal Modulator
Extended RAM

General Purpose I/O..........

Input Capture............c.couee

L1 0=T 4 g T U@ ESTod | = o SRR
1) (=T (]) PSPPI
Output Compare/PWM Overview
MOLOr CONEIOI PWMttt ettt e e e e e e eeeae s
PIMPIEPMP.......eteee ettt ettt e et e e e ae e e e e st e e e ettt e e e nteeeeantn e e e eneeeeennaeeas
Program Eeprom

PCD 07202016.doc

Voltage Reference.................
WDT or Watch Dog Timer
interrupt_enabled()
Stream /Ooeevviieeiin,
PreProCessorcoovveiiiieeeiiiie e
PRE-PROCESSOR DIRECTORY
AdreSS__ i
_attribute_X..oooeeeiiee e
#asm HENAASM HASIM ASIS ..oeiiiiiiiiie e e e e e e e e e e e

definedinc.....
#device.........
e 1= (o7 PP PP PP PPPPPPPPON
#if expr #else #elif Hendif ...

(oL 1l (o] o] (o] 1S I PP PP PP PPPPON
S =T O OO P PP OPP T PUPPOPRTPP
__filename__...
#ill_rom...........

#if expr #else #elif Hendif ...
#ifdef #ifndef #else #elif #endif
#ignore_warnings
T naT o Tl g (o] o1 1To] a1 T PP PPP RSP
#include
#inline..........

Table of Contents

2 (o Tor= | (TR
0 1 T0 Lo (U] =T
#nolist..........

E20] o [UNURRIN
#pin_select ..
pcd ...
#pragma
#profile.........
FETECUISIVE ... teeiee e e ettt e e e ettt e e e e sttt et e e e e e et bttt e e e e e e s e nsttbeeeaeeeeasnstbeeeaeeeaanntbeneaaens

YT oL - (= SRS SUPRSRPN
HSEIANIZE oo

#use capture..............o.......
#use delaycccccovvuinnnn.
#use dynamic_memory
FEUSE FASE_ IO .ottt
FEUSE FIXEO_IO .ottt
#use i2c
FEUSE PIOFIE() ettt
FEUSE PWWIMI() -ttt ettt ettt ettt e oo e ettt e e e e s e bbbt e e e e e e e e ab b et e e e e e e nntreeeeaens
#use rs232...
#use rtos......
H#USE SPI .o
#use standard_io
#use timer.......ccccevevveennne,

#zero_ram
BUIIE-IN FUNCHIONS. ..ttt ettt e e e e e e e e e e e et e e e e e e e eraaa e as

sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2().................. 190
adc_done() adc_done2()
AdC_read() ...oocovveerreie e
adc_status()
= o (o 1 (=T TR PP UUT T OPUPUPPRPTN

PCD 07202016.doc

Vi

E= LTS o { () PR PUPUPRRRT 194
L0 .. 194
atof() atof48() atofb64() SITOFAB() ..eveirvreeeiiiiieireee et 195
o1 Y=L (=Tt) PP OPPUPPPPRN 196
atoi() atol() atoi32() atol32() atoid8() atOiBA()......cccvvrrrreeeeiiiiirieieeee e e e 197
= o[- L a1 (=T U] o] (=T () PP OPUPPPPPRN 198
at_disable_INTErTUPLS() ...ccoiiirieiiee e e e e e e e e s e e e e e e e e eaes 199
at_eNAbIE_INTEITUPES() «oeeeeiiiiiiieee e ettt e e et e e e e e e e et e e e e e e e nneeeeeaaeeanes 200
E= Lo [A o= 1 U =T () PR PUPUPRRRN 201
at_get_missing_PulSE_deIaY()ceei i 202
o o [o= g To T [) I PP T PP PPPPPP PP 202
e o [o] T LT oo 10) (=1 () TP 203
Lo o [A (=150 [V o o () T SRR 204
Lo o [A= Al o Yo 1) () TSP 204
o o [= Al o To T | A =14 (o] (PP 205
o o [ST r= LU () T TP P PP PPPPPPI 206
At_INEEITUPL_ACTIVE()ereiitiee ittt e e 206
At_SEt_COMPATE_IME().rreeiiiriieiiiiee ettt e et e st nnre e e nneees 207
at_set_MisSiNg_PUISE_EIAY() ...vvreeiirieeeiiiii et 208
Lo ST Al = 5To] (V11T T () I SPRPR 209
Lo ST U= A 1] 1L SRR 210
= L= (0] o o o () PP UUT R TOPUPPPPPPTN 210
o] 1ol (Y= 1 () PP U PP PPPTROPUPPPPPPTN 211
o1 {151 () TP 212
oL = U1 () T TP PP P PPP PP PPPPPPPPRIN 213
0TI (PO PP P PPPPPPPPPPPPPRIN 213
oL (=21 () T PP PP P PPPPPPPPPPPPPRIN 214
DSEAICNI() e e e 215
(o= | (oot () TP PP TOPUPPPPPPTN 216
(o= | PSP PP PUPPPPPPTN 216
(o =T T (=T ¢ (V] o () IO PP TOPUPPPPPPTN 217
clear_pwm1_interrupt() clear_pwm2_interrupt() clear_pwm3_interrupt()

clear_pwm4_interrupt() clear_pwmb5_interrupt() clear_pwm6_interrupt() 218
(olo o JES) r= LU () O TP PP PR OPP PRI 219
(olo o I (=151 7= Ly { () I PP PP PP OPPPPPPI 219
crc_calc() crc_calc8() crc_calclB() Crc_CalC32() vvveeeeiiiiireieeeeeeiiiiiiiieeeeeaenns 220
(o (ol [1 ({4 [o o [=) PP UUT R OPUPUPPRPTN 221
(oo IS 1 (1] () I PP UU O PUPPPPPPTN 221
(oo I (=51 =L () T PP OPUPPPPPRTN 222
(o F= TR 1 (=T PP PUT R OPUPPPPPRTN 222
(o (oo = Le= I (=T oT =T LY=o [PP PP OPPPPPI 223
(o (oI (=T Vo [IR PP PP PR OPPPPPP 224
(o (oY =L [() T PP TP OPPPPPPI 225
ACI_tranSMIL_TEAAY() ..ouveeeeeiriee ittt ettt e e e et e s e e nnneeas 226
(o (o Y41 T () PP PUT T OPUPUPPPRTN 226

Table of Contents

(o= P Y oY 1= () PR OPUPUPRRRN
(o= F= Y 1T (PR OPUPUPRRRTN
(o= F= YT Y () TR PR PUPUPRRRN
(o [1o (T a1 (=T AU o] £ () PP OPUPPPPPRRN
disable_pwm1_interrupt() disable_pwm2_interrupt()

disable_pwm3_interrupt() disable_pwm4_interrupt()

disable_pwmb5_interrupt() disable_pwm6_interrupt().......cccceeeiiiiiiieeeeee i
[0 1V N (o 1Y/ PP UPR PR PP
(o 0 P TES] = T { () PR PUPUPRRPTN
(o 0 P TES] r= LLE] () TR SPUPUPRRRTN
ENADIE_INTEITUDES() +ereiitiie ettt ettt et e s e e es
€raSe_ProOGram_IMEIMIOTYcueiiiieiteeeteeateesteeatee s beesree s beeabeessbeeabe e beeaneesbeenneenaee
enable_pwm1_interrupt() enable_pwm?2_interrupt()

enable_pwm3_interrupt() enable_pwm4_interrupt()

enable_pwmb5_interrupt() enable_pwm6_interrupt()cccccevrueereiiieeeniiieee e
12301 () TP TP PO PP OPP PRI
L oA =T (o =T T PP PP PP PR OPPPPPPP
FBIIS() 1eeeeitt ettt
getc() getch() getchar() fOEtC()...coovirmmmeeiiiiieieee et
gets() L0 <] £ () ISR
110 Yo T () RSP
Lo o [PP PPPP R PPPPPPP

LS {or= 1 | () O PO OPUPPPPPPTN
(o o= o (U] £ () PP U PUT R TOPUPPPPPPTN
(o o= o (U] £ () PO PUT R TOPUPPPPPPTN
get_capture_ccpl() get_capture_ccp2() get_capture_ccp3()
get_capture_ccpa() get_Capture_CCPS() ..cvveerrrreeerriieeiiiieeeiieee et
get_capture32_ccpl() get_capture32_ccp2() get_capture32_ccp3()
get_capture32_ccpd() get_capture32_CCPS() cvvrrrrreeeiiiiiiiieeeeeieiiiirieeeeesssiiereeeeee s e
QL CAPIUIE_BVENT() «eeietiee et e ettt ettt ettt et e e et e e s e e eas
L CAPIUIE_tIME() wereeiitiee ettt et e e et e st e e eas
(o o oL (N LI 12) I TP PTT R OPUPUPPRPTN
gt NSPWIM_CAPTUE() ceeieiiiiiiieie ettt e et e e e e e e eee e e e e aaes
gt _MOLOI_PWIM_COUNE() eeittiieeeeeeeiitei e e e e e ettt e e e e e et e e e e e e e aebbbe e e e e e e e srnnneneeeaaeeanns
(o= A g Lot o = (oo [g [V F= 1 o] () PP OPUPPPPPPTN
BT _NCO_INC_VAIUE() 1oiiriie ettt ettt e e e e eas
(o =] (o3 T () P PP U PP OPPPPPPI
(o= 0 LT ¢ () PP PO PP OPPPPPP
(o= (0 1= =T () OO T PP PR OPPPPPPI
(o= A (1001 o PP OPUPPPPRPTN

Vil

PCD 07202016.doc

(o= A (1001 0}/ (O TR PUPUPRRRN 260
get_timer_ccpl() get_timer_ccp2() get_timer_ccp3() get_timer_ccp4()
(o =2 A (100 LT G ool 1T (PR UPTPUPRRRN 261
(o L A LD () PP SPUPPPPPPRN 262
[0 1=1 (=10 1Y/ () PR OPUPPPPPPRN 263
[o o) (o JE= Lo [0 [T () PP OPUPUPPPPRN 268
high_speed_adC_dONE(().....uueiiiiiiiiiiiiie e 268
(122 o | o1 { () IR SPUPUPRRPTN 269
(P24 IS] £= L= () PP OPUPUPRRPTN 270
(122 o o o] [() TP SPUPUPRRPTN 271
(2o (=7 To [I PP TP P PP PP PPPPPPPPRIN 271
(P24 o\ To o [(SO PPURPRRORRIN 272
(P22 oR = o TT=To [() TSP TRPRRTPRIN 273
(12 oE = - U () T SRR TPPRRPRI 274
12 o = (o] o () SRR TRPRIOPRI 275
(2o 1] T (O T SO P PP PPP PP PUPPPPPPRI 275
(1] o1 11 PP PP PP PP PUPPPPPPRI 276
INPUE_CNANGE_X() ++eteittiteeiiie ettt e et e e e e b e e e s nnbneeeea 277
(1] o1V LAY = L=) O ST PP PPP PP PUPPPPPPRPN 278
(1] o101 S () SRR 279
(1) G 0 o] = o1 11/ (G SO URPRRTPRI 279
isalnum(char) isalpha(char) iscntrl(x) isdigit(char) isgraph(x)
islower(char) isspace(char) isupper(char) isxdigit(char) isprint(x)
ispunct(x) 280
(K572 0 p[0] oo [() T P PP PP PP PP PP PUPPPPPPRIN 281
[1C0 7= T TP PP PP PPPPPPUPPPPPPRIN 282
(0] 171 () PP 283
[F= T o1 = To (o | (=TT () TR PP PPP T UOPUPPPPPPTN 284
[F=1 0] () ISP U PP OPUPPPPPPTN 284
[0]=3 (o1 (3 PP U PP PUPTOPUPPPPPPRN 285
(oo | () PP OUOTUPPTPOPUPPPPPPRN 286
[[oT X0 G PO PP PP PP PP PPPPPPPPRIN 286
(o] aTo 14T o1 () E P PP PP PPPPPPPPPPPPPRIN 287
[1E TS () T PO PP P PPPPPPPPPPPPRI 288
[1E N T () TP PP PP PPPPPPPPPPPPPRI 288
(1T A () I P PP PPP PP PUPPPPPPRI 289
[0 gF 1o o] (O TR PP PP OPUPUPPRPTN 290
MEMCPY() MEMMOVE() eereeiiieiiiiiiiiiiee e e ettt e e e e s ettt e e e e e e s bbb e e e e e e e e s annbeeeeaeeeeanns 290
(0TS 141 I TP PUT R OPUPPPPRPTN 291
(0070 To | { () TP PP OPUPPPPRPTN 292
LA 1T 1] I PSR PTRUPPTRRIN 292
[F= 1o [~ () T T PP PP PP PUPPPPPPRI 293
offsetof() OffSELOMDIT() ...vveeeieeie e 294
(010110101 (O TP PP PP OPPPPPPI 295
(o U1 o] U A oL I PP UTT R OPUPUPPRPTN 296

viii

Table of Contents

(o UL o] U1 Ao [1)Y= () PR OPUPUPRRRTN
(o UL o] 0 A 1[0 T= L (PR OPUPUPRRRTN
(o UL o] U1 A 1o () PR SPUPUPRRPTN
(o101 o] 01 [0 1.7 PP PUPPPPPPRN
(o UL o] 01 (oo [0 | L=Y (O PR OPUPPPPPPRN
[T o] ¢ (3 PR OPUPUPPPPRN
1o I o1V 1S3 Y/ (3 PSP PUPPPPPPRN
o1 o [o = A (TS UL (PP OPPUPRRPTN
o1 o I == Vo [() TP PR SPUPUPRRPTN
1o I 1 (= () P PR SPUPUPRRPTN
PU_TOCKEA() ettt et
PMP_AdAreSS(AAAIESS)cueeeeeieiiee ettt e e e st e e s nee e e s sneeeeeaneaeeeans
pmp_output_full() pmp_input_full() pmp_overflow() pmp_error()
pmp_timeout() 306

o100] o (=T Lo (SRR TRPRPRI
oL 0] 1 (=T (O P PP PP PP PPP PP PUPPPPPPRIN
POFT_X_PUITUDS () -reeeeiititeeetet ettt e et e st e e s b e e e e anbneeea
(101 I o1 (O I TP PP PPP PP PPPPPPPPRIN
PN FRIINTI() oo
10 11 1=T 01U« SO STPPRPRI
PSMC_BIANKING() -+veeeiiiiee ettt ettt e e et e e e st e e e s neeeeanneneeeen
(o]l o [=T=To | o =T Lo [() TSP PPUT T UOPUPPPPPPTN
0171 (o o 01/ () PSP U PP PPT R OPUPPPPPPRN
PSMC_FrEO_BAJUST() «eivveeeeieeie ettt e e
PSMC_MOTUIBLION() 1ttt e e e
(S e Tol o110 T () T TP PP PPP PP PUPPPPPPRIN
PSMC_SNULAOWIN() +eeeiniiiteeiiiie ettt ettt e et e e b e e e s nnn e e e
PSIMC_SYNC()+ uuttttteee e e e ettt e ettt e e oo ettt e e e e s e bbbttt e e e e e e ab b b e e e e e e e e e aanbbereeeeeeaann
psp_output_full() psp_input_full() psp_overflow()......cccoceveeriiiiiiiieieeee e
[0 o (=T Vo [() ISP PP OPUPPPPPPTN
O] I (1= () P TSP U PP PP OPUPPPPPPRN
putc_send(); L0101 (o =T=Y o o [SRS

PWIM_SEL_FIEQUENCY ...eiuiiiitiietie ettt ettt ettt ettt
pwml_interrupt_active() pwm2_interrupt_active() pwm3_interrupt_active(

) pwm4_interrupt_active() pwmb5_interrupt_active()

PWMB _INTEITUPL_ACTIVE() 1-eettreteeeeeiiiieei ettt e ettt e e e e et e e e e e e s anbe e e e e e e e anee
(o= TR o [=1 ot 18 o] { () T PP P PP OPPPPPPI
(o LT IST = A oto 0 (P PP PP PP OPPPPPPPI
(o Lo T IS r= LU () P PO T PP OPPPPPPI

[0 Yo 1 { () I PR PUPUPPRPN

PCD 07202016.doc

(o Vo1V 11 (=T 0)YZ (=2 () TR OPPPPRRP
(o VA o1V 11 1= 1V [PP OPPUPRRPTN
read_adc() (1= o[- To (o224 () IR RSP ERRT
read_configuration_MEMOIY()......ccccuiiiieeeei e e e e e e e e
(== To [=TT o1 0] 1 1 () TSP OPUPPPPPPRN
read_exteNded_TAMI()cccirieiie e e e e e e e e e e e a e e e e s
read_pProgram_MEMOIY()uueeeeeceeiiiieeeeeeeessiitreeeeeeesesiarrereeeesesiabrareeaeeessasarreeeeeesannes
(== o [l o1To | TSY o J=T=To J= Vo (o () PR SPUPUPRRPTN
FEAA_TOM_IMEMOIY() 1.eteeeiiteeeeitiee e ettt e et s et ettt e s e e e e e b e e s s e e e s nn e e e aanreeenans
[=T= o [T JF- To (o () IR OPUPUPRRPTN
(T2 11 (ool (O PP TP PP PP PUPPPPPPRIN
(=1 [T T To OSSR STRPRROPRI
[(=ET=3 o o LU T () SRR STPPRIPRI
(=55 = g A o= U0 Y= (SO RRURPRIPII
=25 2= L Ao L () TSP TSPRIPRI
FOLATE TETE() eveeeiriee ettt
(o1 1 (=R Ao] 1 () T P PP PP PP PP PUPPPPPPRIN
FEC_AIAIM_TEAA() +veeeirreie ettt e et
FEC_AIAIM_WIEE(). veeeiitiee ettt ettt e e et e et e e nr e e e e nabneeeea
(o (== Vo [SRR STPPRROPRIN
(o 41 =T () T SRR STRPRIOPRI
FEOS_BWAIT() ..ottt e e ettt ettt ettt et e e e e ettt e e e e e e bbb e e e e e e e e s nbbe e e e e e e e e ane
FEOS_ISADIE() . eeeeeiee ettt e e e e e e e e e e e e e
FEOS_ENADIE() weiieieee it
[RCo T 14 1o T o Lo [P TP U PP P PP PP TPPPPPPPPRIN
FEOS_MSP_TEAM() vveeeitriieeiieie e ittt ettt e e st e et e e s b e e e bt e e st e e e e s nr e e e s aabreeean
FEOS_MSP_SENT()-rreeeitrreeeitiie e ittt ettt et e st e et e e e s b e e e s e e e sbe e e e s nreeeaanbneeenas
TEOS_OVEITUN() 1uttttteeeeeeeeittt ettt e e e e ettt et e oo ookt ettt e e e s e bbb et e e e e e e nnbbb e e e e e e e e s annbaeneeaeeeeann
[0TSR 10 0 T PP U PP PUPPPPPPTN
(0TI T [o= L[() PSP PPPTOPUPPPPPPTN
(0TI = 1] () T PP OTUUPPPT T OPUPPPPPPRN
FEOS_TEIMINALE() 1.veeeeiiiie ettt e e et e e st e e e s nre e e s anbneeeaas
[1Co RV { () PO P PP PPPPPPPPPPPPPPRIN
[1Co T =1 o [T PP PPP PP PUPPPRPPPRI
set_adc_channel() set_adc_channel2()ccccooiiiiiiiiiii e
A= Lo (o (o o =T (PP PP PP OPPPPPP
ST =T a oo To T o1 0 1] () IR OPUPPPPRPTN
LS or= T | () PR OPUPUPPPRTN
set_ccpl_compare_time() set_ccp2_compare_time()

set_ccp3_compare_time() set_ccp4_compare_time()

Set_CCP5_COMPATE_IME() cuevieeiiiieeiiitiee ettt e e nneeas
Set_COQ_DIANKING() +reeiiriiiiiiiiie e
= eloJo [l (== To I o= T o [() FO PP PP PR OPPPPPI
S el oTo [l o] 4 F= Y= (O PP T PP OPPPPPP
SEL_COMPAIE_HIMIEB() eeeiiieeeiiiitiei ettt e e e e et e e e e e e e e e e e e e e e e nnarreeeaeeeannes

Table of Contents

SEL_COMPATE_TIMIE() eeeiteeeeiiitiiiee e e ettt e e ettt e e e e e e ettt e e e e e e s e nbeeeeaee e e s e nnneeeeaaaeaanns 369
set_dedicated_adc_ChanNEI().......ooiiiueeiiiiie e 370
S NSPWIM_OVEITIAE() ceeeeiieeitieeeeeeee ettt ettt e e e e ettt e e e e e e et e e e e e e e aannneneeeaaeeanns 371
SEL_NSPWIM_PRASE() weiiiiiiiiiiieiie e e e e e e 372
SELINPUL_IEVEL X() -vvreieeeeeiiiiiiii ettt e e e e e e e e e e e e e e aar e e e e e e e eans 372
SEet_MOLOr_PWM_AULY() eeieiiiiiiiiiee e e ettt e e e s e e e e e s e e e e e e e s e e e e e e eeeeeaes 373
SEt_MOLOr_PWM_BVENT() iiiiiiiiee e ettt ettt e e e s e e e e e s et e e e e e e s e e anea e e e e e e e eaes 374
(=10 10 (o) SV o1 { () PO PPR PP 375
SEE_NCO_INC_VAIUE() weriiieiiiiiiiiee ettt ettt et e e e e et e e e e e e e e nnne e e aaeeeannes 375
ST A 1011 [o {01 o () IR SPUPUPRRPTN 377
LS 01011] o1 () T PP P PR OPPPPPPI 378
set_pwml_duty() set_pwm2_duty() set_pwm3_duty()

set_pwm4_duty() SEt_PWMS_AULY() .eeeeeeriirieiiieeeriiee et e e e s e e 379
set_pwml_offset() set_pwm?2_offset() set_pwm3_offset()

set_pwm4_offset() set_pwm5_offset() set_pwm6_offSet()cccoovrvieririieeeeininnnn. 380
set_pwml_period() set_pwm2_period() set_pwm3_period()

set_pwmd4_period() set_pwm5_period() set_pwm6_period()........ccccerrrrrirriereriinnnen. 381
set_pwml_phase() set_pwm2_phase() set_pwm3_phase()

set_pwm4_phase() set_pwm5_phase() set_pwme6_phase()cccooeeeeeeeiiiiviieeeeeeinnne 382
YA) o< T o | =Vl T TSP 383
set_rtcc() set_timerO() set_timerl() set_timer2() set_timer3()

Set_tiMerd() St _HMEIS() «ouuueeieeee ettt e e e e e e e e

S A (o T (O PP PUT T OPUPPPPPPTN
setup_sd_adc_calibration()

Set_SA_AadC_ChanNEI() ...oeeoiiiieeie s

SEE TIMEIA()ttt ettt ettt e et s
SEE_HMEIB() cuuttteiitete ettt s
Set_timerx().

ST U 00 =T o]/ () O PP PUT O PUPPPPPPN
set_rtec() set_timerO() set_timerl() set timer2() set timer3()

Set_tiMerd() St _HMEIS() «ouureeieiee ettt e e e e e e 389
set_timer_ccpl() set_timer_ccp2() set_timer_ccp3()

set_timer_ccpad() SEt_tIMEr_CCPS() «oovreeeiirrieiieee ettt 390

set_timer_period_ccpl() set_timer_period_ccp2()
set_timer_period_ccp3() set_timer_period_ccp4()

Set_tiIMEr_PEeriOd_CCPS() «eeeiuerreeiiteeeiiiiee ettt ettt ettt e e nneeas 391
ST R (TS () PP PU R OPUPUPPRRTN 392
S S U L] o1=TTo [T PSP UT R OPUPUPPPRTN 393
L1101 o (O PP OPUPUPPPPTN 394
setup_adc(mode) setup_adC2(MOAE)ooouuuiiiiiieeiiiiiiee e 395
setup_adc_ports() Setup_adC_POMS2(() ..eeeirueeeeriiieeiiii et 396
SELUP_AdC_TEFEIENCE() ..viiiiiiiieiiiiie ettt 397
SEUUP_BE() +eeeetreeeittee ettt ettt ettt e a e e e nreeas 398
YU 0 o T o= o1 (D[=T PP O TP OPPPPPI 399

Xi

PCD 07202016.doc

Xii

setup_ccpl() setup_ccp2() setup_ccp3() setup_ccp4()

SEtUP_CCPS() SEIUP_COPB() -evreeeeeainniiniieeeee ittt ee e e e e s ettt e e e e e e eeaen e e e e e e s aennneneeeaaeeanes 399
setup_clcl() setup_clc2() setup_clc3() setup_CICA() coeeeriiieieieieeeiiiiiiieieeeeee 402
= 0o el0] 1] o L= 1= Lo { () PP OPUPPPPPRRN 403
= Lo olo] 1] o F= 1 (=T () U OPUPPPPPPRN 404
SELUP_CIC(IMOUE).. . uiiiiiee e ettt e e e e e e e st e e e e e e s et b e e e e e e e s easnbereeeaeeeanaes 404
10U o T oo o [() PP OPPPPPPRRN 405
LS (U] o I o (o () T PR SPUPUPRRRN 406
LS (U o T o1 | () PR PUPUPRRRTN 407
LS (U] o I F= Tod () TP SPUPUPRRRTN 408
=110 o T o o1 TP RO PP OPPPPPPP 409
(=] 00] o J [=To [Tor= 1 =To [Vo [of () TP 410
L= 00] o T[0TV () T PR 411
=00 oI a1l | g Y o =TT = Lo [od () ISP 411
setup_high_speed_adC_Pair()ccceeeiueeeeiiiiie e 412
Setup_hSPWM_BIANKING() ..oovrreeiiiiieiiee e 413
Setup_hSPWM_ChOP_CIOCK() ..veeiiiieeiiiiiee et 415
SELUP_NSPWM_TFIGGEI() - rveeeuttreeiitie ettt ettt e e nneees 415
SELUP_NSPWM_UNIT() 1otiteeeeeiiie ettt e e e 416
setup_hspwm() setup_hspwm_secondary()ccccceerueeeriiiereniieee e 418
setup_hspwm_unit_Chop_CIOCK() ..ccoivieieiiiiie et 419
SELUP_OW_VOIE AELECT(). ueeeeeieee e ettt e e e e 420
SEEUP_MOTOT_PWIMI() eeeieieeeeiiittet e e e ettt ettt e e e e e st e e e e e s ebb e e e e e e e s asnnereeeeeeeanes 420
SELUP_OSCHIALON() .vveeeiitiee ettt ettt e e et e e e es 421
110 oI o Lo T- T () PP P PO T PR PPPPPPPP 422
=110 oI oo [T PP P PR OPPPPPPI 423
setup_pmp(option,addreSS_MAaSK)oeoiiiiiiiiiiie e 424
ST LU o o 1] 1o To () PP UUT R TOPUPPPPPPTN 425
SetUP_POWET_PWIM_PINS () uuerreieeeeeaiiiiieieee e e ettt e e e e e st e e e e e e s aibbe e e e e e e s aannnereeeeeeeanns 427
setup_psp(option,addreSS_IMASK)..........euiiiiaiiiiiiieie e 428
setup_pwm1() setup_pwm2() setup_pwm3() Setup_pWM4A()cccooeeeerriiiiiieeeeeenne 429
110 oI o [T () T PP P PO PP OPPPPPPI 430
=110 oI £ (ol () TP PP O PP OPPPPPPI 431
SELUP_ITC_AIAIMI() eeeeeiitiie ettt 431
=10 oI To = Lo (o () O PO PO PP OPPPPPP 432
SELUP_SIMEX() ettteerutttee ettt ettt et et e e ettt e e a bt e e st e e e b e e e e nreeas 433
setup_spi() SEEUP_SPIZ2(() +eeeeeeeintteeieee e e ettt e e e ettt e e e e e e e e e e e e e ene 434
ST o (00 1T o P PP UUT R OPUPUPPPRTN 435
ST Lo (00 LT G () T PP OPUPPPPRPTN 436
ST o I (a0 (T G =T T PP OPUPPPPRRTN 437
SELUP_LIMET_D(1) 1onteeeeiittiee ettt ettt ettt e e ettt e et e e et e e e b e e nree s 438
SELUP_TIMET_L(1) 1oiuttieeiitiee ettt ettt ettt e e ettt ekt e et e e e et e e e e e et as 438
SELUP_TIMET_2(1) 1eutteee ittt ettt et e e ettt e ettt e e st e e et e e e et e e e eas 439
SELUP_TIMET_B(1) 1etteeeiitie ettt ettt ettt et e et e ettt e e st e e e e bt e e e e e e e eas 440
ST o (00 LT G () TP PU T OPUPPPPPRTN 441

Table of Contents

S o (00 LT] () PR OPPUPRRR 442
LS (U] o T U= U { () I PR PUPUPRRRN 443
LS (U o T = 1 TP PR SPUPUPRRRTN 444
=10 Lo L { (PP OPUPPPPPPRN 444
=00 o I (o] (0 TP OPPPPPPPRN 445
SHITE_IETE() et e 446
L] 11 o oL () TR SPUPUPPPPRN 446
LS =TT o () PR SPUPUPRRRN 447
L] 110G (=T To [(TP PUPUPRRRTN 449
L] 410 G (STST =) A 0 1 1= () TR OPUPUPRPRN 450
] 1 = L4 () T PP T PR OPPPPPPI 450
L] 1] T= LU () I PR 451
L] 1)] (o] o1 () PP 451
L] 1) Y11= I PP 452
L] 1) o] Lo F= L= () T PP 453
spi_data_is_in() SPI_data_iS_IN2()..eeeirureeiiieieeiiiiee et 453
L] T L PP PP U PR OPPPPPPI 454
SPI_PrEWITEE(AALA); ..+ veeivrree ettt ettt ettt e e et n e e s ees 455
spi_read() spi_read2() spi_read3() SPi_readd()coceeerrriiiniiieeieee e 455
spi_read_16() spi_read2_16() spi_read3_16() spi_read4_16()ccceerriurrrerrunnnn. 456
L] oI 1< o OSSR 457
spi_write() spi_write2() spi_write3() SPI_WHEA() ..uveeeeeiiiiiiiieieee e 458
] oI (=] { () O PP PUT PO PUPPPPPPTN 458
SPIXFER _IN() ettt ittt ettt ettt st sttt s s e s ab e st eenb e snb e enneeanes 459
L0111 0111 T PP PP U PR OPPPPPPP 460
Lo (0 PP PP U PR OPPPPPPP 461
L= L (o [) I PP P PR OPPPPPPI 461

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat()
strchr() stremp() strcoll() strcspn() strerror() stricmp() strlen()
striwr() strncat() strncmp() strncpy() strpbrk() strrchr() strspn()
strstr() strxfrm() 462

strepy() LS 1e10] 0) Y/ (O T PRSP PP PRSP PPPRRN 464
Strtod(') StrOf(1) STIOFAB() «ouvreeeiiiiee ittt 465
LS 11 (0] (O I TP O PP OPPPPPPI 465
LS 17 (0] [() TP PP PO P PR OPPPPPPI 467
£ 17 (o 10| TP PP OPPPPPP 467
LSV o] () TP OPUPUPPRRTN 468
tolower() (10 o] o 1T { () PP PPT U PTPUPRPPTN 469
(o]0 {ed o o F=To I o= (o] (0 T PP EPUP TP 470
{118 {ed o o T=To I o 1 { () PP PTP PR 471
TOUCKHPAA_STALE(). vteeeiitiee ettt e e e 471
tX_buffer_available()eee 473
DX BUFFEI _DYIES(). it 473
DX OUFFRI_TUII() e 474
A2 - Lo | () PP PUPP PP 475

Xiii

PCD 07202016.doc

A2 = (o [TSP PUR PRI
A= T - Vo PR
write_configuration_memory()
Write_eeprom()coovvvveeeeeeeiiiiiiieeee e e e
write_extended_ram()...........
write_program_memory()
zdc_status()......oooevveerieeiiinns

Standard C Include Files.......
ermno.h......ccccooiiiii,
float.h...........
1T 0T £ o PR PPUPRRR
[oToT= [o SO PR TSRS 485
setjimp.h.......
£ 00 0[] o PR 485
L] (o [0 1 o T PP 486
stdlib.h..e

Software LICENSE AQIrEEMENTociiiiiiiiiiee ettt et e e nneees

Xiv

OVERVIEW

C Compiler

PCD Overview

Technical Support

Directories
File Formats

Invoking the Command Line Compiler

PCD

PCD is a C Compiler for Microchip's 24bit opcode family of microcontrollers, which include
the dsPIC30, dsPIC33 and PIC24 families. The compiler is specifically designed to meet
the unique needs of the dsPIC® microcontroller. This allows developers to quickly design
applications software in a more readable, high-level language.

The compiler can efficiently implement normal C constructs, input/output operations, and
bit twiddling operations. All normal C data types are supported along with special built in
functions to perform common functions in the MPU with ease.

Extended constructs like bit arrays, multiple address space handling and effective
implementation of constant data in Rom make code generation very effective.

15

PCD 07202016.doc

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and
minimal, if any, transition difficulty.

To ensure any problem that may occur is corrected quickly and diligently, it is
recommended to send an email to: support@ccsinfo.com or use the Technical Support
Wizard in PCW. Include the version of the compiler, an outline of the problem and attach
any files with the email request. CCS strives to answer technical support timely and
thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email
responses are not adequate. Please call 262-522-6500 x32.

Directories

The compiler will search the following directories for Include files.
o Directories listed on the command line
o Directories specified in the .CCSPJT file
. The same directory as the source.directories in the ccsc.ini file

By default, the compiler files are put in C:\Program Files\PICC and the
example programs are in \PICC\EXAMPLES. The include files are in
PICC\drivers. The device header files are in PICC\devices.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in
\PICC\DLL.

It is sometimes helpful to maintain multiple compiler versions. For example, a project was
tested with a specific version, but newer projects use a newer version. When installing the

16

http://www.ccsinfo.com/downloads.php

Program Syntax

compiler you are prompted for what version to keep on the PC. IDE users can change
versions using Help>about and clicking "other versions." Command Line users use
start>all programs>PIC-C>compiler version.

Two directories are used outside the PICC tree. Both can be reached with start>all
programs>PIC-C.

1.) A project directory as a default location for your projects. By default put in
"My
Documents." This is a good place for VISTA and up.

2.) User configuration settings and PCWH loaded files are kept in
%APPDATA%\PICC

File Formats

This is the source file containing user C source code.

.pjt
.ccspjt

st

.sym

These are standard or custom header files used to define pins, register,
register bits, functions and preprocessor directives.

This is the older pre- Version 5 project file which contains information related to
the project.

This is the project file which contains information related to the project.

This is the listing file which shows each C source line and the associated
assembly code generated for that line.

The elements in the .LST file may be selected in PCW under
Options>Project>Output Files

CCS Basic Standard assembly instructions

with Opcodes Includes the HEX opcode for each instruction
Old Standard

Symbolic Shows variable names instead of addresses

This is the symbol map which shows each register location and what program
variables are stored in each location.

17

PCD 07202016.doc

The statistics file shows the RAM, ROM, and STACK usage. It provides

.sta information on the source codes structural and textual complexities using
Halstead and McCabe metrics.
tre The tree file shows the call tree. It details each function and what functions it

calls along with the ROM and RAM usage for each function.

The compiler generates standard HEX files that are compatible with all

hex programmers.
The compiler can output 8-bet hex, 16-bit hex, and binary files.
.cof This is a binary containing machine code and debugging information.
The debug files may be output as Microchip .COD file for MPLAB 1-5,
Advanced Transdata .MAP file, expanded .COD file for CCS debugging or
MPLAB 6 and up .xx .COF file. All file formats and extensions may be selected
via Options File Associations option in Windows IDE.
.cod This is a binary file containing debug information.
rtf The output of the Documentation Generator is exported in a Rich Text File
format which can be viewed using the RTF editor or Wordpad.
rvf The Rich View Format is used by the RTF Editor within the IDE to view the Rich
' Text File.
.dgr The .DGR file is the output of the flowchart maker.
esvm These files are generated for the IDE users. The file contains Identifiers and
esy Comment information. This data can be used for automatic documentation
.Xsym .
generation and for the IDE helpers.
.0 Relocatable object file
This file is generated when the compiler is set to export a relocatable object file.
.osym S - - .
This file is a .sym file for just the one unit.
.err Compiler error file
.dccsloa used to link Windows 8 apps to CCSLoad

.ccssio used to link Windows 8 apps to Serial Port Monitor
w

18

Program Syntax

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:

CCSC [options] [cfilename]
Valid options:
+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file
+FH Select PCH (PIC18XXX) +DM .MAP format debug file
+YX Optimization level x (0-9) +DC Expanded .COD format debug file
Enables the output of an COFF debug
*DF fije.
+FS Select SXC (SX) +EO Old error file format
+ES Standard error file -T Do not generate a tree file
+T Create call tree (.TRE) -A Do not create stats file (.STA)
+A Create stats file (.STA) -EW Suppress warnings (use with +EA)
+EW Show warning messages -E Only show first error

Error/warning message format uses
+EX GCC's "brief format" (compatible with
GCC editor environments)

Show all error messages

+EA :
and all warnings

The xxx in the following are optional. If included it sets the file extension:

+L NXXX Normal list file +08xxx 8-bit Intel HEX output file

+L Sxxx MPASM format list +OWxxx 16-bit Intel HEX output file
file

+LOxXXX Old MPASM list file +OBxxx Binary output file

+LYXXX Symbolic list file -0 Do not create object file

-L Do not create list file

+P Keep compile status window up after compile

+Pxx Keep status window up for xx seconds after compile

+PN Keep status window up only if there are no errors

+PE Keep status window up only if there are errors

+Z Keep scratch files on disk after compile

+DF COFF Debug file

[+="" Same as |="..." Except the path list is appended to the current list

Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"

I="..." If no 1= appears on the command line the .PJT file will be used to supply
the include file paths.

19

PCD 07202016.doc

-P

+M

-M

+J

=)

+ICD
#XXX="yyy"

+GXXX="yyy
+?
-?

+STDOUT
+SETUP
sourceline=

+V
+Q

Close compile window after compile is complete

Generate a symbol file (.SYM)

Do not create symbol file

Create a project file (.PJT)

Do not create PJT file

Compile for use with an ICD

Set a global #define for id xxx with a value of yyy, example:
#debug="true"

Same as #xxx="yyy"
Brings up a help file
Same as +?

Outputs errors to STDOUT (for use with third party editors)
Install CCSC into MPLAB (no compile is done)

Allows a source line to be injected at the start of the source file.
Example: CCSC +FM myfile.c sourceline=“#include <16F887.h>"

Show compiler version (no compile is done)
Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as follows:

+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read

from the specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line
parameters are read from that file before they are processed on the command line.

Examples:

CCSC +FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

20

Program Syntax

PCW Overview

The PCW IDE provides the user an easy to use editor and environment for
developing microcontroller applications. The IDE comprises of many
components, which are summarized below. For more information and
details, use the Help>PCW in the compiler..

Many of these windows can be re-arranged and docked into different
positions.

m. & F, ‘..m

m tart | Sewch Oplany Compi Vew Tooh Ostey Decemest User ol o
3 Uremgen ® Recard
N~ F wprontie | & et -\ u
5 bety | Peste =33 B Setart
T Lisewctan “F Tnin - m:'...-' NonatSeuser:| | Moot H o
sy tae Ingant Masrs
:' Rq-ﬁ_m]lmmmﬁ |1.m7 ‘i.imi » Debeg
Cenll wmmannitinmianiainaniii s S L L. A O
- 3 E]f “ |
3 e3_il_mesit f -
4 | Wiy | .!!!’i.tli".l.- Marda |
5 ting o VSE scusw. Uees your operstiag 1__'3‘-#_, AT0S Taks
. v, WACh an eost systess shauld slrmedy b s Detax) Carigew !
T
3 4| b @ alicous -
s v waraing, the miuse surzer will s in o Team -
0 ransectal 3 8 S Tom]
2 Tom ‘
iz // This Lz Sx pert of €087 PIC USS orirer Code ges V500 A
» {1 fat sers dotumertgtisn and ¢ List of esssples o““
i Fae
5 Tom
ic 3
a7 SOTE AMLLT SMUNOTMT SUPSER SLIE
18 100 F 05 2% -
b1] Althesgh wvis smllcatizn yemis 4 Wytes t= the P, thin e TMP‘U’I‘NM‘.W
a0 /) setine PLTLSIIC @) & w0 silocwte W Wytes for th =]
Ill St D;m,nan- L‘..‘\--vhw‘ l FCaQ0DL WelD ‘
D lrfo 305 "en_tuehs_recuma £ Lr-lﬁ””‘o-m Tovas 1 8k v bt 632 79 1=
33 Wakieg 215 a_uh_t»ou Lo Z1E0L2} Irdrrapns Stabiad g o 10 prsvend ieeodancy’ [ok
335 Wewang 216 “wa_usb_recowos © Lina 21001 2} bnbarragts diaablad dang ool 1o prevent m-erbancy: (15, el RAM:
330 Weneg 216 “en_uth_rowse ¢ Line 218121 Indmepts Erabled duarg coll 1o prevert imerkancy. mg,ld\ i
Maredy ieps. ROMaISS RAMe10%-12% . 12%
Obvos I'Warege
Bukd Succasbd !
ROM:
-
o~ |
—

21

PCD 07202016.doc

Menu

All of the IDE's functions are on the main menu. The
main menu is divided into separate sections, click on
a section title ('Edit', 'Search’, etc) to change the
section. Double clicking on the section, or clicking on
the chevron on the right, will cause the menu to
minimize and take less space.

m Edit | Search Options Compile View Tools Debug Document

I

Lg

T T o F :- —)FrngiIe

Paste

[] Select All » o File Selection Format Source
History Edit Indent

Editor Tabs

All of the open files are listed here. The active file,
which is the file currently being edited, is given a
different highlight than the other files. Clicking on the
X on the right closes the active file. Right clicking on
a tab gives a menu of useful actions for that file.

(’ E‘Tg ex_usb_mouse.c N =h ex_usb_common.hf "1 ,-?; 24FJ256GB206.h |

User toolbar
@ Record
LW } Load
Playback H;E 2

Macro

|

7 Slide Out Windows

-

'Files' shows all the active files in the current
project. 'Projects' shows all the recent projects
worked on. 'ldentifiers' shows all the variables,
definitions, prototypes and identifiers in your
current project.

s323l044

[

1
—

Sialuapr

N
N

Program Syntax

Editor

The editor is the main work area of the IDE and the place where the user enters and
edits source code. Right clicking in this area gives a menu of useful actions for the code
being edited.

#if defined(USB_HW_CCS_PIC18F4550@)
#include <18F4550.h>
#fuses HSPLL,NOWDT,NOPROTECT,NOLVP,NODEBUG,USBDIV,PLLS,CPUDIV1,VREGEN
#use delay(clock=43000000)

//leds ordered from bottom to top
#DEFINE LED1 PIN_AS //green

Debugging Windows

Debug m([j)ett))ugger cqnt(;ol is dor;]e in the]
ol B alow you sot broakpoints. singe Step,
watch variables and more.
RoM | ROM | DataEE | Breaks | Stack
Watches] Peripherals] Eval] Monitor
Break Log | RTOS Tasks
SFR] Debug Configure
4[] Al1c0-UsB -
Compile Reload True X A
Mouse over eval True |:|
Timeout Mouse over True
Mouse over radix Default
Userstream enabled False
Echo on Monitor True
Monitor Font Size 9
ICD FAwf CCS 296 =
‘When TRUE the target will be reloaded after every
I Apply | | Cancel l

23

PCD 07202016.doc

Status Bar

The status bar gives the user helpful information like the cursor position, project open
and file being edited.

N hsez "\.)ﬁhc At £Q SOCSC Props LIIMSER Booki DO ¢

Output Messages

Output messages are displayed here. This includes messages from the compiler during
a build, messages from the programmer tool during programming or the results from
find and searching.

24

Program Syntax

PROGRAM SYNTAX

Overall Structure

A program is made up of the following four elements in a file:
Comment
Pre-Processor Directive
Data Definition
Function Definition
Statements
Expressions

Every C program must contain a main function which is the starting point of the program
execution. The program can be split into multiple functions according to the their purpose
and the functions could be called from main or the sub-functions. In a large project
functions can also be placed in different C files or header files that can be included in the
main C file to group the related functions by their category. CCS C also requires to include
the appropriate device file using #include directive to include the device specific
functionality. There are also some preprocessor directives like #fuses to specify the fuses
for the chip and #use delay to specify the clock speed. The functions contain the data
declarations,definitions,statements and expressions. The compiler also provides a large
number of standard C libraries as well as other device drivers that can be included and
used in the programs. CCS also provides a large number of built-in functions to access
the various peripherals included in the PIC microcontroller.

Comment

Comments — Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters
between /* and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator

The compiler recognizes comments in the source code based on certain markups. The
compiler recognizes these special types of comments that can be later exported for use in

25

PCD 07202016.doc

the documentation generator. The documentation generator utility uses a user selectable
template to export these comments and create a formatted output document in Rich Text
File Format. This utility is only available in the IDE version of the compiler. The source
code markups are as follows.

Global Comments

These are named comments that appear at the top of your source code. The comment
names are case sensitive and they must match the case used in the documentation
template.

For example:

/IFPURPOSE This program implements a Bootloader.

/FAUTHOR John Doe

A''ll' followed by an * will tell the compiler that the keyword which follows it will be the
named comment. The actual comment that follows it will be exported as a paragraph to
the documentation generator.
Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES

05/16/06 Added PWM loop

05/27.06 Fixed Flashing problem
*/

Variable Comments

A variable comment is a comment that appears immediately after a variable declaration.
For example:

int seconds; // Number of seconds since last entry

long day, // Current day of the month, /* Current Month */

long year; // Year

Function Comments

A function comment is a comment that appears just before a function declaration. For
example:

/I The following function initializes outputs

void function_foo()

{
}

init_outputs();

26

Program Syntax

Function Named Comments

The named comments can be used for functions in a similar manner to the Global
Comments. These comments appear before the function, and the names are exported as-
is to the documentation generator.

For example:

/I*PURPQOSE This function displays data in BCD format

void display_BCD(byte n)

display_routine();

Trigraph Sequences

The compiler accepts three character sequences instead of some special
characters not available on all keyboards as follows:

Sequence Same as

??=
27(
??/
2?)
?7?'
?7<
vard
27>
?7?-

| ~— e~ >— —— It

Multiple Project Files

When there are multiple files in a project they can all be included using the #include in the
main file or the sub-files to use the automatic linker included in the compiler. All the
header files, standard libraries and driver files can be included using this method to
automatically link them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in
your project, you can say in:

27

PCD 07202016.doc

main.c #include <device header file>
#include<x.c>
#include<y.c>
#include <z.c>

X.C #include <x.h>
y.C #include <y.h>
z.C #include <z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file compiled.

Note that the #module directive can be used in any include file to limit the visibility of the
symbol in that file.

To separately compile your files see the section "multiple compilation units".

Multiple Compilation Units

Multiple Compilation Units are only supported in the IDE compilers, PCW, PCWH,
PCHWD and PCDIDE. When using multiple compilation units, care must be given that
pre-processor commands that control the compilation are compatible across all units. It is
recommended that directives such as #FUSES, #USE and the device header file all put in
an include file included by all units. When a unit is compiled it will output a relocatable
object file (*.0) and symbol file (*.osym).

There are several ways to accomplish this with the CCS C Compiler. All
of these methods and example projects are included in the MCU.zip in the
examples directory of the compiler.

Full Example Program

Here is a sample program with explanation using CCS C to read adc samples over rs232:

28

Program Syntax

L1777 007 77770777077 777777 777777777777 7777777777777777777777777777
L1777 7007 0777077777 7777777777777777777777777777777777777771777777

/1777 EX_ADMM.C /777

/1177 /117

//// This program displays the min and max of 30 A/D samples over /777
//// the RS-232 interface. The process is repeated forever. /777
/1177 /117
//// 1f required configure the CCS prototype card as follows: /717
/177 Insert jumper from output of POT to pin A5 /777
/177 Use a 10K POT to vary the voltage. /777
/1177 /117
//// Jumpers: ////
/7177 PCM, PCH pin C7 to RS232 RX, pin C6 to RS232 TX /177
/177 PCD none /777
/177 /117
//// This example will work with the PCM, PCH, and PCD compilers. /777
//// The following conditional compilation lines are used to /777
//// include a valid device for each compiler. Change the device, ////
//// «clock and RS232 pins for your hardware if needed. /777
[117777 777777777707 777
/177 (C) Copyright 1996,2007 Custom Computer Services /717

//// This source code may only be used by licensed users of the CCS ////
//// C compiler. This source code may only be distributed to other ////

//// licensed users of the CCS C compiler. No other use, ////
//// reproduction or distribution is permitted without written ////
//// permission. Derivative programs created using this software /7177
//// in object code form are not restricted in any way. /7177
NNV
#if defined(_ PCM) // Preprocessor directive

that chooses

// the compiler
#include <16F877.h> // Preprocessor directive
that selects

// the chip
#fuses HS,NOWDT, NOPROTECT, NOLVP // Preprocessor directive
that defines

// the chip fuses
#use delay(clock=20000000) // Preprocessor directive
that //
specifies clock speed

#use rs232(baud=9600, xmit=PIN C6, rcv=PIN C7) // Preprocessor directive
that includes
// RS232 libraries

#elif defined(PCH)

#include <18F452.h>

#fuses HS,NOWDT, NOPROTECT, NOLVP

#use delay(clock=20000000)

#use rs232(baud=9600, xmit=PIN C6, rcv=PIN C7)
#fuses HS,NOWDT

29

PCD 07202016.doc

#device ADC=8

#use delay(clock=20000000)
#use rs232(baud=9600, UARTIA)
#endif

void main() {
unsigned int8 i, value, min, max;
printf ("Sampling:");

in RS232

setup_ adc_ports (ANO) ;
#endif

setup_adc (ADC_CLOCK INTERNAL) ;
function
set adc channel (0);
function
do {
min=255;
max=0;
for (i=0; i<=30; ++1) {
delay ms (100);
value = read adc();
if (value<min)
min=value;
if (value>max)
max=value;

}

//

//

//
//

// Printf function included

// library

Built-in A/D setup

Built-in A/D setup

Built-in delay function
Built-in A/D read function

printf ("\r\nMin: %2X Max: %2X\n\r",min,max);

} while (TRUE) ;

30

STATEMENTS

Statements
STATEMENT Example
if (expr) stmt; [else if (x==25)
stmt;] x=0;
else
x=x+1;

while (expr) stmt;

do stmt while (expr);

for (exprl;expr2;expr3)
stmt;

switch (expr) {

case cexpr: stmt; //lone
or more case
[default:stmt]

2}

return [expr];
goto label;
label: stmt;
break;
continue;
expr;

{[stmt])

Zero or more
declaration;

while (get rtcc() !=0)
putc('n’);
do {
putc (c=getc()) ;
} while (c!=0);
for (i=1;i<=10;++1)
printf (“su\r\n”,1i);
switch (cmd) {
case 0: printf (“cmd
0”) ;break;
case 1: printf (“cmd
1”) ;break;
default: printf (“bad
cmd”) ;break;
}
return (5);
goto loop;
loop: i++;
break;
continue;

Note: Itemsin[] are optional

31

PCD 07202016.doc

if

if-else
The if-else statement is used to make decisions.
The syntax is:

if (expr)
stmt-1,

[else
stmt-2;]

The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is:

if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]
The expressions are evaluated in order; if any expression is true, the statement

associated with it is executed and it terminates the chain. If none of the conditions are
satisfied the last else part is executed.

Example:

if (x==25)
x=1;

else
x=x+1;

Also See: Statements

32

Statements

while

While is used as a loop/iteration statement.
The syntax is:

while (expr)
statement

The expression is evaluated and the statement is executed until it becomes false in which
case the execution continues after the statement.

Example:
while (get rtcc() !=0)
putc('n');

Also See: Statements

do-while

do-while: Differs from while and for loop in that the termination condition is checked at
the bottom of the loop rather than at the top and so the body of the loop is always
executed at least once. The syntax is:

do
statement
while (expr);

The statement is executed; the expr is evaluated. If true, the same is repeated and when it
becomes false the loop terminates.

Also See: Statements , While

for

For is also used as a loop/iteration statement.
The syntax is:

for (exprl;expr2;expr3)
statement

33

PCD 07202016.doc

The expressions are loop control statements. exprl is the initialization, expr2 is the
termination check and expr3 is re-initialization. Any of them can be omitted.

Example:
for (i=1;1i<=10;++1)
printf ("$u\r\n",1i);

Also See: Statements

switch

Switch is also a special multi-way decision maker.
The syntax is

switch (expr) {
case constl: stmt sequence;
break;

[d efault:stmt]

This tests whether the expression matches one of the constant values and branches
accordingly.

If none of the cases are satisfied the default case is executed. The break causes an
immediate exit, otherwise control falls through to the next case.

Example:
switch (cmd) {
case O:printf("cmd 0");

break;
case l:printf("cmd 1");
break;
default:printf ("bad cmd") ;
break; }

Also See: Statements

34

Statements

return

return

A return statement allows an immediate exit from a switch or a loop or function and also
returns a value.

The syntax is:

return(expr);

Example:
return (5);

Also See: Statements

goto

goto
The goto statement cause an unconditional branch to the label.

The syntax is:
goto label;

A label has the same form as a variable name, and is followed by a colon.
The goto's are used sparingly, if at all.

Example:
goto loop;

Also See: Statements

label

label
The label a goto jumps to.
The syntax is:

label: stmnt;

35

PCD 07202016.doc

Example:
loop: i++;

Also See: Statements

break

break.
The break statement is used to exit out of a control loop. It provides an early exit from
while, for ,do and switch.
The syntax is
break;
It causes the innermost enclosing loop (or switch) to be exited immediately.

Example:
break;

Also See: Statements

continue

The continue statement causes the next iteration of the enclosing

loop(While, For, Do) to begin.

The syntax is:

continue;

It causes the test part to be executed immediately in case of do and while and the control
passes the

re-initialization step in case of for.

Example:
continue;

Also See: Statements

36

expr

The syntax is:
expr;

Example:
i=1;

Also See: Statements

Statement: ;

Example:

4

Also See: Statements

stmt

Zero or more semi-colon separated.

The syntax is:
{[stmt]}
Example:
{a=1;
b=1;}

Also See: Statements

Statements

37

EXPRESSIONS

Constants
123 Decimal
123L Forces type to & long (UL also allowed)
123LL Forces type to &; 64 for PCD
0123 Octal
0x123 Hex
0b010010 Binary
123.456 Floating Point
123F Floating Point (FL also allowed)
123.4E-5 Floating Point in scientific notation
X' Character
010’ Octal Character
"\xAS5’ Hex Character
‘\c' Special Character. Where c is one of:

\n Line Feed - Same as \x0a

\r Return Feed - Same as \x0d
\t TAB - Same as \x09

\b Backspace - Same as \x08

\f Form Feed - Same as x0c

\a Bell - Same as \x07

\v Vertical Space - Same as \x0b
\? Question Mark - Same as \x3f
\' Single Quote - Same as \x22

39

PCD 07202016.doc

\" Double Quote - Same as \x22
\\ A Single Backslash - Same as \x5c¢

"abcdef"” String (null is added to the end)
Identifiers

ABCDE Up to 32 characters beginning with a non-numeric.
Valid characters are A-Z, 0-9 and _ (underscore). By
default not case sensitive Use #CASE to turn on.

ID[X] Single Subscript

ID[X][X] Multiple Subscripts

ID.ID Structure or union reference

ID->ID Structure or union reference

Operators

+ Addition Operator

+= Addition assignment operator, x+=y, is the same
as x=x+y

[] Array subscrip operator

&= Bitwise and assignment operator, x&=y, is the
same as X=x&y

& Address operator

& Bitwise and operator

N= Bitwise exclusive or assignment operator, x=y, is
the same as x=x"y

A Bitwise exclusive or operator

= Bitwise inclusive or assignment operator, xl=y, is
the same as x=xly

| Bitwise inclusive or operator

f).

Conditional Expression operator

40

Expressions

Decrement

Division assignment operator, x/=y, is the same as
X=xly

Division operator

Equality

Greater than operator

Greater than or equal to operator

Increment

Indirection operator

Inequality

Left shift assignment operator, x<<=y, is the same
as X=x<<y

Less than operator

Left Shift operator

Less than or equal to operator

Logical AND operator

Logical negation operator

Logical OR operator

Member operator for structures and unions

Modules assignment operator x%-=y, is the same
as x=x%y

Modules operator

Multiplication assignment operator, x*=y, is the
same as x=x*y

Multiplication operator

One's complement operator

Right shift assignment, x>>=y, is the same as
X=X>>Y

Right shift operator

Structure Pointer operation

Subtraction assignment operator, x-=y, is the
same as x=x-y

Subtraction operator

41

PCD 07202016.doc

sizeof

Determines size in bytes of operand

Operator Precedence

See also: Operator Precedence

PIN DESCENDING PRECEDENCE

Associativity

(expr)
++expr
lexpr
(type)expr
expr*expr
expr+expr
expr<<expr
expr<expr
expr==expr
expr&expr
expriexpr
expr | expr
expr&& expr
expr || expr

expr ? expr: expr

Ivalue = expr
Ivalue*=expr

Ivalue>>=expr

Ivalue®=expr
expr, expr

exor++
expr++
~expr
*expr
exprl/expr
expr-expr
expr>>expr
expr<=expr
expri=expr

Ivalue+=expr
Ivalue/=expr

Ivalue<<=expr

Ivalue|=expr

expr->expr expr.expr

- -expr expr - -
+expr -expr
&value sizeof(type)
expryoexpr

expr>expr expr>=expr
Ivalue-=expr

Ivalue%=expr

Ivalue &=expr

Left to Right
Left to Right
Right to Left

Right to Left
Left to Right

Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Right to Left
Right to Left
Right to Left

Right to Left
Right to Left
Left to Right

(Operators on the same line are equal in precedence)

42

DATA DEFINITIONS

Data Definitions

This section describes what the basic data types and specifiers are and how
variables can be declared using those types. In C all the variables should be
declared before they are used. They can be defined inside a function (local)
or outside all functions (global). This will affect the visibility and life of the
variables.

A declaration consists of a type qualifier and a type specifier, and is followed
by a list of one or more variables of that type.
For example:
int a,b,c,d;
mybit e, f;
mybyte g[3][2];
char *h;
colors 7j;
struct data record data[l0];
static int i;
extern long j;

Variables can also be declared along with the definitions of the special

types.
For example:

enum colors{red, green=2,blue}i,j,k; // colors is the
enum type and i,j,k
//are variables
of that type

Type Specifiers
Basic Types

43

PCD 07202016.doc

Type- Range

Specifier Size Unsigned Signed Digits
intl 1 bit number Oto1l N/A 1/2
int8 8 bit number 0 to 255 -128 to 127 2-3
int16 16 bit number 0 to 65535 ~32768 10 32767 4-5
int32 32 bit number 0t0 4294967295 -2147483648 to 2147483647 9-10
float32 32 bit float 15x10% to 3.4 x 10% 7.8

C Standard Type

Default Type

short
char

int

long
long long
float
double

intl

unsigned int8

int8
int1l6
int32
float32
N/A

Note: All types, except float char , by default are un-signed; however, may be preceded by

unsigned or signed (Except int64 may only be signed) . Short and long may have the

keyword INT following them with no effect. Also see #TYPE to change the default size.

SHORT INT1 is a special type used to generate very efficient code for bit operations and

1/0. Arrays of bits (INT1 or SHORT) in RAM are now supported. Pointers to bits are

not permitted. The device header files contain defines for BYTE as an int8 and

BOOLEAN as an intl.

Integers are stored in little endian format. The LSB is in the lowest address. Float
formats are described in common questions.

SEE ALSO: Declarations, Type Qualifiers, Enumerated Types, Structures & Unions,

typedef, Named Registers

Type Qualifiers

44

Data Definitions

Type-Qualifier

static

auto

do
ub
le

extern

register
_ fixed(n)
unsigned

signed

volatile

const

rom

void

readonly
_bif
__attribute__

Variable is globally active and initialized to 0. Only accessible from this
compilation unit.

Variable exists only while the procedure is active. This is the default and
AUTO need not be used.

Is a reserved word but is not a supported data type.

External variable used with multiple compilation units. No storage is
allocated. Is used to make otherwise out of scope data accessible.
there must be a non-extern definition at the global level in some
compilation unit.

Is allowed as a qualifier however, has no effect.

Creates a fixed point decimal number where n is how many decimal
places to implement.

Data is always positive. This is the default data type if not specified.
Data can be negative or positive.

Tells the compiler optimizer that this variable can be changed at any
point during execution.

Data is read-only. Depending on compiler configuration, this qualifier
may just make the data read-only -AND/OR- it may place the data into
program memory to save space. (see #DEVICE const=)

Forces data into program memory. Pointers may be used to this data
but they can not be mixed with RAM pointers.

Built-in basic type. Type void is used to indicate no specific type in
places where a type is required.

Writes to this variable should be dis-allowed
Used for compiler built in function prototypes on the same line
Sets various attributes

45

PCD 07202016.doc

Enumerated Types

enum enumeration type: creates a list of integer constants.

enum [id] {[id[=cexpr]]}

One or more comma separated

The id after enum is created as a type large enough
to the largest constant in the list. The ids in the list
are each created as a constant. By default the first
id is set to zero and they increment by one. Ifa=
cexpr follows an id that id will have the value of the
constant expression an d the following list will
increment by one.

For example:
enum colors{red, green=2, blue}; // red will be O,
green will be 2 and
// blue will be 3

Structures and Unions

Struct structure type: creates a collection of one or more variables, possibly of different
types, grouped together as a single unit.

struct[*] [id] type-qualifier [*] id [:bits]; }Hid]

{
One or more, Zero
semi-colon or more
separated

For example:
struct data record ({
int al2];

46

Data Definitions

int b : 2; /*2 bits */
int c : 3; /*3 bits*/
int d;
} data_var; //data_record is a structure
type
//data_var is a variable

Union type: holds objects of different types and sizes, with the compiler keeping track of
size and alignment requirements. They provide a way to manipulate different kinds of
data in a single area of storage.

union[*] [id] { type-qualifier [*] id [:bits]; }(id]
One or more, Zero
semi-colon or more
separated

For example:

union u tab {
int ival;

long 1lval;
float fval;
}i //u_tag is a union type that can hold a float

typedef

If typedef is used with any of the basic or special types it creates a new type name that
can be used in declarations. The identifier does not allocate space but rather may be
used as a type specifier in other data definitions.

typedef [type-qualifier] [type-specifier]
[declarator];

For example:

a7

PCD 07202016.doc

typedef int mybyte; // mybyte can
be used in
//declaration to
// specify the
int type
typedef short mybit; // mybyte can
be used in
//declaration to
// specify the
int type
typedef enum {red, green=2,blue}colors; //colors can
be used to declare
//variable of
this enum type

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can be used to
define a memory region that can be RAM, program eeprom, data eeprom or external
memory. Addressmod replaces the older typemod (with a different syntax).

The usage is :

addressmod

(name, read function,write function,start addr
ess,end address, share);

Where the read_function and write_function should be blank for RAM, or for other memory
should be the following prototype:

// read procedure for reading n bytes from the
memory starting at location addr

void read function(int32 addr,int8 *ram, int
nbytes) {

}

//write procedure for writing n bytes to the
memory starting at location addr

48

Data Definitions

void write_function(int32 addr,int8 *ram, int
nbytes) {
}

For RAM the share argument may be true if unused RAM in this
area can be used by the compiler for standard variables.

Example:
void DataEE Read (int32 addr, int8 * ram, int
bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
*ram=read eeprom(addr) ;

}

void DatakEE Write (int32 addr, int8 * ram, int
bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
write eeprom(addr, *ram) ;

}

addressmod
(DataEE, DataEE read, DataEE write,5,0xff);

// would define a region called DataEE
between
// 0x5 and O0xff in the chip data EEprom.

void main (void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the Data EEPROM
y=test; // Reads the Data EEPROM

Note: If the area is defined in RAM then read and write functions are not required, the
variables assigned in the memory region defined by the addressmod can be treated as a
regular variable in all valid expressions. Any structure or data type can be used with an
addressmod. Pointers can also be made to an addressmod data type. The #type directive
can be used to make this memory region as default for variable allocations.

The syntax is :

49

PCD 07202016.doc

#type default=addressmodname // all the
variable declarations that

// follow
will use this memory region
#type default= // goes back
to the default mode

For example:

Type default=emi //emi is the
addressmod name defined

char buffer([8192];

#include <memoryhog.h>

#type default=

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The
different ways are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. If the keyword const is
used before the identifier, the identifier is treated as a constant. Constants should be
initialized and may not be changed at run-time. This is an easy way to create lookup
tables.

The rom Qualifier puts data in program memory with 3 bytes per instruction space. The
address used for ROM data is not a physical address but rather a true byte address. The
& operator can be used on ROM variables however the address is logical not physical.
The syntax is:
const type id[cexpr] = {value}
For example:
Placing data into ROM
const int table[l1l6]1={0,1,2...15}
Placing a string into ROM
const char cstring[6]={"hello"}
Creating pointers to constants
const char *cptr;
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:
The constant ID will be at 1C00.
#ORG 0x1C00, Ox1COF

50

Data Definitions

CONST CHAR ID[10]= {"123456789"};
Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The constant
variable can be accessed in the code. This is a great way of storing constant data in large
programs. Variable length constant strings can be stored into program memory.

A special method allows the use of pointers to ROM. This method does not contain extra
code at the start of the structure as does constant.

For example:
char rom commands[] = {“put|get|status|shutdown”};

ROML may be used instead of ROM if you only to use even memory locations.

The compiler allows a non-standard C feature to implement a constant array of variable
length strings.

The syntax is:
const char id[n] [*] = { "string", "string" ...};

Where n is optional and id is the table identifier.

For example:
const char colors[] [*] = {"Red", "Green", "Blue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.
The syntax is:
#rom address = {data, data, .. , data}
For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = {1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}
This method can only be used to initialize the program memory.

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:
[]

o write program memory (address, dataptr, count);
- Writes count bytes of data from dataptr to address in program memory.
- Every fourth byte of data will not be written, fill with 0x00.

Please refer to the help of these functions to get more details on their usage and
limitations regarding erase procedures. These functions can be used only on chips that
allow writes to program memory. The compiler uses the flash memory erase and write
routines to implement the functionality.

51

PCD 07202016.doc

The data placed in program memory using the methods listed above can be read from
width the following functions:
® read program memory ((address, dataptr, count)
- Reads count bytes from program memory at address to RAM at dataptr.
Every fourth byte of data is read as 0x00
® read rom memory ((address, dataptr, count)
- Reads count bytes from program memory at the logical address to RAM
at dataptr.

These functions can be used only on chips that allow reads from program memory. The
compiler uses the flash memory read routines to implement the functionality.

Named Registers

The CCS C Compiler supports the new syntax for filing a variable at the
location of a processor register. This syntax is being proposed as a C
extension for embedded use. The same functionality is provided with the
non-standard #byte, #word, #bit and #locate.

The syntax is:
register _name type id;
Or
register constant type id;

name is a valid SFR name with an underscore before it.
Examples:
register _status int8 status_reg;

register _T1IF int8 timer_interrupt;
register 0x04 int16 file_select_register;

52

FUNCTION DEFINITION

Function Definition

The format of a function definition is as follows:

[qualifier] id ([type-specifier id]) { [stmt] }
Optional See Below Zero or more comma separated. Zero or more Semi-colon
See Data Types separated. See Statements.

The qualifiers for a function are as follows:
e VOID
o type-specifier
e #separate
e #inline
o #int_..

When one of the above are used and the function has a prototype (forward declaration of
the function before it is defined) you must include the qualifier on both the prototype and
function definition.

A (non-standard) feature has been added to the compiler to help get around the problems
created by the fact that pointers cannot be created to constant strings. A function that has
one CHAR parameter will accept a constant string where it is called. The compiler will
generate a loop that will call the function once for each character in the string.

Example:
void lcd putc(char c) {

}

lcd putc ("Hi There.");

53

PCD 07202016.doc

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but
they must accept different parameters.

Here is an example of function overloading: Two functions have the same name but differ
in the types of parameters. The compiler determines which data type is being passed as a
parameter and calls the proper function.

This function finds the square root of a long integer variable.

long FindSquareRoot (long n) {
}

This function finds the square root of a float variable.

float FindSquareRoot (float n) {
}

FindSquareRoot is now called. If variable is of long type, it will call the first
FindSquareRoot() example. If variable is of float type, it will call the second
FindSquareRoot() example.

result=FindSquareRoot (variable) ;

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability
of code and the efficiency of some inline procedures. The following two procedures are
the same. The one with reference parameters will be implemented with greater efficiency
when it is inline.

funct a(int*x,int*y) {
/*Traditional*/
if (*x!=5)
*y=*x+3;

}

funct_a(&a, &b) ;

funct b (intéx, inté&y) {
/*Reference params*/

54

Function Definition

if (x!=5)
y=x+3;
}

funct b(a,b);

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when

called.
int mygetc (char *c, int n=100) {

}

This function waits n milliseconds for a character over RS232. If a character is received, it
saves it to the pointer ¢ and returns TRUE. If there was a timeout it returns FALSE.

//gets a char, waits 100ms for timeout
mygetc (&c) ;

//gets a char, waits 200ms for a timeout
mygetc (&c, 200);

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI
requirements except that it does not require at least one fixed parameter as ANSI does.
The function can be passed any number of variables and any data types. The access
functions are VA_START, VA_ARG, and VA_END. To view the number of arguments
passed, the NARGS function can be used.

/*
stdarg.h holds the macros and va list data type needed for variable
number of parameters.

*/

#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the
ellipsis (...), which must be the last parameter of the function. The ellipsis represents the
variable argument list. Second, it requires one more variable before the ellipsis (...).

55

PCD 07202016.doc

Usually you will use this variable as a method for determining how many variables have
been pushed onto the ellipsis.

Here is a function that calculates and returns the sum of all variables:
int Sum(int count, ...)
{
//a pointer to the argument list
va_list al;
int x, sum=0;
//start the argument list
//count 1is the first variable before the ellipsis
va_start(al, count);
while (count--) {
//get an int from the list
x = var_arg(al, int);
sum += x;
}
//stop using the list
va_end(al);
return (sum) ;

Some examples of using this new function:
x=Sum (5, 10, 20, 30, 40, 50);
y=Sum(3, a, b, c);

56

FUNCTIONAL OVERVIEW

12C

[2C™ is a popular two-wire communication protocol developed by Phillips. Many PIC
microcontrollers support hardware-based 12C™. CCS offers support for the hardware-
based [2C™ and a software-based master I2C™ device. (For more information on the
hardware-based 12C module, please consult the datasheet for you target device; not all

PICs support 12C™.)

Relevant Functions:

i2c_start()
i2c_write(data)
i2c_read()
i2c_stop()
i2c_poll()

Relevant Preprocessor:

#USE 12C

Relevant Interrupts:
#INT_SSP
#INT_BUSCOL
#INT_I2C
#INT_BUSCOL2
#INT_SSP2
#INT_mi2c
#INT_si2c

Relevant Include Files:

None, all functions built-in

Relevant getenv() Parameters:

12C_SLAVE
I2C_MASTER

Issues a start command when in the 12C master mode.
Sends a single byte over the 12C interface.

Reads a byte over the 12C interface.

Issues a stop command when in the 12C master mode.
Returns a TRUE if the hardware has received a byte in the
buffer.

Configures the compiler to support I2C™ to your
specifications.

I2C or SPI activity

Bus Collision

12C Interrupt (Only on 14000)

Bus Collision (Only supported on some PIC18's)

I12C or SPI activity (Only supported on some PIC18's)
Interrupts on activity from the master 12C module
Interrupts on activity form the slave 12C module

Returns a 1 if the device has 12C slave H/W
Returns a 1 if the device has a 12C master H/W

57

PCD 07202016.doc

Example Code:

#define Device_SDA PIN_C3
#define Device_SLC PIN_C4
#use i2c(master,
sda=Device_SDA,
scl=Device_SCL)

BYTE data;
i2c_start();
i2c_write(data);
i2c_stop();

/I Pin defines

/I Configure Device as Master

/I Data to be transmitted

I/ Issues a start command when in the 12C master mode.
/I Sends a single byte over the 12C interface.

// Issues a stop command when in the I2C master mode.

ADC

These options let the user configure and use the analog to digital converter module.
They are only available on devices with the ADC hardware. The options for the functions
and directives vary depending on the chip and are listed in the device header file. On
some devices there are two independent ADC modules, for these chips the second
module is configured using secondary ADC setup functions (Ex. setup_ADC?2).

Relevant Functions:

setup_adc(mode)
setup_adc_ports(value)
set_adc_channel(channel)
read_adc(mode)

adc_done()
setup_adc2(mode)
setup_adc_ports2(ports,
reference)
set_adc_channel2(channel)
read_adc2(mode)

adc_done()

Relevant Preprocessor:
#DEVICE ADC=xx

Sets up the a/d mode like off, the adc clock etc.

Sets the available adc pins to be analog or digital.
Specifies the channel to be use for the a/d call.

Starts the conversion and reads the value. The mode can
also control the functionality.

Returns 1 if the ADC module has finished its conversion.

Sets up the ADC2 module, for example the ADC clock and
ADC sample time.

Sets the available ADC2 pins to be analog or digital, and
sets the voltage reference for ADC2.

Specifies the channel to use for the ADC2 input.

Starts the sample and conversion sequence and reads the
value The mode can also control the functionality.

Returns 1 if the ADC module has finished its conversion

Configures the read_adc return size. For example, using a
PIC with a 10 bit A/D you can use 8 or 10 for xx- 8 will
return the most significant byte, 10 will return the full A/D

58

Functional Overview

Relevant Interrupts:
INT_AD
INT_ADOF

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
ADC_CHANNELS
ADC_RESOLUTION

Example Code:
#DEVICE ADC=10

long value;

setup_adc(ADC_CLOCK_INT
ERNAL);
setup_adc_ports(ALL_ANAL
0G);

set_adc_channel(0);
delay_us(10);

value=read_adc();

read_adc(ADC_START_ONL
Y);
value=read_adc(ADC_READ
_ONLY);

reading of 10 bits.

Interrupt fires when a/d conversion is complete
Interrupt fires when a/d conversion has timed out

Number of A/D channels
Number of bits returned by read_adc

/lenables the a/d module
/land sets the clock to internal adc clock
/Isets all the adc pins to analog

/lthe next read_adc call will read channel 0

/la small delay is required after setting the channel
/land before read

/Istarts the conversion and reads the result

/land store it in value

/lonly starts the conversion

/Ireads the result of the last conversion and store it in
/Ivalue. Assuming the device hat a 10bit ADC module,
/Ivalue will range between 0-3FF. If #DEVICE ADC=8 had
/Ibeen used instead the result will yield 0-FF. If #DEVICE
/IADC=16 had been used instead the result will yield 0-
/[FFCO

Analog Comparator

These functions set up the analog comparator module. Only available in some devices.

Relevant Functions:

59

PCD 07202016.doc

setup_comparator(mode) Enables and sets the analog comparator module. The
options vary depending on the chip. Refer to the header
file for details.

Relevant Preprocessor:

None

Relevant Interrupts:

INT_COMP Interrupt fires on comparator detect. Some chips have
more than one comparator unit, and thus, more interrupts.

Relevant Include Files:

None, all functions built-in

Relevant getenv() Parameters:
Returns 1 if the device hasa COMP
comparator

Example Code:
setup_comparator(A4_
A5 NC_NC);
if(C10OUT)
output_low(PIN_DO);
else
output_high(PIN_D1);

CAN Bus

These functions allow easy access to the Controller Area Network (CAN) features
included with the MCP2515 CAN interface chip and the PIC24, dsPIC30 and dsPIC33
MCUs. These functions will only work with the MCP2515 CAN interface chip and PIC
microcontroller units containing either a CAN or an ECAN module. Some functions are
only available for the ECAN module and are specified by the word ECAN at the end of the
description. The listed interrupts are not available to the MCP2515 interface chip.

Relevant Functions:

can_init(void); Initializes the module to 62.5k baud for ECAN and 125k
baud for CAN and clears all the filters and masks so that
all messages can be received from any ID.

60

Functional Overview

can_set_baud(void);

can_set_mode
(CAN_OP_MODE mode);

can_set_functional_mode
(CAN_FUN_OP_MODE
mode);

can_set_id(int16 *addr, int32
id, int1 ext)

can_set_buffer_id(BUFFER
buffer, int32 id, intl ext)

can_get_id(BUFFER buffer,
intl ext)

can_putd(int32 id, int8 *data,
int8 len, int8 priority, intl ext,
intl rtr)

can_getd(int32 &id, int8
*data, int8 &len, struct
rx_stat &stat)

can_kbhit()

can_tbe()

can_abort()
can_enable_b_transfer(BUFF
ER b)
can_enable_b_receiver(BUF
FER b)

can_enable_rtr(BUFFER b)

can_disable_rtr(BUFFER b)
can_load_rtr (BUFFER b, int8

Initializes the baud rate of the bus to 62.5kHz for ECAN
and 125kHz for CAN. It is called inside the can_init()
function so there is no need to call it.

Allows the mode of the CAN module to be changed to
listen all mode, configuration mode, listen mode, loop back
mode, disabled mode, or normal mode.

Allows the functional mode of ECAN modules to be
changed to legacy mode, enhanced legacy mode, or first in
firstout (fifo) mode. ECAN

Can be used to set the filter and mask ID's to the value
specified by addr. It is also used to set the ID of the
message to be sent on CAN chips.

Can be used to set the ID of the message to be sent for
ECAN chips. ECAN

Returns the ID of a received message.

Constructs a CAN packet using the given arguments and
places it in one of the available transmit buffers.

Retrieves a received message from one of the CAN buffers
and stores the relevant data in the referenced function
parameters.

Returns TRUE if valid CAN messages is available to be
retrieved from one of the receive buffers.

Returns TRUE if a transmit buffer is is available to send
more data.

Aborts all pending transmissions.

Sets the specified programmable buffer to be a transmit
buffer. ECAN

Sets the specified programmable buffer to be a receive
buffer. By default all programmable buffers are set to be
receive buffers. ECAN

Enables the automatic response feature which
automatically sends a user created packet when a
specified ID is received. ECAN

Disables the automatic response feature. ECAN
Creates and loads the packet that will automatically

61

PCD 07202016.doc

*data, int8 len)
can_set_buffer_size(int8
size)

can_enable_filter
(CAN_FILTER_CONTROL
filter)

can_disable_filter
(CAN_FILTER_CONTROL
filter)
can_associate_filter_to_buff
er
(CAN_FILTER_ASSOCIATIO
N_BUFFERS buffer,
CAN_FILTER_ASSOCIATION
filter)
can_associate_filter_to_mas
k
(CAN_MASK_FILTER_ASSO
CIATION mask,
CAN_FILTER_ASSOCIATION
filter)

can_fifo_getd(int32 &id, int8
*data, int8 &len, struct
rx_stat &stat)
can_trb0_putd(int32id, int8
*data, int8 len, int8 pri, intl
ext, intl rtr)

can_enable_interrupts(INTE
RRUPT setting)

can_disable_interrupts(INTE

transmitted when the triggering ID is received. ECAN

Set the number of buffers to use. Size can be 4, 6, 8, 12,
16, 24, and 32. By default can_init() sets size to 32.

ECAN

Enables one of the acceptance filters included in the ECAN
module. ECAN

Disables one of the acceptance filters included in the
ECAN module. ECAN

Used to associate a filter to a specific buffer. This allows
only specific buffers to be filtered and is available in the
ECAN module. ECAN

Used to associate a mask to a specific buffer. This allows
only specific buffer to have this mask applied. This feature
is available in the ECAN module. ECAN

Retrieves the next buffer in the FIFO buffer. Only available
in the ECAN module. ECAN

Constructs a CAN packet using the given arguments and
places it in transmit buffer 0. Similar functions available for
all transmit buffers 0-7. Buffer must be made a transmit
buffer with can_enable_b_transfer() function before
function can be used. ECAN

Enables specified interrupt conditions that cause the
#INT_CANL1 interrupt to be triggered. Available options are:
TB - Transmitt Buffer Interrupt ECAN

RB - Receive Buffer Interrupt ECAN

RXOQOV - Receive Buffer Overflow Interrupt ECAN

FIFO - FIFO Almost Full Interrupt ECAN

ERR - Error interrupt ECAN/CAN
WAK - Wake-Up Interrupt ECAN/CAN
IVR - Invalid Message Received Interrupt ECAN/CAN
RXO0 - Receive Buffer 0 Interrupt CAN

RX1 - Receive Buffer 1 Interrupt CAN

TXO - Transmit Buffer O Interrupt CAN

TX1 - Transmit Buffer 1 Interrupt CAN

TX2 - Transmit Buffer 2 Interrupt CAN

Disable specified interrupt conditions so they doesn't cause

62

Functional Overview

RRUPT setting)

can_config_DMA(void)

For PICs that have two CAN
or ECAN modules all the
above function are available
for the second module, and
they start with can2 instead
of can.

Relevant Preprocessor:
None

Relevant Interrupts:
#INT_CAN1

#INT_CAN2

Relevant Include Files:
can-mcp2510.c
can-dsPIC30.c
can-PIC24.c

Relevant getenv()
Parameters:

None

Example Code:

can_init();
can_putd(0x300,data,8,3,TRU
E,FALSE);

can_getd(ID,data,len,stat);

the #INT_CANL1 interrupt to be triggered. Available options
are the same as for the can_enable_interrupts() function.
By default all conditions are disabled.

Configures the DMA buffers to use with the ECAN module.
It is called inside the can_init() function so there is no need
to call it. ECAN

Examples:

can2_init();

can2_kbhit();

Interrupt for CAN or ECAN module 1. This interrupt is
triggered when one of the conditions set by the
can_enable_interrupts() is meet.

Interrupt for CAN or ECAN module 2. This interrupt is
triggered when one of the conditions set by the
can2_enable_interrupts() is meet. This interrupt is only
available on PICs that have two CAN or ECAN modules.

Drivers for the MCP2510 and MCP2515 interface chips.
Drivers for the built in CAN module on dsPIC30F chips.
Drivers for the build in ECAN module on PIC24HJ and
dsPIC33FJ chips.

I nitializes the CAN bus.
/I Places a message on the CAN bus with

/I'ID = 0x300 and eight bytes of data pointed to by
// “data”, the TRUE causes an extended ID to be

I/l sent, the FALSE causes no remote transmission
// to be requested.

/I Retrieves a message from the CAN bus storing the
//'ID in the ID variable, the data at the array

/Ipointed to by

/l to by “data”, the number of data bytes in len and

63

PCD 07202016.doc

staticstics
/ about the data in the stat structure.

Code Profile

Profile a program while it is running. Unlike in-circuit debugging, this
tool grabs information while the program is running and provides
statistics, logging and tracing of it's execution. This is accomplished by
using a simple communication method between the processor and the
ICD with minimal side-effects to the timing and execution of the
program. Another benefit of code profile versus in-circuit debugging is
that a program written with profile support enabled will run correctly
even if there is no ICD connected.

In order to use Code Profiling, several functions and pre-processor statements need to
be included in the project being compiled and profiled. Doing this adds the proper code
profile run-time support on the microcontroller.

See the help file in the Code
Profile tool for more help and
usage examples.

Relevant Functions:

profileout() Send a user specified message or variable to be displayed
or logged by the code profile tool.

Relevant Pre-Processor:

#use profile Global configuration of the code profile run-time on the
microcontroller.

#profile Dynamically enable/disable specific elements of the
profiler.
Relevant Interrupts: The profiler can be configured to use a microcontroller's

internal timer for more accurate timing of events over the
clock on the PC. This timer is configured using the #profile
pre-processor command.

64

Functional Overview

Relevant Include Files: None — all the functions are built into the compiler.
Relevant getenv(): None
Example Code: #include <18F4520.h>

#use delay(crystal=10MHz,
clock=40MHz)
#profile functions, parameters
void main (void)
{
int adc;
setup adc (ADC CLOCK INTERNAL) ;
set adc channel (0);

for(; ;)

{
adc = read adc();
profileout (adc) ;
delay ms (250);

Configuration Memory

On all dsPIC30, dsPIC33 and PIC24 families the configuration memory is readable and
writable. The configuration memory contains the configuration bits for things such as the
oscillator mode, watchdog timer enable, etc. These configuration bits are set by the CCS
C compiler usually through a #fuse. CCS provides an API that allows these bits to be
changed in run-time.

Relevant Functions:

write_configuration_memory Writes n bytes to configuration from ramPtr, no erase
(ramPtr, n); needed

or

write_configuration_memory Write n bytes to configuration memory, starting at offset,

65

PCD 07202016.doc

(offset, ramPtr, n); from ramPtr */

read_configuration_memory Read n bytes of configuration memory, save to ramPtr
(ramPtr, n);

Relevant Preprocessor: The initial value of the configuration memory is set through
a #FUSE

Relevant Interrupts : None

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters: None

Example Code:

intl6 data = 0x0C32;

write_configuration_memory //writes 2 bytes to the configuration memory
(&data, 2);

CRC

The programmable Cyclic Redundancy Check (CRC) is a software configurable CRC
checksum generator in select PIC24F, PIC24H, PIC24EP, and dsPIC33EP devices. The
checksum is a unique number associated with a message or a block of data containing
several bytes. The built-in CRC module has the following features:

- Programmable bit length for the CRC generator polynomial. (up to 32 bit length)
- Programmable CRC generator polynomial.

- Interrupt output.

- 4-deep, 8-deep, 16-bit, 16-deep or 32-deep, 8-bit FIFO for data input.

- Programmed bit lenght for data input. (32-bit CRC Modules Only)

Relevant Functions:

setup_crc (polynomial) This will setup the CRC polynomial.
crc_init (data) Sets the initial value used by the CRC module.
crc_calc (data) Returns the calculated CRC value.

Relevant Preprocessor:
None

Relevant Interrupts :

66

Functional Overview

#INT_CRC

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

None

Example Code:
Int16 data[8];
intl16 result;

setup_crc(15, 3, 1);
crc_init(OXFEEE);

Result = crc_calc(&data[0],
8);

On completion of CRC calculation.

/I CRC Polynomial is X16 + X15 + X3 + X1+ 1 or
Polynomial = 8005h

Starts the CRC accumulator out at OXFEEE
Calculate the CRC

DAC

These options let the user configure and use the digital to analog converter module. They
are only available on devices with the DAC hardware. The options for the functions and
directives vary depending on the chip and are listed in the device header file.

Relevant Functions:

setup_dac(divisor)
dac_write(value)
setup_dac(mode, divisor)
dac_write(channel, value)
Relevant Preprocessor:
#USE DELAY

Relevant Interrupts:
Relevant Include Files:
Relevant getenv()

parameters:
Example Code:

Sets up the DAC e.g. Reference voltages

Writes the 8-bit value to the DAC module

Sets up the d/a mode e.g. Right enable, clock divisor
Writes the 16-bit value to the specified channel

Must add an auxiliary clock in the #use delay
preprocessor. For example:

#USE DELAY(clock=20M, Aux: crystal=6M, clock=3M)
None

None, all functions built-in

None

intl6i=0;

67

PCD 07202016.doc

setup_dac(DAC_RIGHT_ON, 5); /I enables the d/a
module with right channel

/I enabled and
a division of the clock by 5
While(1){
i++;
dac_write(DAC_RIGHT, i); [/ writes i to the
right DAC channel

}

Data Eeprom

The data eeprom memory is readable and writable in some chips. These options lets the
user read and write to the data eeprom memory. These functions are only available in

flash chips.

Relevant Functions:

(8 bit or 16 bit depending on
the device)
read_eeprom(address)

write_eeprom(address,
value)

read_eeprom(address, [N])

read_eeprom(address,
[variable])
read_eeprom(address,
pointer, N)
write_eeprom(address,
value)
write_eeprom(address,
pointer, N)

Relevant Preprocessor:
#ROM address={list}

Reads the data EEPROM memory location

Erases and writes value to data EEPROM location
address.

Reads N bytes of data EEPROM starting at memory
location address. The maximum return size is int64.
Reads from EEPROM to fill variable starting at address
Reads N bytes, starting at address, to pointer

Writes value to EEPROM address

Writes N bytes to address from pointer

Can also be used to put data EEPROM memory data
into the hex file.

68

Functional Overview

write_eeprom = noint

Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

DATA_EEPROM
Example Code:

#ROM
0x007FFC00={1,2,3,4,5}

write_eeprom(0x10,
0x1337);
value=read_eeprom(0x0);

Allows interrupts to occur while the write_eeprom()
operations is polling the done bit to check if the write
operations has completed. Can be used as long as no
EEPROM operations are performed during an ISR.

Interrupt fires when EEPROM write is complete

Size of data EEPROM memory.

/I Inserts this data into the hex file

/l The data EEPROM address differs between PICs
/I Please refer to the device editor for device specific
values.

/I Writes 0x1337 to data EEPROM location 10.

/I Reads data EEPROM location 10 returns 0x1337.

DCI

DCl is an interface that is found on several dsPIC devices in the 30F and the 33FJ
families. It is a multiple-protocol interface peripheral that allows the user to connect to
many common audio codecs through common (and highly configurable) pulse code
modulation transmission protocols. Generic multichannel protocols, 12S and AC’97 (16 &

20 bit modes) are all supported.

Relevant Functions:

setup_dci(configuration,
data size, rx config, tx
config, sample rate);
setup_adc_ports(value)
set_adc_channel(channel)
read_adc(mode)

adc_done()

Initializes the DCI module.

Sets the available adc pins to be analog or digital.
Specifies the channel to be use for the a/d call.
Starts the conversion and reads the value. The mode
can also control the functionality.

Returns 1 if the ADC module has finished its conversion.

69

PCD 07202016.doc

Relevant Preprocessor:

#DEVICE ADC=xx Configures the read_adc return size. For example, using
a PIC with a 10 bit A/D you can use 8 or 10 for xx- 8 will
return the most significant byte, 10 will return the full A/D
reading of 10 bits.

Relevant Interrupts:

INT_DCI Interrupt fires on a number (user configurable) of data
words received.

Relevant Include Files:

None, all functions built-in

Relevant getenv()

parameters:

None

Example Code:

signed int16 left_channel, right_channel;

dci_initialize((12S_MODE | DCI_MASTER | DCI_CLOCK_OUTPUT |
SAMPLE_RISING_EDGE | UNDERFLOW_LAST |
MULTI_DEVICE_BUS),DCI_1WORD_FRAME

| DCI_16BIT_WORD | DCI_2WORD_INTERRUPT, RECEIVE_SLOTO |
RECEIVE_SLOT1,

TRANSMIT_SLOTO | TRANSMIT_SLOT1, 6000);

dci_start();

while(1)

dci_read(&left_channel, &right_channel);
dci_write(&left_channel, &right_channel);

}

DMA

The Direct Memory Access (DMA) controller facilitates the transfer of data between the
CPU and its peripherals without the CPU's assistance. The transfer takes place between
peripheral data registers and data space RAM. The module has 8 channels and since

70

Functional Overview

each channel is unidirectional, two channels must be allocated to read and write to a
peripheral. Each DMA channel can move a block of up to 1024 data elements after it
generates an interrupt to the CPU to indicate that the lock is available for processing.
Some of the key features of the DMA module are:

- Eight DMA Channels.

- Byte or word transfers.

- CPU interrupt after half or full block transfer complete.

- One-Shot or Auto-Repeat block transfer modes.

- Ping-Pong Mode (automatic switch between two DSPRAM start addresses after
each block transfer is complete).

Relevant Functions:

setup_dma(channel,
peripheral,mode)

dma_start(channel,
mode,address)
dma_status(channel)

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_DMAX

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:
None

Example Code:
setup dma(1,DMA_IN_SPI1,
DMA_BYTE);

dma_start(1,
DMA_CONTINOUS]|
DMA_PING_PONG, 0x2000);

Configures the DMA module to copy data from the
specified peripheral to RAM allocated for the DMA
channel.

Starts the DMA transfer for the specified channel in the
specified mode of operation.

This function will return the status of the specified
channel in the DMA module.

Interrupt on channel X after DMA block or half block
transfer.

Setup channel 1 of the DMA module to read the SPI1
channel in byte mode.

Start the DMA channel with the DMA RAM address of
0x2000

71

PCD 07202016.doc

Data Signal Modulator

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the
“modulator signal”) with a carrier signal to produce a modulated output. Both the carrier
and the modulator signals are supplied to the DSM module, either internally from the
output of a peripheral, or externally through an input pin. The modulated output signal is
generated by performing a logical AND operation of both the carrier and modulator signals
and then it is provided to the MDOUT pin. Using this method, the DSM can generate the
following types of key modulation schemes:

. Frequency Shift Keying (FSK)
° Phase Shift Keying (PSK)
° On-Off Keying (OOK)

Relevant Functions:

(8 bit or 16 bit depending on the device)

setup_dsm(mode,source,ca
rrier)

setup_dsm(TRUE)
setup_dsm(FALSE)
Relevant Preprocessor:
Relevant Interrupts:

Relevant Include Files:

Relevant getenv()
parameters:

Example Code:
setup_dsm(DSM_ENABLED

I
DSM_OUTPUT_ENABLED,

DSM_SOURCE_UART1,

Configures the DSM module and selects the source
signal and carrier signals.

Enables the DSM module.
Disables the DSM module.
None
None

None, all functions built-in

None

/[Enables DSM module with the output enabled and
selects UART1

/las the source signal and VSS as the high carrier signal
and OC1's

/IPWM output as the low carrier signal.

72

Functional Overview

DSM_CARRIER_HIGH_VSS

I
DSM_CARRIER_LOW_OC1)

if(input(PIN_B0))
setup_dsm(FALSE);

else
setup_dsm(TRUE);

Disable DSM module

Enable DSM module

Extended RAM

Some PIC24 devices have more than 30K of RAM. For these devices a special method is
required to access the RAM above 30K. This extended RAM is organized into pages of
32K bytes each, the first page of extended RAM starts on page 1.

Relevant Functions:

write extended ram(p,addr,

ptr.n);

read extended ram(p,addr,

ptr.n);

Relevant Preprocessor:
None

Relevant Interrupts :
None

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:
None

Example Code:
write_extended_ram(1,0x10
0,WriteData,8);
read_extended_ram(1,0x10
0,ReadData,8);

Writes n bytes from ptr to extended RAM page p starting
at address addr.

Reads n bytes from extended RAM page p starting a
address addr to ptr.

/I\Writes 8 bytes from WriteData to addresses 0x100
//to 0x107 of extended RAM page 1.

/IReads 8 bytes from addresses 0x100 to 0x107 of
/lextended RAM page 1 to ReadData.

73

PCD 07202016.doc

General Purpose I/O

These options let the user configure and use the 1/O pins on the device. These functions
will affect the pins that are listed in the device header file.

Relevant Functions:

output_high(pin)
output_low(pin)
output_float(pin)

output_x(value)
output_bit(pin,value)
input(pin)
input_state(pin)
set_tris_x(value)

input_change_x()

set open drain_ x(value)

set_input_level_x(value)

set _open drain x()

Relevant Preprocessor:
#USE STANDARD_IO(port)

#USE FAST _10(port)

Sets the given pin to high state.
Sets the given pin to the ground state.

Sets the specified pin to the input mode. This will allow
the pin to float high to represent a high on an open
collector type of connection.

Outputs an entire byte to the port.

Outputs the specified value (0,1) to the specified 1/O pin.
The function returns the state of the indicated pin.

This function reads the level of a pin without changing
the direction of the pin as INPUT() does.

Sets the value of the I/O port direction register. A '1'is an
input and '0' is for output.

This function reads the levels of the pins on the port, and
compares them to the last time they were read to see if
there was a change, 1 if there was, 0 if there was not.
This function sets the value of the 1/0 port

Open-Drain register. A | makes the output

open-drain and O makes the output push-

pull.

This function sets the value of the I/O port

Input Level Register. A 1 sets the input

level to ST and O sets the input level to

TTL.

Sets the value of the 1/0 port Open-Drain Control
register. A'l' sets it as an open-drain output, and a '0'
sets it as a digital output.

This compiler will use this directive be default and it will
automatically inserts code for the direction register
whenever an I/O function like output_high() or input() is
used.

This directive will configure the 1/O port to use the fast
method of performing I/O. The user will be responsible
for setting the port direction register using the set_tris_x()
function.

74

Functional Overview

#USE FIXED_IO This directive set particular pins to be used an input or
(port_outputs=;in,pin?) output, and the compiler will perform this setup every
time this pin is used.

Relevant Interrupts: None

Relevant Include Files: None, all functions built-in

Relevant getenv() PIN:pb ----Returns a 1 if bit b on port p is on this part
parameters:

Example Code: #use fast _io(b)\

Int8 Tris value= O0xO0F;

intl Pinigalue;

set tris b(Tris value); //Sets
B0:B3 as input and B4:B7 as

output

output high (PIN B7); //Set the pin B7 to
High

If (input (PIN BO0)) { //Read the value on

pin BO, set B7 to low if pin BO is high
output high (PIN B7);}

Input Capture

These functions allow for the configuration of the input capture module. The timer source
for the input capture operation can be set to either Timer 2 or Timer 3. In capture mode
the value of the selected timer is copied to the ICXBUF register when an input event
occurs and interrupts can be configured to fire as needed.

Relevant Functions:

setup_capture(x, mode) Sets the operation mode of the input capture module x

get_capture(x, wait) Reads the capture event time from the ICxBUF result
register. If wait is true, program flow waits until a new
result is present. Otherwise the oldest value in the buffer
is returned.

Relevant Preprocessor: None

Relevant Interrupts:

75

PCD 07202016.doc

INT_ICx Interrupt fires on capture event as configured
Relevant Include Files: None, all functions built-in.

Relevant getenv() None

parameters:

Example Code:
setup timer3(TMR INTERNAL | TMR DIV _BY 8);
setup capture (2, CAPTURE FE | CAPTURE TIMER3) ;
while (TRUE) {
timerValue = get capture(2, TRUE);
printf (“A module 2 capture event occurred at: $LU”, timerValue;

}

Internal Oscillator

Two internal oscillators are present in PCD compatible chips, a fast RC and slow RC
oscillator circuit. In many cases (consult your target datasheet or family data sheet for
target specifics) the fast RC oscillator may be connected to a PLL system, allowing a
broad range of frequencies to be selected. The Watchdog timer is derived from the slow
internal oscillator.

Relevant Functions:

setup_oscillator() Explicitly configures the oscillator.

Relevant Preprocessor: Specifies the values loaded in the device configuration
memory.

#FUSES May be used to setup the oscillator configuration.

Relevant Interrupts:
#int_oscfail Interrupts on oscillator failure

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:

CLOCK Returns the clock speed specified by #use delay()
FUSE_SETxxxx Returns 1 if the fuse xxxx is set.
Example Code: None

76

Functional Overview

Interrupts

The following functions allow for the control of the interrupt subsystem of the
microcontroller. With these functions, interrupts can be enabled, disabled, and cleared.
With the preprocessor directives, a default function can be called for any interrupt that
does not have an associated ISR, and a global function can replace the compiler
generated interrupt dispatcher.

Relevant Functions:

disable_interrupts() Disables the specified interrupt.
enable_interrupts() Enables the specified interrupt.
ext_int_edge() Enables the edge on which the edge interrupt should

trigger. This can be either rising or falling edge.

clear_interrupt() This function will clear the specified interrupt flag. This
can be used if a global isr is used, or to prevent an
interrupt from being serviced.

interrupt_active() This function checks the interrupt flag of specified
interrupt and returns true if flag is set.
interrupt enabled() This function checks the interrupt enable flag of the

specified interrupt and returns TRUE if set.

Relevant Preprocessor:
This directive tells the compiler to generate code for high
priority interrupts.
This directive tells the compiler that the specified
interrupt should be treated as a high priority interrupt.

#INT_XXX level=x x is an int 0-7, that selects the interrupt priority level for
that interrupt.
#INT_XXX fast This directive makes use of shadow registers for fast

register save.
This directive can only be used in one ISR

Relevant Interrupts:

#int_default This directive specifies that the following function should
be called if an interrupt is triggered but no routine is
associated with that interrupt.

#int_global This directive specifies that the following function should

77

PCD 07202016.doc

be called whenever an interrupt is triggered. This
function will replace the compiler generated interrupt
dispatcher.

#int_xxx This directive specifies that the following function should
be called whenever the xxx interrupt is triggered. If the
compiler generated interrupt dispatcher is used, the
compiler will take care of clearing the interrupt flag bits.

Relevant Include Files:
none, all functions built in.

Relevant getenv()
Parameters:
none

Example Code:

#int_timer0

void timerOinterrupt() /I #int_timer associates the following function with the
[l interrupt service routine that should be called

enable_interrupts(TIMERO); // enables the timer0 interrupt

disable_interrtups(TIMERO); // disables the timerQ interrupt

clear_interrupt(TIMERO); // clears the timer0Q interrupt flag

Output Compare/PWM Overview

The following functions are used to configure the output compare module. The output
compare has three modes of functioning. Single compare, dual compare, and PWM. In
single compare the output compare module simply compares the value of the OCxR
register to the value of the timer and triggers a corresponding output event on match. In
dual compare mode, the pin is set high on OCxR match and then placed low on an
OCxRS match. This can be set to either occur once or repeatedly. In PWM mode the
selected timer sets the period and the OCxRS register sets the duty cycle. Once the OC
module is placed in PWM mode the OCxR register becomes read only so the value needs
to be set before placing the output compare module in PWM mode. For all three modes of
operation, the selected timer can either be Timer 2 or Timer 3.

Relevant Functions:

setup_comparex (x, mode) Sets the mode of the output compare / PWM module x

78

Functional Overview

set_comparex_time (x, ocr, Sets the OCR and optionally OCRS register values of
[ocrs]) module x.

set_pwm_duty (x, value) Sets the PWM duty cycle of module x to the specified
value

Relevant Preprocessor:
None

Relevant Interrupts:
INT_OCx Interrupt fires after a compare event has occurred

Relevant Include Files:
None, all functions built-in.

Relevant getenv() parameters:
None

Example Code:
// Outputs a 1 second pulse on the OC2 PIN
// using dual compare mode on a PIC
// with an instruction clock of (20Mhz/4)

intlé OCR_2 = 0x1000; // Start pulse when timer is at 0x1000

intl6 OCRS_2 = 0x5C4B; // End pulse after 0x04C4B timer counts (0x1000
+ 0x04C4B
// (1 sec)/[(4/20000000)*256] = 0x04C4B
// 256 = timer prescaler value (set in code
below)

set compare time(2, OCR_2, OCRS 2);
setup compare (2, COMPARE SINGLE PULSE | COMPARE TIMER3) ;

setup timer3(TMR INTERNAL | TMR DIV BY 256);

Motor Control PWM

These options lets the user configure the Motor Control Pulse Width Modulator (MCPW M)
module. The MCPWM is used to generate a periodic pulse waveform which is useful is
motor control and power control applications. The options for these functions vary
depending on the chip and are listed in the device header file.

Relevant Functions:

setup_motor_pwm(pwm,opt Configures the motor control PWM module.

79

PCD 07202016.doc

ions, timebase);

set_motor_pwm_duty(pwm, Configures the motor control PWM unit duty.
unit,time)

set_motor_pwm_event(pw Configures the PWM event on the motor control unit.
m,time)

set_motor_unit(pwm,unit,o Configures the motor control PWM unit.

ptions, active_deadtime,

inactive_deadtime);

get_motor_pwm_event(pw Returns the PWM event on the motor control unit.
m);

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_PWM1 PWM Timebase Interrupt

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:
None

Example Code:

/I Sets up the motor PWM

module

setup_motor_pwm(1,MPWM_FREE_RUN | MPWM_SYNC_OVERRIDES, timebase);

/I Sets the PWML1, Group 1 duty cycle value to 0x55
set_motor_pwm_duty(1,1,0
x55);

//Set the motor PWM event
set_motor_pmw_event(pw
m,time);
/[Enable pwm pair
set_motor_unit(1,1,mpwm_ //Enables pwm1, Group 1 in complementary
ENABLE,0,0);
//mode, no deadtime

80

PMP/EPMP

Functional Overview

The Parallel Master Port (PMP)/Enhanced Parallel Master Port (EPMP) is a parallel 8-
bit/16-bit /O module specifically designed to communicate with a wide variety of parallel
devices. Key features of the PMP module are:

- 8 or 16 Data lines

- Up to 16 or 32 Programmable Address Lines
- Up to 2 Chip Select Lines

- Programmable Strobe option

- Address Auto-Increment/Auto-Decrement

- Programmable Address/Data Multiplexing

- Programmable Polarity on Control Signals

- Legacy Parallel Slave(PSP) Support

- Enhanced Parallel Slave Port Support

- Programmable Wait States

Relevant Functions:

setup_pmp
(options,address_mask)
setup_psp
(options,address_mask)
setup_pmp_csx(options,[off
set])

setup_psp_es(options)

pmp_write (data)
psp_write(address,data)/
psp_write(data)
pmp_read()
psp_read(address)/
psp_read()

pmp_address(address)
pmp_overflow ()

pmp_input_full ()
psp_input_full()
pmp_output_full()
psp_output_full()
Relevant Preprocessor:
None

This will setup the PMP/EPMP module for various mode
and specifies which address lines to be used.

This will setup the PSP module for various mode and
specifies which address lines to be used.

Sets up the Chip Select X Configuration, Mode and Base
Address registers

Sets up the Chip Select X Configuration and Mode
registers

Write the data byte to the next buffer location.

This will write a byte of data to the next buffer location or
will write a byte to the specified buffer location.

Reads a byte of data.

psp_read() will read a byte of data from the next buffer
location and psp_read (address) will read the buffer
location address.

Configures the address register of the PMP module with
the destination address during Master mode operation.
This will return the status of the output buffer underflow
bit.

This will return the status of the input buffers.

This will return the status of the input buffers.

This will return the status of the output buffers.

This will return the status of the output buffers.

81

PCD 07202016.doc

Relevant Interrupts :

#INT_PMP Interrupt on read or write strobe

Relevant Include Files: None, all functions built-in

Relevant getenv() None

parameters:

Example Code: setup pmp (PAR ENABLE | // Sets up

Master mode with
// address
lines PMAOQO:PMA7
PAR MASTER MODE 1 |
PAR_STOP_IN_IDLE, 0xO0FF) ;

if (pmp output full())
{

pmp write (next byte);
}

Program Eeprom

The Flash program memory is readable and writable in some chips and is just readable in
some. These options lets the user read and write to the Flash program memory. These
functions are only available in flash chips.

Relevant Functions:

read_program_eeprom(addr Reads the program memory location (16 bit or 32 bit
ess) depending on the device).

write_program_eeprom(add Writes value to program memory location address.

ress, value)

erase_program_eeprom(ad Erases FLASH_ERASE_SIZE bytes in program memory.
dress)

write_program_memory(ad Writes count bytes to program memory from dataptr to
dress,dataptr,count) address. When address is a mutiple of

FLASH_ERASE_SIZE an erase is also performed.

read_program_memory(add Read count bytes from program memory at address to

82

Functional Overview

ress,dataptr,count)

write_rom_memory
(address, dataptr, count)

read_rom_memory
(address, dataptr, count)

Relevant Preprocessor:
#ROM address={list}

#DEVICE(WRITE_EEPROM=
ASYNC)

Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters
PROGRAM_MEMORY
READ_PROGRAM
FLASH_WRITE_SIZE
FLASH_ERASE_SIZE

Example Code:

#ROM
0x300={1,2,3,4}

erase_program_eepr
om(0x00000300);

write_program_eepr
om(0x00000300,0x123
456);

value=read_program
_eeprom(0x00000300);

write_program_mem
ory(0x00000300,data, 1
2);

dataptr.

Writes count bytes to program memory from address (32
bits)

Read count bytes to program memory from address (32
bits)

Can be used to put program memory data into the hex
file.

Can be used with #DEVICE to prevent the write function

from hanging. When this is used make sure the eeprom
is not written both inside and outside the ISR.

Interrupt fires when eeprom write is complete.

Size of program memory

Returns 1 if program memory can be read
Smallest number of bytes written in flash
Smallest number of bytes erased in flash

/I Inserts this data into the hex file.
/[Erases 32 instruction locations starting at

0x0300
/I Writes 0x123456 to 0x0300

/I Reads 0x0300 returns 0x123456

I/l Erases 32 instructions starting

83

PCD 07202016.doc

/[at 0x0300 (multiple of erase block)
/ Writes 12 bytes from data to 0x0300
read_program_mem //reads 12 bytes to value from 0x0300
ory(0x00000300,value,
12);
For chips where getenv(“FLASH_ERASE_SIZE”) > getenv(“FLASH_WRITE_SIZE”)
WRITE_PROGRAM_EEPRO - Writes 3 bytes, does not erase (use

M ERASE_PROGRAM_EEPROM)

WRITE_PROGRAM_MEMOR - Writes any number of bytes, will erase a block

Y whenever the first (lowest) byte in a block is written to. If
the first address is not the start of a block that block is
not erased

- While writing, every fourth byte will be ignored. Fill
ignored bytes with 0x00. This is due to the 32 bit
addressing and 24 bit instruction length on the PCD
devices.

WRITE_ROM_MEMORY - Writes any number of bytes, will erase a block
whenever the first (lowest) byte in a block is written to. If
the first address is not the start of a block that block is

not erased.
ERASE_PROGRAM_EEPRO - Erases a block of size FLASH_ERASE_SIZE. The
M lowest address bits are not used.

For chips where getenv(“FLASH_ERASE_SIZE”) = get(“FLASH_WRITE_SIZE”)

WRITE_PROGRAM_EEPRO - Writes 3 bytes, no erase is needed.

M

WRITE_PROGRAM_MEMOR - Writes any numbers of bytes, bytes outside the range

Y of the write block are not changed. No erase is needed.
- While writing, every fourth byte will be ignored. Fill
ignored bytes with 0x00. This is due to the 32 bit
addressing and 24 bit instruction length on the PCD
devices.

WRITE_ROM_MEMORY - Writes any numbers of bytes, bytes outside the range
of the write block are not changed. No erase is needed.

ERASE_PROGRAM_EEPRO - Erase a block of size FLASH_ERASE_SIZE. The

M lowest address bits are not used.

QEI

The Quadrature Encoder Interface (QEI) module provides the interface to incremental
encoders for obtaining mechanical positional data.

84

Functional Overview

Relevant Functions:

setup_gei(options,
filter,maxcount)
gei_status()

gei_set_count(value)

gei_get_count()

Relevant Preprocessor:

Relevant Interrupts :

Relevant Include Files:

Relevant getenv()
parameters:
Example Code:

Configures the QEI module.

Returns the status of the QUI module.
Write a 16-bit value to the position counter.

Reads the current 16-bit value of the position counter.

None

#INT_QEI - Interrupt on rollover or underflow of the
position counter

None, all functions built-in
None

intl6 value;

setup gei (QEI MODE X2 | //Setup
the QEI module

QEI_TIMER_INTERNAL,

QEI_FILTER DIV _2,QEI_FORWARD) ;

Value=gei get count(); //Read the
count

RS232 1/0

These functions and directives can be used for setting up and using RS232 1/0

functionality.

Relevant Functions:

getc() or getch()
getchar() or fgetc()

Gets a character on the receive pin (from the specified
stream in case of fgetc, stdin by default). Use KBHIT to
check if the character is available.

85

PCD 07202016.doc

gets() or fgets()

putc() or putchar() or
fputc()

puts() or fputs()

printf() or fprintf()

kbhit()

setup_uart(baud,[stream])

or

setup_uart_speed(baud,[str
eam])

assert(condition)

perror(message)

putc_send() or fputc_send()

rcv_buffer_bytes()

Gets a string on the receive pin (from the specified
stream in case of fgets, STDIN by default). Use getc to
receive each character until return is encountered.

Puts a character over the transmit pin (on the specified
stream in the case of fputc, stdout by default)

Puts a string over the transmit pin (on the specified
stream in the case of fputc, stdout by default). Uses putc
to send each character.

Prints the formatted string (on the specified stream in the
case of fprintf, stdout by default). Refer to the printf help
for details on format string.

Return true when a character is received in the buffer in
case of hardware RS232 or when the first bit is sent on
the RCV pin in case of software RS232. Useful for
polling without waiting in getc.

Used to change the baud rate of the hardware UART at
run-time. Specifying stream is optional. Refer to the help
for more advanced options.

Checks the condition and if false prints the file name and
line to STDERR. Will not generate code if #DEFINE
NODEBUG is used.

Prints the message and the last system error to
STDERR.

When using transmit buffer, used to transmit data from
buffer. See function description for more detail on when
needed.

When using receive buffer, returns the number of bytes
in buffer that still need to be retrieved.

86

Functional Overview

tx_buffer_bytes()

tx_buffer_full()
receive_buffer_full()

tx_buffer_available()

#useRS232

Relevant Interrupts:

INT_RDA
INT_TBE

When using transmit buffer, returns the number of bytes
in buffer that still need to be sent.

When using transmit buffer, returns TRUE if transmit
buffer is full.

When using receive buffer, returns TRUE if receive
buffer is full.

When using transmit buffer, returns number of
characters that can be put into transmit buffer before it
overflows.

Configures the compiler to support RS232 to
specifications.

Interrupt fires when the receive data available

Interrupt fires when the transmit data empty

Some chips have more than one hardware UART, and hence more interrupts.

Relevant Include Files:

None, all functions built-in

Relevant getenv()
parameters:
UART

AUART
UART_RX
UART_TX
UART2_RX

UART2_TX

Returns the number of UARTS on this PIC

Returns true if this UART is an advanced UART

Returns the receive pin for the first UART on this PIC
(see PIN_XX)
Returns the transmit pin for the first UART on this PIC

Returns the receive pin for the second UART on this PIC

TX — Returns the transmit pin for the second UART on
this PIC

87

PCD 07202016.doc

Example Code:

/*configure and enable uart, use first hardware UART on PIC*/
#use rs232 (uartl, baud=9600)

/* print a string*/
printf ("enter a character") ;

/* get a character*/

if (kbhit()) //check if a character
has been received
c=getc() ; //read character from
UART

RTCC

The Real Time Clock and Calendar (RTCC) module is intended for applications where
accurate time must be maintained for extended periods of time with minimum or no
intervention from the CPU. The key features of the module are:

- Time: Hour, Minute and Seconds.

- 24-hour format (Military Time)

- Calendar: Weekday, Date, Month and Year.

- Alarm Configurable.

- Requirements: External 32.768 kHz Clock Crystal.

Relevant Functions:

setup_rtc (options, This will setup the RTCC module for operation and also

calibration); allows for calibration setup.

rtc_write(rtc_time_t Writes the date and time to the RTCC module.

datetime)

rtc_read(rtctime_t datetime) Reads the current value of Time and Date from the
RTCC module.

setup_rtc_alarm(options, Configures the alarm of the RTCC module.

mask, repeat);

rtc_alarm_write(rtctime_t Writes the date and time to the alarm in the RTCC

datetime); module.

rtc_alarm_read(rtctime_t Reads the date and time to the alarm in the RTCC

88

Functional Overview

datetime);

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_RTC

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

None

Example Code:
setup_rtc(RTC_ENABLE |
RTC_OUTPUT_SECONDS,
0x00);

rtc_write(datetime);
rtc_read(datetime);

module.

Interrupt on Alarm Event or half alarm frequency.

Enable RTCC module with seconds clock and no
calibration.

Write the value of Date and Time to the RTC module
Reads the value to a structure time_t.

RTOS

These functions control the operation of the CCS Real Time Operating System (RTOS).
This operating system is cooperatively multitasking and allows for tasks to be scheduled
to run at specified time intervals. Because the RTOS does not use interrupts, the user
must be careful to make use of the rtos_yield() function in every task so that no one task is

allowed to run forever.

Relevant Functions:

rtos_run()

rtos_terminate()

rtos_enable(task)

rtos_disable(task)

Begins the operation of the RTOS. All task management
tasks are implemented by this function.

This function terminates the operation of the RTOS and
returns operation to the original program. Works as a
return from the rtos_run()function.

Enables one of the RTOS tasks. Once a task is enabled,
the rtos_run() function will call the task when its time
occurs. The parameter to this function is the name of
task to be enabled.

Disables one of the RTOS tasks. Once a task is

89

PCD 07202016.doc

rtos_msg_poll()

rtos_msg_read()

rtos_msg_send(task,byte)

rtos_yield()

rtos_signal(sem)

rtos_wait(sem)

rtos_await(expre)

rtos_overrun(task)

rtos_stats(task,stat)

Relevant Preprocessor:

#USE RTOS(options)

#TASK (options)

#TASK

Relevant Interrupts:
none

disabled, the rtos_run() function will not call this task until
it is enabled using rtos_enable(). The parameter to this
function is the name of the task to be disabled.

Returns true if there is data in the task's message queue.

Returns the next byte of data contained in the task's
message queue.

Sends a byte of data to the specified task. The data is
placed in the receiving task's message queue.

Called with in one of the RTOS tasks and returns control
of the program to the rtos_run() function. All tasks
should call this function when finished.

Increments a semaphore which is used to broadcast the
availability of a limited resource.

Waits for the resource associated with the semaphore to
become available and then decrements to semaphore to
claim the resource.

Will wait for the given expression to evaluate to true
before allowing the task to continue.

Will return true if the given task over ran its alloted time.

Returns the specified statistic about the specified task.
The statistics include the minimum and maximum times
for the task to run and the total time the task has spent
running.

This directive is used to specify several different RTOS
attributes including the timer to use, the minor cycle time
and whether or not statistics should be enabled.

This directive tells the compiler that the following function
is to be an RTOS task.

specifies the rate at which the task should be called, the
maximum time the task shall be allowed to run, and how
large it's queue should be

90

Functional Overview

Relevant Include Files:
none all functions are built
in

Relevant getenv()
Parameters:
none

Example Code:

#USE
RTOS(timer=0,minor_cycle=
20ms)

int sem;

#TASK (rate=1s,max=20ms,
queue=5)
void task_name();

rtos_run();
rtos_terminate();

rtos_enable(task_name);
rtos_disable(task_name);

rtos_msg_send(task_name,
5);

rtos_yield();
rtos_sigal(sem);

/I RTOS will use timer zero, minor cycle will be 20ms

/I Task will run at a rate of once per second

// with a maximum running time of 20ms and
/l a 5 byte queue

// begins the RTOS

/I ends the RTOS

/l enables the previously declared task.
/I disables the previously declared task

/I places the value 5 in task_names queue.
/l yields control to the RTOS

/I signals that the resource represented by sem is
available.

For more information on the CCS RTOS please

SPI

SPI™ is a fluid standard for 3 or 4 wire, full duplex communications named by Motorola.
Most PIC devices support most common SPI™ modes. CCS provides a support library for
taking advantage of both hardware and software based SPI™ functionality. For software

support, see #USE SPI.

Relevant Functions:

setup_spi(mode)
setup_spi2(mode)

Configure the hardware SPI to the specified mode. The
mode configures setup_spi2(mode) thing such as master

91

PCD 07202016.doc

setup_spi3 (mode)
setup_spi4 (mode)

or slave mode, clock speed and clock/data trigger
configuration.

Note: for devices with dual SPI interfaces a second function, setup_spi2(), is
provided to configure the second interface.

spi_data_is_in()
spi_data_is_in2()

spi_write(value)
spi_write2(value)

spi_read(value)
spi_read2(value)

Relevant Preprocessor:

None

Relevant Interrupts:
#int_ssp
#int_ssp2

#int_spil
#int_spi2

Relevant Include Files:

Returns TRUE if the SPI receive buffer has a byte of
data.

Transmits the value over the SPI interface. This will
cause the data to be clocked out on the SDO pin.

Performs an SPI transaction, where the value is clocked
out on the SDO pin and data clocked in on the SDI pin is
returned. If you just want to clock in data then you can
use spi_read() without a parameter.

Transaction (read or write) has completed on the
indicated peripheral.

Interrupts on activity from the first SPI module
Interrupts on activity from the second SPI module

None, all functions built-in to the compiler.

Relevant getenv() Parameters:

SPI

Example Code:

Returns TRUE if the device has an SPI peripheral

/lconfigure the device to be a master, data transmitted on H-to-L clock transition
setup_spi(SPI_MASTER | SPI_H_TO_L | SPI_CLK_DIV_16);

spi_write(0x80);
value=spi_read();
value=spi_read(0x80);

/lwrite 0x80 to SPI device

/lread a value from the SPI device

/lwrite 0x80 to SPI device the same time you are reading
a value.

92

Functional Overview

Timers

The 16-bit DSC and MCU families implement 16 bit timers. Many of these timers may be
concatenated into a hybrid 32 bit timer. Also, one timer may be configured to use a low
power 32.768 kHz oscillator which may be used as a real time clock source.

Timerl is a 16 bit timer. It is the only timer that may not be concatenated into a hybrid 32
bit timer. However, it alone may use a synchronous external clock. This feature may be
used with a low power 32.768 kHz oscillator to create a real-time clock source.

Timers 2 through 9 are 16 bit timers. They may use external clock sources only
asynchronously and they may not act as low power real time clock sources. They may
however be concatenated into 32 bit timers. This is done by configuring an even
numbered timer (timer 2, 4, 6 or 8) as the least significant word, and the corresponding
odd numbered timer (timer 3, 5, 7 or 9, respectively) as the most significant word of the
new 32 bit timer.

Timer interrupts will occur when the timer overflows. Overflow will happen when the timer
surpasses its period, which by default is OXFFFF. The period value may be changed when
using setup_timer_X.

Relevant Functions:

setup_timer_X() Configures the timer peripheral. X may be any valid timer
for the target device. Consult the target datasheet or use
getenv to find the valid timers.

get_timerX() Retrieves the current 16 bit value of the timer.

get_timerXY() Gets the 32 bit value of the concatenated timers X and Y
(where XY may only be 23, 45, 67, 89)

set_timerX() Sets the value of timerX

set_timerXY() Sets the 32 bit value of the concatenated timers X and Y

(where XY may only be 23, 45, 67, 89)

Relevant Preprocessor:
None

Relevant Interrupts:

#int_timerX Interrupts on timer overflow (period match). X is any valid
timer number.

*When using a 32-bit timer, the odd numbered timer-interrupt of the hybrid timer

must be used. (i.e. when using 32-bit Timer23, #int_timer3)

Relevant Include Files:

93

PCD 07202016.doc

None, all functions built-in

Relevant getenv() parameters:
TIMERX Returns 1 if the device has the timer peripheral X. X may
bel-9

Example Code:
/* Setup timerl as an external real time clock that increments every 16 clock cycles */
setup_timer1(T1_EXTERNAL_RTC | T2_DIV_BY_16);

/* Setup timer2 as a timer that increments on every instruction cycle and
has a period of 0x0100 */

setup_timer2(TMR_INTERNAL, 0x0100);

byte value = 0x00;

value = get_timer2(); [Iretrieve the current value of timer2

TimerA

These options lets the user configure and use timerA. It is available on devices with Timer
A hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on
overflow. The options available are listed in the device's header file.

Relevant Functions:

setup_timer_A(mode) Disable or sets the source and prescale for timerA

set_ti merA(\/alue) Initializes the timerA clock/counter
value=get_timerA() Returns the value of the timerA clock/counter
Relevant Preprocessor:

None

Relevant Interrupts :
INT_TIMERA Interrupt fires when timerA overflows

Relevant Include Files: None, all functions built-in

Relevant getenv()
parameters:
TIMERA Returns 1 if the device has timerA

Example Code:
setup_timer_A(TA_OFF); /ldisable timerA
or

94

Functional Overview

setup_timer_A
(TA_INTERNAL |
TA_DIV_8);

set_timerA(0);
time=get_timerA();

//sets the internal clock as source
/land prescale as 8. At 20MHz timerA will increment

/levery 1.6us in this setup and overflows every
/1409.6us

/lthis sets timerA register to 0
/Ithis will read the timerA register value

TimerB

These options lets the user configure and use timerB. It is available on devices with
TimerB hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on
overflow. The options available are listed in the device's header file.

Relevant Functions:

setup_timer_B(mode)

set_timerB(value)

value=get_timerB()
Relevant Preprocessor:

Relevant Interrupts :

Relevant Include Files:

Relevant getenv()
parameters:
TIMERB

Example Code:
setup_timer_B(TB_OFF);
or

setup_timer_B
(TB_INTERNAL |
TB_DIV_8);

set_timerB(0);
time=get_timerB();

Disable or sets the source and prescale for timerB
Initializes the timerB clock/counter

Returns the value of the timerB clock/counter
None

INT_TIMERB
Interrupt fires when timerB overflows

None, all functions built-in

Returns 1 if the device has timerB

/ldisable timerB

//sets the internal clock as source

/land prescale as 8. At 20MHz timerB will
increment

/levery 1.6us in this setup and overflows every
1/1409.6us

/lthis sets timerB register to 0

{Ithis will read the timerB register value

95

PCD 07202016.doc

Voltage Reference

These functions configure the votlage reference module. These are available only in the

supported chips.

Relevant Functions:

setup_vref(mode | value)

Relevant Preprocesser:
Relevant Interrupts:
Relevant Include Files:

Relevant getenv()
parameters:
VREF

Example code: for
PIC12F675

Enables and sets up the internal voltage reference value.
Constants are defined in the device's .h file.
None

None

None, all functions built-in

Returns 1 if the device has VREF

#INT COMP //comparator interrupt handler
void isr () {

safe conditions = FALSE;

printf ("WARNING!!!! Voltage level is
above 3.6V. \r\n");
}

setup comparator (Al VR OUT ON A2)//sets 2
comparators (Al and VR and A2 as output)
{
setup_vref (VREF HIGH | 15);//sets
3.6(vdd * value/32 + vdd/4) if vdd is 5.0V
enable interrupts (INT COMP); // enable
the comparator interrupt
enable interrupts (GLOBAL); //enable
global interrupts
}

96

Functional Overview

WDT or Watch Dog Timer

Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:

setup_wdt() Enables/disables the wdt or sets the prescalar.
restart_wdt() Restarts the wdt, if wdt is enables this must be
periodically called to prevent a timeout reset.

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas on
PCH device it is done using the setup_wdt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on
PCH using fuses like WDT16, WDT256 etc.

RESTART_WDT when specified in #USE DELAY, #USE 12C and #USE RS232
statements like this #USE DELAY(clock=20000000, restart_wdt) will cause the wdt
to restart if it times out during the delay or I2C_READ or GETC.

Relevant Preprocessor:

#FUSES WDT/NOWDT Enabled/Disables wdt in PCB/PCM devices
#FUSES WDT16 Sets ups the timeout time in PCH devices
Relevant Interrupts: None

Relevant Include Files: None, all functions built-in

Relevant getenv() None

parameters:

Example Code: for #fuses wdt setup wdt (WDT 2304MS) ;
PIC16F877 while (true) {

restart wdt();
perform activity();

{

For PIC18F452 #fuse WDT1
setup wdt (WDT ON) ;
while (true) {
restart wdt();
perform activity():
}
Some of the PCB chips are share the WDT prescalar bits with timer0 so the WDT
prescalar constants can be used with setup_counters or setup_timer0 or
setup_wdt functions.

97

PCD 07202016.doc

interrupt_enabled()

This function checks the interrupt enabled flag for the specified
interrupt and returns TRUE if set.

Syntax interrupt_enabled(interrupt);

Parameters interrupt- constant specifying the interrupt

Returns Boolean value

Function The function checks the interrupt enable flag of the
specified interrupt and returns TRUE when set.

Availability Devices with interrupts

Requires Interrupt constants defined in the device's .h file.

Examp|e5 if(interrupt_enabled(INT_RDA))

Example Files

disable_interrupt(INT_RDA);
None

Also see DISABLE INTERRUPTS()interrupts Overview,
CLEAR_INTERRUPT(),
LENABLE INTERRUPTS(),INTERRUPT ACTIVE()

Stream /O

Syntax: #include <ios.h>is required to use any of the ios
identifiers.

Output: output:

stream << variable_or_constant_or_manipulator ;

one or more repeats
stream may be the name specified in the #use RS232
stream= option
or for the default stream use cout.

stream may also be the name of a char array. In this
case the data is
written to the array with a 0 terminator.

98

Functional Overview

Examples:

Input:

stream may also be the name of a function that accepts
a single char

parameter. In this case the function is called for each
character to be output.

variables/constants: May be any integer, char, float or
fixed type. Char arrays are

output as strings and all other types are output as an
address of the variable.

manipulators:

hex -Hex format numbers

dec- Decimal format numbers (default)
setprecision(x) -Set number of places after the decimal
point

setw(x) -Set total number of characters output for
numbers

boolalpha- Output intl as true and false
noboolalpha -Output intl as 1 and 0 (default)
fixed Floats- in decimal format (default)

scientific Floats- use E notation

iosdefault- All manipulators to default settings
endl -Output CR/LF

ends- Outputs a null (\000")

cout << "Value is " << hex << data << endl;
cout << "Price is $" << setw(4) << setprecision(2) << cost
<< endl;
Icdputc << \f' << setw(3) << count<<" " << min<<"
" << max;
stringl << setprecision(1l) << sum / count;
string2 << x << ''<<y;

stream >> variable_or_constant_or_manipulator ;

one or more repeats
stream may be the name specified in the #use RS232
stream= option
or for the default stream use cin.

stream may also be the name of a char array. In this
case the data is
read from the array up to the O terminator.

stream may also be the name of a function that returns a

99

PCD 07202016.doc

Examples:

single char and has

no parameters. In this case the function is called for
each character to be input.

Make sure the function returns a \r to terminate the input
statement.

variables/constants: May be any integer, char, float or
fixed type. Char arrays are

input as strings. Floats may use the E format.

Reading of each item terminates with any character not
valid for the type. Usually

items are separated by spaces. The termination
character is discarded. At the end

of any stream input statement characters are read until a
return (\r) is read. No

termination character is read for a single char input.

manipulators:
hex -Hex format numbers
dec- Decimal format numbers (default)
noecho- Suppress echoing
strspace- Allow spaces to be input into strings
nostrspace- Spaces terminate string entry (default)
iosdefault -All manipulators to default settings
cout << "Enter number: ";
cin >> value;
cout << "Enter title: ";
cin >> strspace >> title;
cin >> datali].recordid >> data[i].xpos >> data][i].ypos >>
data[i].sample ;
stringl >> data;
Icdputc << "\fEnter count";
Icdputc << keypadgetc >> count; // read from keypad,
echo to lcd

/I This syntax
only works with

/I user defined
functions.

100

PREPROCESSOR

PRE-PROCESSOR DIRECTORY

Pre-processor directives all begin with a # and are followed by a specific

command. Syntax is dependent on the command. Many commands do not allow other
syntactical elements on the remainder of the line. A table of commands and a description
is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides a pre-
processor directive that compilers will accept and ignore or act upon the following

data. This implementation will allow any pre-processor directives to begin with
#PRAGMA. To be compatible with other compilers, this may be used before non-standard
features.

Examples:
Both of the following are valid
#INLINE

#PRAGMA INLINE

__address___

A predefined symbol __address__ may be used to
indicate a type that must hold a program memory
address.

For example:
____address__ testa = 0x1000 //will allocate 16 bits for
test a and
//initialize to 0x1000

101

PCD 07202016.doc

_attribute_x
Syntax: __attribute__x
Elements: x is the attribute you want to apply. Valid values for x are as follows:

Purpose
Examples:

((packed))

By default each element in a struct or union are padded to be evenly
spaced by the size of 'int'. This is to prevent an address fault when
accessing an element of struct. See the following example:

struct

int8 a;
intl6 b;
} test;

On architectures where 'int' is 16bit (such as dsPIC or PIC24
PICmicrocontrollers), 'test' would take 4 bytes even though it is
comprised of3 bytes. By applying the 'packed" attribute to this struct
then it would take 3 bytes as originally intended:
struct __attribute__((packed))
{

int8 a;

intl6 b;

} test;

Care should be taken by the user when accessing individual elements
of a packed struct — creating a pointer to 'b' in 'test' and attempting to
dereference that pointer would cause an address fault. Any attempts to
read/write 'b* should be done in context of 'test' so the compiler knows it
is packed:

test.b = 5;

((aligned(y))
By default the compiler will alocate a variable in the first free memory

location. The aligned attribute will force the compiler to allocate a
location for the specified variable at a location that is modulus of the y
parameter. For example:

int8 array[256] __attribute__((aligned(0x1000)));
This will tell the compiler to try to place ‘array' at either 0x0, 0x1000,
0x2000, 0x3000, 0x4000, etc.
To alter some specifics as to how the compiler operates
struct __ attribute__ ((packed))

{

102

PreProcessor

int8 a;
int8 b;
} test;
int8 array[256] __attribute__ ((aligned(0x1000)));
Example Files: None
#asm #endasm #asm asis
Syntax: #ASM or #ASM ASIS code #ENDASM
Elements: code is a list of assembly language instructions
Examples: int find parity(int data) {

int count;
fasm

MOV #0x08, WO
MOV WO, count
CLR WO

loop:

XOR.B data, WO
RRC data,WO0
DEC count, F
BRA NZ, loop
MOV #0x01,wWO0
ADD count, F
MOV count, WO
MOV WO. RETURN
#endasm

}
Example Files: FFT.c

Also See: None

103

PCD 07202016.doc

ADD Wa,Wb,Wd Wwd = Wa+Wb

ADD f,W WO = f+Wd

ADD litao,wd wd = lit10+wd

ADD Wa,lit5,wd wd = lit5+Wa

ADD f,F f = f+wd

ADD acc Acc = AccA+AccB

ADD wd{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B litao,wd Wd = lit10+Wd (byte)

ADD wd{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B litao,wd wd = lit10+Wd (byte)
ADD.B f,F f = f+wd (byte)

ADD.B Wa,Wb,wd Wd = Wa+Whb (byte)
ADD.B Wa,lit5,Wd wd = lit5+Wa (byte)

ADD.B f,W WO = f+Wd (byte)

ADDC f,W wd = f+Wa+C

ADDC lito,wd wd = lit10+Wd+C

ADDC Wa,lit5,wd wd = lit5+Wa+C

ADDC f,F wd = f+Wa+C

ADDC Wa,wb,wd Wd = Wa+Wb+C

ADDC.B lit o,wd wd = litl0+Wd+C (byte)
ADDC.B Wa,Wb,wd Wd = Wa+Wb+C (byte)
ADDC.B Wa,lit5,wd wd = lit5s+Wa+C (byte)
ADDC.B fW Wd = f+Wa+C (byte)
ADDC.B f,F Wd = f+Wa+C (byte)

AND Wa,wb,wd wd =Wa.&Wb

AND litao,wd wd = lit10.&.Wd

AND f,W WO =f.&Wa

AND f,F f=f.&Wa

AND Wa,lit5,wd wd = lit5.& Wa

AND.B f,W WO = f.&Wa (byte)

AND.B Wa,Wb,wd Wd =Wa.& Wb (byte)
AND.B lit o,wd wd = lit10.&.Wd (byte)
AND.B f,F f=f.&Wa (byte)

AND.B Wa,lit5,wd wd = lit5.&.Wa (byte)

ASR f,W WO =f>>1 arithmetic
ASR f,F f=f>>1 arithmetic

ASR Wa,wd Wd=Wa>>1 arithmetic
ASR Wa,lit4,Wd Wd =Wa >> |it4 arithmetic
ASR Wa,Wb,Wd Wd = Wa >> Wb arithmetic
ASR.B f,F f=f>>1 arithmetic (byte)
ASR.B f,W WO =f>>1 arithmetic (byte)
ASR.B Wa,wd Wd=Wa>>1 arithmetic (byte)
BCLR f,.B f.bit=0

104

PreProcessor

BCLR
BCLR.B
BRA
BRA
BRA BZ
BRA C
BRA GE
BRA GEU
BRA GT
BRA GTU
BRA LE
BRA LEU
BRALT
BRALTU
BRA N
BRA NC
BRA NN
BRA NOV
BRA NZ
BRA OA
BRA OB
BRA OV
BRA SA
BRA SB
BRA Z
BREAK
BSET
BSET
BSET.B
BSwW.C
BSW.Z
BTG
BTG
BTG.B
BTSC
BTSC
BTSS
BTSS
BTST
BTST.C
BTST.C
BTST.Z
BTST.Z
BTSTS
BTSTS.C

wd,B
Wwd,B

mmmmmmmmmmmmmmmmmmmmmgm
o

Wa.bit =0

Wa.bit = 0 (byte)

Branch unconditionally

Branch PC+Wa

Branch if Zero

Branch if Carry (no borrow)
Branch if greater than or equal
Branch if unsigned greater than or equal
Branch if greater than

Branch if unsigned greater than
Branch if less than or equal
Branch if unsigned less than or equal
Branch if less than

Branch if unsigned less than
Branch if negative

Branch if not carry (Borrow)
Branch if not negative

Branch if not Overflow

Branch if not Zero

Branch if Accumulator A overflow
Branch if Accumulator B overflow
Branch if Overflow

Branch if Accumulator A Saturate
Branch if Accumulator B Saturate
Branch if Zero

ICD Break

Wa.bit=1

f.bit=1

Wa.bit = 1 (byte)

WaWwWb=C

WaWb=2Z

Wa.bit = ~Wa.bit

f.bit = ~f.bit

Wa.bit = ~Wa.hit (byte)

Skip if f.bit=0

Skip if Wa.bit4 =0

Skip if f.bit=1

Skip if Wa.bit=1

Z = f.bit

C =WaWb

C = Wa.hit

Z = Wa.bit

Z =WaWhb

Z = f.bit; f.bit=1

C = Wa.bit; Wa.bit=1

105

PCD 07202016.doc

BTSTS.Z
CALL
CALL
CLR
CLR
CLR
CLR
CLR.B
CLR.B
CLR.B
CLRWDT
COM
COM
COM
COM.B
COM.B
COM.B
cP

cP

cP

CP.B
CP.B
CP.B
CPO
CPO
CPO.B
CPO.B
CPB
CPB
CPB
CPB.B
CPB.B
CPB.B
CPSEQ
CPSEQ.B
CPSGT
CPSGT.B
CPSLT
CPSLT.B
CPSNE
CPSNE.B
DAW.B
DEC
DEC
DEC

Wd,B

a

wd

f,F
acc,da,dc,pi
f,W

wd

f,W

wd

f,F

f,F

fW
Wa,wd
f.w
Wa,Wd
f,F

W, f
Wa,wd
Wd,lit5
W, f
Wa,Wd
wd,lit5
Wd

W, f
Wd
W, f
Wd,lit5
Wa,Wd
W, f
Wa,Wd
Wd,lit5
W, f
Wa,wWd
Wa,Wd
Wa,Wd
Wa,Wd
Wa,Wd
Wa,wd
Wa,Wd
Wa,wd
Wd
Wa,Wd
W

f,F

Z = Wa.bit; Wa.bit=1

Call subroutine

Call [Wa]

f=0

Acc = 0; prefetch=0

Ww0=0

wd=0

WO = 0 (byte)

Wd = 0 (byte)

f =0 (byte)

Clear WDT

f=~f

WO = ~f

wd = ~Wa

WO = ~f (byte)

Wd = ~Wa (byte)

f=~f (byte)

Status set for f - WO

Status set for Wb 4€* Wa
Status set for Wa a€“ lits
Status set for f - WO (byte)
Status set for Wb &€ Wa (byte)
Status set for Wa &€" lit5 (byte)
Status set for Wa &€“ 0

Status set for f 8€“ 0

Status set for Wa &€* 0 (byte)
Status set for f 4€" 0 (byte)
Status set for Wa &€" lits 4€“ C
Status set for Wb a€“ Wa a€“ C
Status set for f 4€“ W0 - C
Status set for Wb &€ Wa a€“ C (byte)
Status set for Wa &€° lits 4€“ C (byte)
Status set for f 4€“ WO - C (byte)
Skip if Wa = Wb

Skip if Wa = Wb (byte)

Skip if Wa > Wb

Skip if Wa > Wb (byte)

Skip if Wa < Wb

Skip if Wa < Wb (byte)

Skip if Wa = Wb

Skip if Wa !'= Wb (byte)

Wa = decimal adjust Wa

Wd =Wa &€" 1

WO =fa€" 1

f=fa€" 1

106

PreProcessor

DEC.B f,F f=fa€" 1 (byte)

DEC.B fW WO = f 8€" 1 (byte)

DEC.B Wa,wd Wd = Wa a€* 1 (byte)

DEC2 Wa,Wd Wd =Wa &€* 2

DEC2 f,W WO =fa€"2

DEC2 f,F f=fa€ 2

DEC2.B Wa,wd Wd = Wa &€“ 2 (byte)

DEC2.B f,W WO = f 3€" 2 (byte)

DEC2.B f,F f=1fa€" 2 (byte)

DISI lit14 Disable Interrupts lit14 cycles
DIV.S Wa,Wd Signed 16/16-bit integer divide
DIV.SD Wa,Wd Signed 16/16-bit integer divide (dword)
DIV.U Wa,Wd UnSigned 16/16-bit integer divide
DIV.UD Wa,wd UnSigned 16/16-bit integer divide (dword)
DIVF Wa,wd Signed 16/16-bit fractional divide
DO litl4,a Do block lit14 times

DO Wd,a Do block Wa times

ED Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)
EDAC Wd*Wd,acc,da,db Euclidean Distance

EXCH Wa,Wd Swap Wa and Wb

FBCL Wa,Wd Find bit change from left (Msb) side
FEX ICD Execute

FF1L Wa,Wd Find first one from left (Msb) side
FF1R Wa,wd Find first one from right (Lsb) side
GOTO a GoTo

GOTO wd GoTo [Wa]

INC W Wo=f+1

INC Wa,wd Wd=Wa+1

INC f,F f=f+1

INC.B Wa,Wd Wd =Wa + 1 (byte)

INC.B f,F f=f+1 (byte)

INC.B f,wW WO =f+ 1 (byte)

INC2 W WOo=f+2

INC2 Wa,wd Wd=Wa + 2

INC2 f,F f=f+2

INC2.B fW WO = f + 2 (byte)

INC2.B fF f=f+2 (byte)

INC2.B Wa,Wd wd = Wa + 2 (byte)

IOR litao,wd wd = lit10 | wd

IOR f,F f=f|Wa

IOR fW WO =f|Wa

IOR Wa,lit5,Wwd wd =Wa.|.lits

IOR Wa,Whb,Wd wWd =Wa.|.Whb

IOR.B Wa,Wb,Wd wd = Wa.|.Wb (byte)

IOR.B fW WO = f | Wa (byte)

107

PCD 07202016.doc

IOR.B
IOR.B
IOR.B
LAC
LNK
LSR
LSR
LSR
LSR
LSR
LSR.B
LSR.B
LSR.B
MAC
MAC
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV.B
MOV.B
MOV.B
MOV.B
MOV.B
MOV.B
MOV.B
MOV.D
MOV.D
MOVSAC
MPY
MPY
MPY.N
MSC
MUL
MUL.B
MUL.SS
MUL.SU
MUL.SU
MUL.US
MUL.UU

lit1o,wd
Wa,lit5,Wd

f,F

wd {lit4},acc

lit14

f.W

Wa,lit4,Wd
Wa,Wd

f,F

Wa,Wb,Wd

fW

f,F

Wa,wd
Wd*Wd,acc,da,dc
Wd*Wc,acc,da,dc,pi
W, f

f.w

f,F

Wd,?

Walit, Wd

?,Wd

lit16,Wd

Wa,Wd
Wa,Wd+lit

lit8,wd

W, f

fwW

f,F

Wa+lit, Wd
Wa,Wd-+lit
Wa,Wd

Wa,wWd

Wa,Wd
acc,da,dc,pi
Wd*Wc,acc,da,dc
Wd*Wd,acc,da,dc
Wd*Wc,acc,da,dc
Wd*Wc,acc,da,dc,pi
W, f

W, f

Wa,wd

Wa,wWd
Wa,lit5,Wd
Wa,Wd

Wa,Wd

wd = lit10 | Wd (byte)
Wd = Wa.|.lit (byte)
f=f| Wa (byte)

Acc = Wa shifted slit4
Allocate Stack Frame
Wo=f>>1

Wd =Wa >> lit4
Wd=Wa>>1
f=f>>1

Wd =Wb >>Wa

WO =f>> 1 (byte)
f=1>>1 (byte)

Wd =Wa >> 1 (byte)
Acc = Acc + Wa * Wa; {prefetch}

Acc = Acc + Wa * Wb; {{[W13] = Acc}; {prefetch}

f=Wa

WO = f

f=f

F=Wa

Wd = [Wa +SIit10]

wd = f

wd = lit16

Wd =Wa

[wd + Slit10] = Wa

wd = 1it8 (byte)

f =Wa (byte)

WO = f (byte)

f = f (byte)

Wd = [Wa +Slit10] (byte)

[wd + SIit10] = Wa (byte)

Wd =Wa (byte)

Wd:Wd+1 = Wa:Wa+1

Wd:wd+1 = Wa:Wa+1

Move ? to ? and ? To ?

Acc = Wa*Wb

Square to Acc

Acc = -(Wa*Wb)

Acc = Acc &€ Wa*Wb
W3W2=f*Wa

W3:W2 = f * Wa (byte)

{wd+1,wWd}= sign(Wa) * sign(Wb)
{wd+1,wd} = sign(Wa) * unsign(Wb)
{Wd+1,wd}= sign(Wa) * unsign(lit5)
{Wd+1,wd} = unsign(Wa) * sign(Wb)
{Wd+1,wWd} = unsign(Wa) * unsign(Wb)

108

PreProcessor

MUL.UU
NEG
PUSH
PUSH.D
PUSH.S
PWRSAV
RCALL
RCALL
REPEAT
REPEAT
RESET
RETFIE
RETLW
RETLW.B
RETURN
RLC
RLC
RLC
RLC.B
RLC.B
RLC.B
RLNC
RLNC
RLNC
RLNC.B
RLNC.B
RLNC.B
RRC
RRC
RRC
RRC.B
RRC.B
RRC.B
RRNC
RRNC
RRNC
RRNC.B
RRNC.B
RRNC.B
SAC
SAC.R
SE
SETM
SETM
SETM.B

Wa,lits5,Wd
f,F

wd

wd

litl
a
wd
lit14
wd

lit10,wd
lit1o,wd

Wa,wd
f,F

f.w

f,F

fW
Wa,wWd
Wa,Wd
f,F

f.w

fW
Wa,wd
f,F

f,F
Wa,Wd
fwW

fW

f,F
Wa,wd
f,F

fW
Wa,Wd
f,F
Wa,Wd
fwW
acc,{lit4},wd
acc,{lit4},wd
Wa,wd
Wd

f,F

Wd

{wd+1,wd} = unsign(Wa) * unsign(lit5)
f=-f

Push Wa to TOS

PUSH double Wa:Wa + 1 to TOS
PUSH shadow registers

Enter Power-saving mode litl

Call (relative)

Call Wa

Repeat next instruction (lit14 + 1) times
Repeat next instruction (Wa + 1) times
Reset

Return from interrupt enable

Return; Wa = lit10

Return; Wa = it10 (byte)

Return

W(d = rotate left through Carry Wa

f = rotate left through Carry f

WO = rotate left through Carry f

f = rotate left through Carry f (byte)
WO = rotate left through Carry f (byte)
Wd = rotate left through Carry Wa (byte)
Wd = rotate left (no Carry) Wa

f = rotate left (no Carry) f

WO = rotate left (no Carry) f

WO = rotate left (no Carry) f (byte)

Wd = rotate left (no Carry) Wa (byte)

f = rotate left (no Carry) f (byte)

f = rotate right through Carry f

Wd = rotate right through Carry Wa
WO = rotate right through Carry f

WO = rotate right through Carry f (byte)
f = rotate right through Carry f (byte)
Wd = rotate right through Carry Wa (byte)
f = rotate right (no Carry) f

WO = rotate right (no Carry) f

Wd = rotate right (no Carry) Wa

f = rotate right (no Carry) f (byte)

Wd = rotate right (no Carry) Wa (byte)
WO = rotate right (no Carry) f (byte)
Wd = Acc slit 4

Wd = Acc slit 4 with rounding

Wd = sign-extended Wa

Wd = OxFFFF

WO = OxFFFF

Wd = OxFFFF (byte)

109

PCD 07202016.doc

SETM.B
SETM.B
SFTAC
SFTAC
SL

SL

SL

SL

SL

SL.B
SL.B
SL.B
SSTEP
SuUB
SUB
SUB
SUB
SuUB
SuUB
SUB.B
SUB.B
SUB.B
SUB.B
SUB.B
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB.B
SUBB.B
SUBB.B
SUBB.B
SUBB.B
SUBBR
SUBBR
SUBBR
SUBBR
SUBBR.B
SUBBR.B
SUBBR.B
SUBBR.B
SUBR
SUBR
SUBR

fW

f,F

acc,wd
acc,lits
fW
Wa,Wb,Wd
Wa,lit4,Wd
Wa,Wd

f.F

f,w
Wa,wd

f,F

f,F

fW
Wa,Wb,Wd
Wa,lit5,Wd
acc
lit1o,wd
Wa,lit5,wd
lit1o,wd
fw
Wa,Wb,Wd
f,F

fW
Wa,Wb,Wd
f,F
Wa,lit5,wd
lit1o,wd
lit10,wd
Wa,Wb,Wd
f,F
Wa,lit5,Wd
fw
Wa,lit5,wd
fw

f,F
Wa,Wb,Wd
f,F

fw
Wa,Wb,Wd
Wa,lit5,Wd
Wa,lit5,wd
f,F
Wa,Wb,Wd

WO = OxFFFF (byte)

WO = OXFFFF (byte)
Arithmetic shift Acc by (Wa)
Arithmetic shift Acc by Slit6
Wo=f<<1

Wd =Wa << Wb

Wd =Wa <<it4
Wd=Wa<<1

f=f<<1

WO = f << 1 (byte)

Wd = Wa << 1 (byte)
f=f<<1 (byte)

ICD Single Step
f=fa€*"Wo

WO = f € WO

Wd = Wa a€“ Wb

Wd = Wa &€" lits

Acc = AccA a€“ AccB

Wd = Wd &€" 1it10

Wd = Wa a€" lit5 (byte)

Wd = Wd &€" 1it10 (byte)
WO = f 8€“ WO (byte)

Wd = Wa &€“ Wb (byte)
f=f a&€“ WO (byte)

WO =fa€" W0 a€“ C

Wd = Wa &€“ Wb &€“ C
f=fa€" W0 a€“C
Wd=Wa a€“lits - C

Wd =Wd &€" 1it10 4€“ C
Wd = Wd &€" it10 &€“ C (byte)
Wd = Wa &€“ Wb &€“ C (byte)
f=1fa€" W0 a€” C (byte)
Wd = Wa &€° Iit5 - C (byte)
WO = f &€“ W0 a€“ C (byte)
Wd = lit5 8€*Wa - C

W0 =W0 &€“fa€“ C
f=W0a€" fa€“C
Wd=Waa€“Wb -C
f=WO0 a€" f 3€“ C (byte)
W0 =WO0 &€“ f a€“ C (byte)
Wd = Wa &€“ Wb - C (byte)
wd = Iits 8€“ Wa - C (byte)
Wd = lit5 a€* Wb

f=WO0 a€" f

Wd =Wa &€"Wb

110

PreProcessor

SUBR f,W WO = W0 a€“ f
SUBR.B Wa,Wb,wd Wd =Wa a&€“ Wb (byte)
SUBR.B f,F f=WO0 a€“f (byte)
SUBR.B Wa,lits5,wd Wd = lit5 8€“ Wb (byte)
SUBR.B f,W W0 =WO0 a€“f (byte)
SWAP wd Wa = byte or nibble swap Wa
SWAP.B wd Wa = byte or nibble swap Wa (byte)
TBLRDH WaWd Wd = ROM[Wa] for odd ROM
TBLRDH.B Wa,Wd Wd = ROM[Wa] for odd ROM (byte)
TBLRDL Wa,Wd Wd = ROM[Wa] for even ROM
TBLRDL.B WaWd Wd = ROM[Wa] for even ROM (byte)
TBLWTH Wa,Wd ROM[Wa] = Wd for odd ROM
TBLWTH.B WaWd ROM[Wa] = Wd for odd ROM (byte)
TBLWTL Wa,wd ROM[Wa] = Wd for even ROM
TBLWTL.B WaWd ROM[Wa] = Wd for even ROM (byte)
ULNK Deallocate Stack Frame
URUN ICD Run
XOR Wa,Wb,wd wd =Wa Wb
XOR f,F f=fAWO0
XOR f,wW W0 =frWO0
XOR Wa,lit5,wd wd =WaAlits
XOR lit1o,wd wd =Wwd A" litl0
XOR.B litao,wd Wd =Wd 7 1it10 (byte)
XOR.B f,W WO =f WO (byte)
XOR.B Wa,lit5,wd Wd = Wa 7 lit5 (byte)
XOR.B Wa,Wb,wd Wd =Wa *Whb (byte)
XOR.B f,F f =12 WO (byte)
ZE Wa,Wd Wd =Wa & FF
#bank_dma
Syntax: #BANK_DMA
Elements: None
Purpose: Tells the compiler to assign the data for the next variable, array or
structure into DMA bank
Examples: #bank dma
struct {
int r w;
int c:w;

long unused :2;

long data: 4;

}a port; //the data for a port will be forced into memory
bank DMA

111

PCD 07202016.doc

Example Files: None
Also See: None

#bankx

Syntax: #BANKX
Elements: None
Purpose: Tells the compiler to assign the data for the next variable, array, or

structure into Bank X.

Examples: #bankx
struct {
int r w;
int c d;
long unused : 2;
long data : 4;
} a port;
// The data for a port will be forced into memory bank x.

Example Files: None

Also See: None

#banky

Syntax: #BANKY
Elements: None
Purpose: Tells the compiler to assign the data for the next variable, array, or

structure into Bank Y.

Examples: #banky
struct {
int r_w;
int c_d;
long unused : 2;

112

PreProcessor

long data : 4;
} a port;
// The data for a port will be forced into memory bank y.

Example Files: None

Also See: None

#bit

Syntax: #BIT id =x.y

Elements: id is a valid C identifier,

X is a constant or a C variable,
y is a constant 0-7 (for 8-bit PICs)
y is a constant 0-15 (for 16-bit PICs)

Purpose: A new C variable (one bit) is created and is placed in memory at byte x
and bit y. This is useful to gain access in C directly to a bit in the
processors special function register map. It may also be used to easily
access a bit of a standard C variable.

Examples: #bit T1IF = Ox 84.3

Example Files:

Also See:

T1IF = 0; // Clear Timer 0 interrupt flag

int result;
#bit result odd = result.0

if'(resultiodd)
ex_glint.c
#BYTE, #RESERVE, #LOCATE, #WORD

113

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

__buildcount___

Only defined if Options>Project Options>Global Defines has global defines enabled.

This id resolves to a number representing the number of successful builds of the project.

#build

Syntax:

#BUILD(segment = address)

#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)

#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)

#BUILD(segment = size) : For STACK use only
#BUILD(ALT_INTERRUPT)
#BUILD(AUX_MEMORY)

Elements:

segment is one of the following memory segments which may be
assigned a location: RESET, INTERRUPT , or STACK

address is a ROM location memory address. Start and end are used to
specify a range in memory to be used. Start is the first ROM location
and end is the last ROM location to be used.

RESET will move the compiler's reset vector to the specified location.
INTERRUPT will move the compiler's interrupt service routine to the
specified location. This just changes the location the compiler puts it's

reset and ISR, it doesn't change the actual vector of the PIC. If you
specify a range that is larger than actually needed, the extra space will
not be used and prevented from use by the compiler.

STACK configures the range (start and end locations) used for the stack,
if not specified the compiler uses the last 256 bytes. The STACK can be
specified by only using the size parameters. In this case, the compiler
uses the last RAM locations on the chip and builds the stack below it.

ALT_INTERRUPT will move the compiler's interrupt service routine to
the alternate location, and configure the PIC to use the alternate
location.

nosleep is used to prevent the compiler from inserting a sleep at the end

114

PreProcessor

Purpose:

Examples:

Example Files:

Also See:

of main()

Bootload produces a bootloader-friendly hex file (in order, full block
size).

NOSLEEP_LOCK is used instead of A sleep at the end of a main A
infinite loop.

AUX_MEMORY - Only available on devices with an auxiliary memory
segment. Causes compiler to build code for the auxiliary memory
segment, including the auxiliary reset and interrupt vectors. Also enables
the keyword INT_AUX which is used to create the auxiliary interrupt
service routine.

When linking multiple compilation units, this directive must appear
exactly the same in each compilation unit.

These directives are commonly used in bootloaders, where the reset and
interrupt needs to be moved to make space for the bootloading
application.

/* assign the location where the compiler will
place the reset and interrupt vectors */
#build(reset=0%x200, interrupt=0x208)

/* assign the location and fix the size of the segments
used by the compiler for the reset and interrupt vectors */
#build (reset=0x200:0x207, interrupt=0x208:0x2ff)

/* assign stack space of 512 bytes */
#build (stack=0x1E00:0x1FFF)

#build (stack= 0x300) // When Start and End locations are not

specified, the compiler uses the last RAM locations
available on the chip.

None

#LOCATE, #RESERVE, #ROM, #ORG

115

PCD 07202016.doc

#byte

Syntax: #byte id = x
Elements: id is a valid C identifier,
x is a C variable or a constant
Purpose: If the id is already known as a C variable then this will locate the variable
at address x. In this case the variable type does not change from the
original definition. If the id is not known a new C variable is created and
placed at address x with the type int (8 bit)
Warning: In both cases memory at x is not exclusive to this
variable. Other variables may be located at the same location. In fact
when x is a variable, then id and x share the same memory location.
Examples: #byte status register = 0x42
#byte b port = 0x02C8

Example Files:

struct {
short int r w;
short int c_d;

int data : 6 ; } E port;
#byte a port = 0x2DA

a port.c d = 1;

ex_glint.c

Also See: #bit, #locate, #reserve, #word, Named Reqisters, Type Specifiers, Type
Qualifiers, Enumerated Types, Structures & Unions, Typedef

#case

Syntax: #CASE

Elements: None

Purpose: Will cause the compiler to be case sensitive. By default the compiler is

case insensitive. When linking multiple compilation units, this directive

116

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Examples:

must appear exactly the same in each compilation unit.

Warning: Not all the CCS example programs, headers and drivers have
been tested with case sensitivity turned on.

ffcase
int STATUS;

void func() {
int status;

STATUS = status; // Copy local status to
//global
}

Example Files: ex_cust.c

Also See: None

date

Syntax: _ DATE__

Elements: None

Purpose: This pre-processor identifier is replaced at compile time with the date of
the compile in the form: "31-JAN-03"

Exanuﬂes; printf ("Software was compiled on ");

Example Files:

Also See:

printf(DATE);
None

None

117

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

#define

Syntax:

#define id text
or
#define id(x,y...) text

Elements:

Purpose:

Examples:

id is a preprocessor identifier, text is any text, X,y is a list of local
preprocessor identifiers, and in this form there may be one or more
identifiers separated by commas.

Used to provide a simple string replacement of the ID with the given text
from this point of the program and on.

In the second form (a C macro) the local identifiers are matched up with
similar identifiers in the text and they are replaced with text passed to the
macro where it is used.

If the text contains a string of the form #idx then the result upon
evaluation will be the parameter id concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is
concatenated with parameter idy forming a new identifier.

Within the define text two special operators are supported:
#x is the stringize operator resulting in "x"
x#iy is the concatination operator resulting in xy

The varadic macro syntax is supported where the last parameter is
specified as ... and the local identifier used is __va_args__. In this case,
all remaining arguments are combined with the commas.

f#define BITS 8

a=a+BITS; //same as a=a+8;

#define hi (x) (x<<4)

a=hi(a); //same as a= (a<<4) ;

#define isequal (a,b) (primary ##a[b]==backup ##a[b])

// usage iseaqual (names,5) is the same as
// (primary names[5]==backup names[5])

#define str(s) #s
fdefine part (device) #include str (device##.h)
// usage part (16F887) is the same as

118

PreProcessor

Example Files:

// #include "16F887.h"
#define DBG(...) fprintf (debug, VA ARGS)

ex_stwt.c, ex_macro.c

Also See: #UNDEF, #IFDEF, #IENDEF
definedinc
Syntax: value = definedinc(variable);
Parameters: variable is the name of the variable, function, or type to be checked.
Returns: A C status for the type of id entered as follows:
0 — not known
1 - typedef or enum
2 — struct or union type
3 — typemod qualifier
4 — defined function
5 — function prototype
6 — compiler built-in function
7 — local variable
8 — global variable
Function: This function checks the type of the variable or function being passed in
and returns a specific C status based on the type.
Availability: All devices
Requires: None.
Examples: intx,y=0;
y = definedinc(x); /'y will return 7 — x is a local variable
Example Files: None
Also See: None

119

file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

PCD 07202016.doc

#device
Syntax: #DEVICE chip options

#DEVICE Compilation mode selection
Elements: Chip Options-

chip is the name of a specific processor (like: dsPIC33FJ64GP306), To
get a current list of supported devices:

START | RUN | CCSC +Q

Options are qualifiers to the standard operation of the device. Valid

options are:

ADC=x Where x is the number of bits
read_adc() should return

ADC=SIGNED Result returned from read_adc() is
signed.(Default is unsigned)

ADC=UNSIGNED Return result from read_adc() is
unsigned.(default is UNSIGNED)

ICD=TRUE Generates code compatible with
Microchips ICD debugging hardware.

ICD=n For chips with multiple ICSP ports

specify the port number being used.
The default is 1.
WRITE_EEPROM=ASYNC Prevents WRITE_EEPROM from
hanging while writing is taking place.
When used, do not write to EEPROM
from both ISR and outside ISR.
WRITE_EEPROM = NOINT Allows interrupts to occur while the
write_eeprom() operations is polling
the done bit to check if the write
operations has completed. Can be
used as long as no EEPROM
operations are performed during an

ISR.

HIGH_INTS=TRUE Use this option for high/low priority
interrupts on the PIC® 18.

%f=. No 0 before a decimal pint on %f

numbers less than 1.
OVERLOAD=KEYWORD Overloading of functions is now

120

PreProcessor

OVERLOAD=AUTO
PASS_STRINGS=IN_RAM

CONST=READ_ONLY

CONST=ROM

NESTED_INTERRUPTS=T

RUE

NORETFIE

NO_DIGITAL_INIT

DUAL_PARTITION

DUAL_PARTITION_PROT
ECTED

supported. Requires the use of the
keyword for overloading.

Default mode for overloading.

A new way to pass constant strings to
a function by first copying the string to
RAM and then passing a pointer to
RAM to the function.

Uses the ANSI keyword CONST
definition, making CONST variables
read only, rather than located in
program memory.

Uses the CCS compiler traditional
keyword CONST definition, making
CONST variables located in program
memory.

Enables interrupt nesting for PIC24,
dsPIC30, and dsPIC33 devices. Allows
higher priority interrupts to interrupt
lower priority interrupts.

ISR functions (preceeded by a
#int_xxx) will use a RETURN opcode
instead of the RETFIE opcode. This is
not a commonly used option; used
rarely in cases where the user is
writing their own ISR handler.
Normally the compiler sets all I/O pins
to digital and turns off the comparator.
This option prevents that action.

For devices with Dual Partition Flash
Modes, this enables Dual Partion
Flash mode by setting the FBOOT
configuration register to the
appropriate value. It cuts the available
program memory in half, and moves
the configuration register addresses to
the Dual Partition locations.

For devices with Dual Partition Flash
Modes this enabled Protected Dual
Partition Flash mode, Partition 1 is
write-protected when inactive, by
setting the FBOOT configuration
register to the appropriate value. It
cuts the available program memory in
half and moves the configuration

121

PCD 07202016.doc

register addresses to the Dual Partition

locations.
PARTITION_SEQUENCE= A value from 0 to 4095 to set the
X FBTSEQ configuration register. Only

used when either DUAL_PARTITION
or DUAL_PARTITION_PROTECTED
is used. The value is used to
determine which partition is active on
power-up. The Partition with the
lowest value will be the active partition.
If the value is the same for both
partitions, then Partition 1 will be the
active partition on power-up.

Both chip and options are optional, so multiple #DEVICE lines may be
used to fully define the device. Be warned that a #DEVICE with a chip
identifier, will clear all previous #DEVICE and #FUSE settings.

Compilation mode selection-

The #DEVICE directive supports compilation mode selection. The valid
keywords are CCS2, CCS3, CCS4 and ANSI. The default mode is
CCS4. For the CCS4 and ANSI mode, the compiler uses the default fuse
settings NOLVP, PUT for chips with these fuses. The NOWDT fuse is
default if no call is made to restart_wdt().

CCs4 This is the default compilation mode.

ANSI Default data type is SIGNED all other modes
default is UNSIGNED. Compilation is case
sensitive, all other modes are case insensitive.

CCS2 CCS3 varlé = NegConst8 is compiled as: varl6 =
NegConst8 & 0xff (no sign extension) . The
overload keyword is required.

CCS2 only The default #DEVICE ADC is set to the resolution
of the part, all other modes default to 8.
onebit = eightbits is compiled as onebit = (eightbits
1= 0)
All other modes compile as: onebit = (eightbits & 1)

Purpose: Chip Options -Defines the target processor. Every program must have
exactly one #DEVICE with a chip. When linking multiple compilation
units, this directive must appear exactly the same in each compilation

122

PreProcessor

Examples:

unit.

Compilation mode selection - The compilation mode selection allows
existing code to be compiled without encountering errors created by
compiler compliance. As CCS discovers discrepancies in the way
expressions are evaluated according to ANSI, the change will generally
be made only to the ANSI mode and the next major CCS release.

Chip Options-

#device DSPIC33FJ64GP306

#device PIC24FJ64GA002 ICD=TRUE

fdevice ADC=10

#device ICD=TRUE ADC=10

Float Options-

#device %f=.

printf ("$£f",.5); //will print .5, without the directive it
will print 0.5

Compilation mode selection-
#device CCS2

Example Files: None

Also See: None

device

Syntax: __ DEVICE__

Elements: None

Purpose: This pre-processor identifier is defined by the compiler with the base
number of the current device (from a #DEVICE). The base number is
usually the number after the C in the part number. For example the
PIC16C622 has a base number of 622.

Examples: #if _ device ==71
SETUP ADC PORTS (ALL DIGITAL);
#endif

Example Files: None

Also See: #DEVICE

123

PCD 07202016.doc

#if expr

#else #elif #endif

Syntax: #if expr
code
#elif expr //Optional, any number may be used
code
#else //Optional
code
#endif
Elements: expr is an expression with constants, standard operators and/or
preprocessor identifiers. Code is any standard c source code.
Purpose: The pre-processor evaluates the constant expression and if it is non-zero
will process the lines up to the optional #ELSE or the #ENDIF.
Note: you may NOT use C variables in the #IF. Only preprocessor
identifiers created via #define can be used.
The preprocessor expression DEFINED(id) may be used to return 1 if
the id is defined and O if it is not.
== and != operators now accept a constant string as both operands. This
allows for compile time comparisons and can be used with GETENV()
when it returns a string result.
Examples: #if MAX VALUE > 255

Example Files:

Also See:

long value;
#else
int value;
#endif
#if getenv (“DEVICE”)=="PIC16F877"
//do something special for the PIC16F877
#endif

ex_extee.c

#IFDEF, #IENDEF, getenv()

124

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

#error

Syntax: #ERROR text
#ERROR / warning text
#ERROR / information text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate an error at the location this directive
appears in the file. The text may include macros that will be expanded
for the display. This may be used to see the macro expansion. The
command may also be used to alert the user to an invalid compile time
situation.

Examples: #if BUFFER SIZE>16

Example Files:

Also See:

#error Buffer size is too large
fendif
#error Macro test: min(x,y)

ex _psp.c
#WARNING

#export (options)

Syntax:

#EXPORT (options)

Elements:

FILE=filname

The filename which will be generated upon compile. If not given, the
filname will be the name of the file you are compiling, with a .0 or .hex
extension (depending on output format).

ONLY=symbol+symbol+.....+symbol

Only the listed symbols will be visible to modules that import or link this
relocatable object file. If neither ONLY or EXCEPT is used, all symbols
are exported.

EXCEPT=symbol+symbol+.....+symbol

All symbols except the listed symbols will be visible to modules that
import or link this relocatable object file. If neither ONLY or EXCEPT is
used, all symbols are exported.

125

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Purpose:

Examples:

RELOCATABLE

CCS relocatable object file format. Must be imported or linked before
loading into a PIC. This is the default format when the #EXPORT is
used.

HEX
Intel HEX file format. Ready to be loaded into a PIC. This is the default
format when no #EXPORT is used.

RANGE=start:stop
Only addresses in this range are included in the hex file.

OFFSET=address
Hex file address starts at this address (0 by default)

ODD
Only odd bytes place in hex file.

EVEN
Only even bytes placed in hex file.

This directive will tell the compiler to either generate a relocatable object
file or a stand-alone HEX binary. A relocatable object file must be linked
into your application, while a stand-alone HEX binary can be
programmed directly into the PIC.

The command line compiler and the PCW IDE Project Manager can also
be used to compile/link/build modules and/or projects.

Multiple #EXPORT directives may be used to generate multiple hex files.
this may be used for 8722 like devices with external memory.

#EXPORT (RELOCATABLE, ONLY=TimerTask)
void TimerFuncl (void) { /* some code */ }
void TimerFunc2 (void) { /* some code */ }
void TimerFunc3(void) { /* some code */ }
void TimerTask (void)
{
TimerFuncl () ;
TimerFunc?2 () ;
TimerFunc3 () ;
}
/*
This source will be compiled into a relocatable object, but
the object this is being linked to can only see TimerTask()

*/

126

PreProcessor

Example Files:

None

See Also: #IMPORT, #MODULE, Invoking the Command Line Compiler, Multiple
Compilation Unit
file
Syntax: __FILE__
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with the file path
and the filename of the file being compiled.
Exan1p|es; if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
_ FILE " at line " _LINE _ "\r\n");
Example Files: assert.h
Also See: line
filename
Syntax: _ FILENAME__
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with the filename
of the file being compiled.
Examples: if (index>MAX ENTRIES)

Example Files:

Also See:

printf ("Too many entries, source file:
__FILENAME " at line " LINE__ "\r\n");

None

line

127

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

#fill_rom

Syntax: #fill_rom value

Elements: value is a constant 16-bit value

Purpose: This directive specifies the data to be used to fill unused ROM locations.
When linking multiple compilation units, this directive must appear
exactly the same in each compilation unit.

Examples: #£i11 rom 0x36

Example Files: None

Also See: #ROM

#fuses

Syntax: #FUSES options

Elements: options vary depending on the device. A list of all valid options has been
put at the top of each devices .h file in a comment for reference. The
PCW device edit utility can modify a particular devices fuses. The PCW
pull down menu VIEW | Valid fuses will show all fuses with their
descriptions.
Some common options are:
e LP, XT, HS, RC
e WDT, NOWDT
e PROTECT, NOPROTECT
e PUT, NOPUT (Power Up Timer)
e BROWNOUT, NOBROWNOUT

Purpose: This directive defines what fuses should be set in the part when it is

programmed. This directive does not affect the compilation; however, the
information is put in the output files. If the fuses need to be in Parallax

128

PreProcessor

format, add a PAR option. SWAP has the special function of
swapping (from the Microchip standard) the high and low BYTES of
non-program data in the Hex file. This is required for some device
programmers.

Some fuses are set by the compiler based on other compiler directives.
For example, the oscillator fuses are set up by the #USE delay directive.
The debug, No debug and ICSPN Fuses are set by the #DEVICE
ICD=directive.

Some processors allow different levels for certain fuses. To access these
levels, assign a value to the fuse.

When linking multiple compilation units be aware this directive applies to
the final object file. Later files in the import list may reverse settings in
previous files.

To eliminate all fuses in the output files use:
#FUSES none

To manually set the fuses in the output files use:
#FUSES 1 = 0xC200 // sets config word 1 to 0xC200

Examples: #fuses HS,NOWDT

Example Files: None

Also See: None

#hexcomment

Syntax: #HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements: None

Purpose: Puts a comment in the hex file

Some programmers (MPLAB in particular) do not like comments at the
top of the hex file.

129

PCD 07202016.doc

Examples:
Example Files:

Also See:

#HEXCOMMENT Version 3.1 - requires 20MHz crystal
None

None

#id

Syntax:

#ID number 32

#1D number, number, number, number
#ID "filename"

#I|D CHECKSUM

Elements:

Purpose:

Examples:

Example Files:

Also See:

Number 3 2 is a 32 bit number, number is a 8 bit number, filename is
any valid PC filename and checksum is a keyword.

This directive defines the ID word to be programmed into the part. This
directive does not affect the compilation but the information is put in the
output file.

The first syntax will take a 32 -bit number and put one byte in each of the
four ID bytes in the traditional manner. The second syntax specifies the
exact value to be used in each of the four ID bytes .

When a filename is specified the ID is read from the file. The format must
be simple text with a CR/LF at the end. The keyword CHECKSUM
indicates the device checksum should be saved as the ID.

#id 0x12345678

#id 0x12, 0x34, 0x45, 0x67
#id "serial.num"

#id CHECKSUM

ex_cust.c

None

130

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

#if expr

PreProcessor

#else #elif #endif

Syntax: #if expr
code
#elif expr //Optional, any number may be used
code
#else //Optional
code
#endif
Elements: expr is an expression with constants, standard operators and/or
preprocessor identifiers. Code is any standard ¢ source code.
Purpose: The pre-processor evaluates the constant expression and if it is non-zero
will process the lines up to the optional #ELSE or the #ENDIF.
Note: you may NOT use C variables in the #IF. Only preprocessor
identifiers created via #define can be used.
The preprocessor expression DEFINED(id) may be used to return 1 if
the id is defined and O if it is not.
== and != operators now accept a constant string as both operands. This
allows for compile time comparisons and can be used with GETENV()
when it returns a string result.
Examples: #if MAX VALUE > 255

Example Files:

Also See:

long value;
ffelse
int value;
#endif
#if getenv (“"DEVICE”)=="PICl6F877"”
//do something special for the PIC16F877
#endif

ex_extee.c

#IFDEF, #IENDEF, getenv()

131

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

#ifdef

#ifndef

#else #elif #endif

Syntax:

#IFDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

#IFNDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

Elements:

Purpose:

Examples:

Example Files:

Also See:

id is a preprocessor identifier, code is valid C source code.

This directive acts much like the #IF except that the preprocessor simply
checks to see if the specified ID is known to the preprocessor (created
with a #DEFINE). #IFDEF checks to see if defined and #/FNDEF checks
to see if it is not defined.

#define debug // Comment line out for no debug

#ifdef DEBUG
printf ("debug point a");
fendif

ex_sqw.c

IE

#ignore_warnings

Syntax:

#ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

132

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Elements:

Purpose:

Examples:

Example Files:

Also See:

warnings is one or more warning numbers separated by commas

This function will suppress warning messages from the compiler. ALL
indicates no warning will be generated. NONE indicates all warnings will
be generated. If numbers are listed then those warnings are suppressed.

#ignore warnings 203
while (TRUE) {
#ignore warnings NONE

None

Warning messages

#import (options)

Syntax:

#IMPORT (options)

Elements:

FILE=filname
The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol

Only the listed symbols will imported from the specified relocatable
object file. If neither ONLY or EXCEPT is used, all symbols are
imported.

EXCEPT=symbol+symbol+.....+symbol

The listed symbols will not be imported from the specified relocatable
object file. If neither ONLY or EXCEPT is used, all symbols are
imported.

RELOCATABLE
CCS relocatable object file format. This is the default format when the
#IMPORT is used.

COFF
COFF file format from MPASM, C18 or C30.

HEX
Imported data is straight hex data.

133

PCD 07202016.doc

RANGE=start:stop
Only addresses in this range are read from the hex file.

LOCATION=id

The identifier is made a constant with the start address of the imported
data.

SIZE=id

The identifier is made a constant with the size of the imported data.

Purpose: This directive will tell the compiler to include (link) a relocatable object
with this unit during compilation. Normally all global symbols from the
specified file will be linked, but the EXCEPT and ONLY options can
prevent certain symbols from being linked.

The command line compiler and the PCW IDE Project Manager can also
be used to compile/link/build modules and/or projects.

Exanuﬂes; #IMPORT (FILE=timer.o, ONLY=TimerTask)

void main (void)
{

while (TRUE)

TimerTask () ;

}
/*
timer.o is linked with this compilation, but only
TimerTask() is visible in scope from this object.
v

Example Files: None

See Also: #EXPORT, #MODULE, Invoking the Command Line Compiler, Multiple
Compilation Unit

#include
Syntax: #INCLUDE <filename>
or
#INCLUDE "filename"
Elements: filename is a valid PC filename. It may include normal drive and path

information. A file with the extension ".encrypted" is a valid PC file. The
standard compiler #INCLUDE directive will accept files with this

134

PreProcessor

extension and decrypt them as they are read. This allows include files to
be distributed without releasing the source code.

Purpose: Text from the specified file is used at this point of the compilation. If a
full path is not specified the compiler will use the list of directories
specified for the project to search for the file. If the filename is in " then
the directory with the main source file is searched first. If the filename is
in <> then the directory with the main source file is searched last.

Examples: #include <16C54.H>
#include <C:\INCLUDES\COMLIB\MYRS232.C>

Example Files: ex_sqgw.c

Also See: None

#inline

Syntax: #INLINE

Elements: None

Purpose: Tells the compiler that the function immediately following the directive is
to be implemented INLINE. This will cause a duplicate copy of the code
to be placed everywhere the function is called. This is useful to save
stack space and to increase speed. Without this directive the compiler
will decide when it is best to make procedures INLINE.

Examples: #inline
swapbyte (int &a, int &b) {

int t;
t=a;
a=b;
b=t;
}
Example Files: ex_cust.c
Also See: #SEPARATE

135

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

#INT_XXXX
#INT_AC1 Analog comparator 1 output change

Syntax: #INT_AC2 Analog comparator 2 output change
#INT_AC3 Analog comparator 3 output change
#INT_AC4 Analog comparator 4 output change
#INT_ADC1 ADC1 conversion complete
#INT_ADC2 Analog to digital conversion complete
#INT_ADCPO ADC pair 0 conversion complete
#INT_ADCP1 ADC pair 1 conversion complete
#INT_ADCP2 ADC pair 2 conversion complete
#INT_ADCP3 ADC pair 3 conversion complete
#INT_ADCP4 ADC pair 4 conversion complete
#INT_ADCP5 ADC pair 5 conversion complete
#INT_ADDRERR Address error trap
#INT_CI1RX ECAN1 Receive Data Ready
#INT_CI1TX ECAN1 Transmit Data Request
#INT_C2RX ECANZ2 Receive Data Ready
#INT_C2TX ECAN2 Transmit Data Request
#INT_CAN1 CAN 1 Combined Interrupt Request
#INT_CAN2 CAN 2 Combined Interrupt Request
#INT_CNI Input change notification interrupt
#INT_COMP Comparator event
#INT_CRC Cyclic redundancy check generator
#INT_DCI DCI transfer done
#INT_DCIE DCE error
#INT_DMAO DMA channel 0 transfer complete
#INT_DMA1 DMA channel 1 transfer complete
#INT_DMA2 DMA channel 2 transfer complete
#INT_DMA3 DMA channel 3 transfer complete
#INT_DMA4 DMA channel 4 transfer complete
#INT_DMAS DMA channel 5 transfer complete
#INT_DMAG6 DMA channel 6 transfer complete
#INT_DMA7 DMA channel 7 transfer complete
#INT_DMAERR DMAC error trap

136

PreProcessor

#INT_EEPROM Write complete

#INT_EX1 External Interrupt 1
#INT_EX4 External Interrupt 4
#INT_EXTO External Interrupt O
#INT_EXT1 External interrupt #1
#INT_EXT2 External interrupt #2
#INT_EXT3 External interrupt #3
#INT_EXT4 External interrupt #4
#INT_FAULTA PWM Fault A
#INT_FAULTA2 PWM Fault A 2
#INT_FAULTB PWM Fault B
#INT_IC1 Input Capture #1
#INT_IC2 Input Capture #2
#INT_IC3 Input Capture #3
#INT_IC4 Input Capture #4
#INT_ICS Input Capture #5
#INT_IC6 Input Capture #6
#INT_IC7 Input Capture #7
#INT_IC8 Input Capture #8
#INT_LOWVOLT Low voltage detected
#INT_LVD Low voltage detected
#INT_MATHERR Arithmetic error trap
#INT_MI2C Master 12C activity
#INT_MI2C2 Master2 12C activity
#INT_OC1 Output Compare #1
#INT_OC2 Output Compare #2
#INT_OC3 Output Compare #3
#INT_OC4 Output Compare #4
#INT_OC5 Output Compare #5
#INT_OC6 Output Compare #6
#INT_OC7 Output Compare #7
#INT_OC8 Output Compare #8
#INT_OSC_FAIL System oscillator failed
#INT_PMP Parallel master port
#INT_PMP2 Parallel master port 2
#INT_PWM1 PWM generator 1 time based interrupt

137

PCD 07202016.doc

#INT_PWM2 PWM generator 2 time based interrupt
#INT_PWM3 PWM generator 3 time based interrupt
#INT_PWM4 PWM generator 4 time based interrupt
#INT_PWMSEM PWM special event trigger

#INT_QEI QEI position counter compare
#INT_RDA RS232 receive data available
#INT_RDA2 RS232 receive data available in buffer 2
#INT_RTC Real - Time Clock/Calendar
#INT_SI2C Slave 12C activity

#INT_SI2C2 Slave2 12C activity

#INT_SPI1 SPI1 Transfer Done

#INT_SPI1E SPIL1E Transfer Done

#INT_SPI2 SPI2 Transfer Done

#INT_SPI2E SPI2 Error

#INT_SPIE SPI Error

#INT_STACKERR

Stack Error

#INT_TBE RS232 transmit buffer empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMER1 Timer 1 overflow
#INT_TIMER2 Timer 2 overflow
#INT_TIMER3 Timer 3 overflow
#INT_TIMER4 Timer 4 overflow
#INT_TIMERS Timer 5 overflow
#INT_TIMERG Timer 6 overflow
#INT_TIMERY Timer 7 overflow
#INT_TIMERS Timer 8 overflow
#INT_TIMER9 Timer 9 overflow
#INT_UARTI1E UART1 error
#INT_UART2E UART2 error

#INT_AUX Auxiliary memory ISR

Elements: NOCLEAR, LEVEL=n, HIGH, FAST, ALT

Purpose: These directives specify the following function is an interrupt function.
Interrupt functions may not have any parameters. Not all directives may
be used with all parts. See the devices .h file for all valid interrupts for
the part or in PCW use the pull down VIEW | Valid Ints

138

PreProcessor

Examples:

The MPU will jump to the function when the interrupt is detected. The
compiler will generate code to save and restore the machine state, and
will clear the interrupt flag. To prevent the flag from being cleared add
NOCLEAR after the #INT_xxxx. The application program must call
ENABLE_INTERRUPTS(INT_xxxx) to initially activate the interrupt.

An interrupt marked FAST uses the shadow feature to save registers.
Only one interrupt may be marked fast. Any registers used in the FAST
interrupt beyond the shadow registers is the responsibility of the user to
save and restore.

Level=n specifies the level of the interrupt. Higher numbers are a higher
priority.

Enable_interrupts specifies the levels that are enabled. The default is
level 0 and level 7 is never disabled.

High is the same as level = 7.

A summary of the different kinds of dsPIC/PIC24 interrupts:
HINT_Xxxx
Normal (low priority) interrupt. Compiler saves/restores key
registers.
This interrupt will not interrupt any interrupt in progress.

#INT_xxxx FAST
Compiler does a FAST save/restore of key registers.
Only one is allowed in a program.

#INT_xxxxLevel=3
Interrupt is enabled when levels 3 and below are enabled.

#INT_GLOBAL
Compiler generates no interrupt code. User function is located
at address 8 for user interrupt handling.

#INT _xxxx ALT
Interrupt is placed in Alternate Interrupt Vector instead of Default
Interrupt Vector.

#int ad

adc_handler () {
adc_active=FALSE;

}

139

PCD 07202016.doc

#int timerl noclear
isr() f

}

Example Files: None

Also See: enable_interrupts(), disable_interrupts(), #INT_DEFAULT,

#INT_DEFAULT

Syntax: #INT_DEFAULT
Elements: None
Purpose: The following function will be called if the ds PIC® triggers an interrupt

and a #INT_xxx hadler has not been defined for the interrupt.

Examples: #int default
default isr() {
printf ("Unexplained interrupt\r\n");

}

Example Files: None

Also See: #INT _xxxx,
line
Syntax: __line__
Elements: None
Purpose: The pre-processor identifier is replaced at compile time with line number

of the file being compiled.

Examples: if (index>MAX ENTRIES)

140

PreProcessor

printf ("Too many entries, source file: "
~ FILE " at line " LINE "\r\n");

Example Files: assert.h

Also See: file

#list

Syntax: #LIST
Elements: None
Purpose: #LIST begins inserting or resumes inserting source lines into the .LST

file after a #NOLIST.

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c¢74.h

Also See: #NOLIST

#line

Syntax: #LINE number file name

Elements: Number is non-negative decimal integer. File name is optional.
Purpose: The C pre-processor informs the C Compiler of the location in your

source code. This code is simply used to change the value of _LINE_
and _FILE_ variables.

Examples: 1. void main() {
#line 10 // specifies the line number that
// should be reported for
// the following line of input

141

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

PCD 07202016.doc

2. #line 7 "hello.c"
// line number in the source file
// hello.c and it sets the
// line 7 as current line
// and hello.c as current file

Example Files: None

Also See: None

#locate

Syntax: #LOCATE id=x

Elements: id is a C variable,
X is a constant memory address

Purpose: #LOCATE allocates a C variable to a specified address. If the C variable
was not previously defined, it will be defined as an INT8.
A special form of this directive may be used to locate all A functions local
variables starting at a fixed location.
Use: #LOCATE Auto = address
This directive will place the indirected C variable at the requested
address.

Examples: // This will locate the float variable at 50-53

Example Files:

Also See:

// and C will not use this memory for other
// variables automatically located.

float x;

#locate x=0x800

ex_glint.c

#byte, #bit, #reserve, #word, Named Reqisters, Type Specifiers, Type
Qualifiers, Enumerated Types, Structures & Unions, Typedef

142

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

#module

PreProcessor

Syntax:

#MODULE

Elements:

Purpose:

Examples:

Example Files:

See Also:

None

All global symbols created from the #MODULE to the end of the file will
only be visible within that same block of code (and files #NCLUDE
within that block). This may be used to limit the scope of global variables
and functions within include files. This directive also applies to pre-
processor #defines.

Note: The extern and static data qualifiers can also be used to denote
scope of variables and functions as in the standard C methodology.
#MODULE does add some benefits in that pre-processor #DEFINE can
be given scope, which cannot normally be done in standard C
methodology.

int GetCount (void) ;
void SetCount (int newCount) ;
#MODULE
int g count;
#define G_COUNT MAX 100
int GetCount (void) {return(g count);}
void SetCount (int newCount) {

if (newCount>G COUNT MAX)

newCount=G_ COUNT MAX;

g_count=newCount;
}
/*
the functions GetCount () and SetCount () have global scope,
but the variable g_count and the #define G_COUNT MAX only
has scope to this file.

2/
None

#EXPORT, Invoking the Command Line Compiler, Multiple Compilation
Unit

143

PCD 07202016.doc

#nolist

Syntax: #NOLIST

Elements: None

Purpose: Stops inserting source lines into the .LST file (until a #LIST)

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c74.h

Also See: #LIST

#ocs

Syntax: #0OCS x

Elements: x is the clock's speed and can be 1 Hz to 100 MHz.

Purpose: Used instead of the #use delay(clock = x)

Examples: #include <18F4520.h>

Example Files:

Also See:

#device ICD=TRUE
#0CS 20 MHz
#use rs232 (debugger)

void main () {

None

#USE DELAY

144

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

#opt

PreProcessor

Syntax: #OPT n

Elements: All Devices: n is the optimization level 0-9

Purpose: The optimization level is set with this directive. This setting applies to the
entire program and may appear anywhere in the file. The default is 9 for
normal.

Examples: fopt 5

Example Files: None

Also See: None

#org

Syntax:

#ORG start, end
or
#ORG segment
or
#ORG start, end { }
or
#ORG start, end auto=0
#ORG start,end DEFAULT
or
#ORG DEFAULT

Elements:

Purpose:

start is the first ROM location (word address) to use, end is the last
ROM location, segment is the start ROM location from a previous #ORG

This directive will fix the following function, constant or ROM declaration
into a specific ROM area. End may be omitted if a segment was
previously defined if you only want to add another function to the
segment.

Follow the ORG with a { } to only reserve the area with nothing inserted
by the compiler.

145

PCD 07202016.doc

Examples:

The RAM for a ORG'd function may be reset to low memory so the local
variables and scratch variables are placed in low memory. This should
only be used if the ORG'd function will not return to the caller. The RAM
used will overlap the RAM of the main program. Add a AUTO=0 at the
end of the #ORG line.

If the keyword DEFAULT is used then this address range is used for all
functions user and compiler generated from this point in the file until a
#ORG DEFAULT is encountered (no address range). If a compiler
function is called from the generated code while DEFAULT is in effect
the compiler generates a new version of the function within the specified
address range.

#0ORG may be used to locate data in ROM. Because CONSTANT are
implemented as functions the #0RG should proceed the CONSTANT
and needs a start and end address. For a ROM declaration only the
start address should be specified.

When linking multiple compilation units be aware this directive applies to
the final object file. It is an error if any #ORG overlaps between files
unless the #ORG matches exactly.

#ORG 0x1E00, Ox1FFF

MyFunc () {

//This function located at 1EO00
}

#ORG 0x1E00

Anotherfunc () {

// This will be somewhere 1E00-1F00
}

#ORG 0x800, 0x820 {}
//Nothing will be at 800-820

#ORG 0x1B80
ROM int32 seridl N0=12345;

#ORG 0x1C00, Ox1COF

CHAR CONST ID[10}= {"123456789"};
//This ID will be at 1C00

//Note some extra code will
//proceed the 123456789

#ORG 0x1F00, Ox1FFO
Void loader () {

146

PreProcessor

}

Example Files: loader.c

Also See: #ROM

#pin_select

Syntax: #PIN_SELECT function=pin_xx

Elements: function is the Microchip defined pin function name, such as: U1RX

(UART1 receive), INT1 (external interrupt 1), T2CK (timer 2 clock), IC1
(input capture 1), OC1 (output capture 1).

NULL NULL

C10uUT Comparator 1 Output
C20UT Comparator 2 Output
C30UT Comparator 3 Output
C40UT Comparator 4 Output
uiTx UART1 Transmit

UL1RTS UART1 Request to Send
u2TX UART2 Transmit

U2RTS UART2 Request to Send
u3TXx UARTS3 Transmit

U3RTS UART3 Request to Send
Uu4TX UART4 Transmit

U4RTS UART4 Request to Send
SDO1 SPI1 Data Output
SCK10UT SPI1 Clock Output
SS10UT SPI1 Slave Select Output
SDO2 SPI2 Data Output
SCK20UT SPI2 Clock Output
SS20UT SPI2 Slave Select Output
SDO3 SPI3 Data Output
SCK30UT SPI3 Clock Output
SS30UT SPI3 Slave Select Output
SDO4 SPI4 Data Output

147

file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

PCD 07202016.doc

SCK40UT
SS40UT
OC1

OC2

0C3

OocC4

0OC5

0OC6

OC7

0OCs8

0C9
OC10
OC11
0OC12
OC13
OC14
OC15
OC16
C1TX
C2TX
CSDO
CSCKOUT
COFSOUT
UPDN1
UPDN2
CTPLS
SYNCO1
SYNCO2

REFCLKO
CMP1
CMP2
CMP3
CMP4
PWM4H
PWMA4L
QEI1CCMP
QEI2CCMP
MDOUT
DCIDO
DCISCKOUT
DCIFSOUT
INT1

INT2

SPI14 Clock Output

SPI14 Slave Select Output
Output Compare 1

Output Compare 2

Output Compare 3

Output Compare 4

Output Compare 5

Output Compare 6

Output Compare 7

Output Compare 8

Output Compare 9

Output Compare 10

Output Compare 11

Output Compare 12

Output Compare 13

Output Compare 14

Output Compare 15

Output Compare 16

CANL1 Transmit

CAN2 Transmit

DCI Serial Data Output

DCI Serial Clock Output

DCI Frame Sync Output
QEI1 Direction Status Output
QEI2 Direction Status Output
CTMU Output Pulse

PWM Synchronization Output Signal
PWM Secondary Synchronization Output
Signal

REFCLK Output Signal
Analog Comparator Output 1
Analog Comparator Output 2
Analog Comparator Output 3
Analog Comparator Output 4
PWM4 High Output

PWM4 Low Output

QEI1 Counter Comparator Output
QEI2 Counter Comparator Output
DSM Modulator Output

DCI Serial Data Output

DCI Serial Clock Output

DCI Frame Sync Output
External Interrupt 1 Input
External Interrupt 2 Input

148

PreProcessor

INT3
INT4
T1CK
T2CK
T3CK
T4ACK
T5CK
T6CK
T7CK
T8CK
TICK
IC1
IC2
IC3
IC4
IC5
IC6
IC7
IC8
IC9
IC10
IC11
IC12
IC13
IC14
IC15
IC16
C1RX
C2RX
OCFA
OCFB
OCFC
U1RX
U1CTS
U2RX
U2CTS
U3RX
U3CTS
U4RX
U4CTS
SDI1
SCK1IN
SS1IN
SDI2

External Interrupt 3 Input

External Interrupt 4 Input

Timer 1 External Clock Input
Timer 2 External Clock Input
Timer 3 External Clock Input
Timer 4 External Clock Input
Timer 5 External Clock Input
Timer 6 External Clock Input
Timer 7 External Clock Input
Timer 8 External Clock Input
Timer 9 External Clock Input

Input Capture 1
Input Capture 2
Input Capture 3
Input Capture 4
Input Capture 5
Input Capture 6
Input Capture 7
Input Capture 8
Input Capture 9
Input Capture 10
Input Capture 11
Input Capture 12
Input Capture 13
Input Capture 14
Input Capture 15
Input Capture 16
CANL1 Receive
CAN2 Receive

QOutput Compare Fault A Input
Output Compare Fault B Input
Output Compare Fault C Input

UART1 Receive

UART1 Clear to Send

UART2 Receive

UART2 Clear to Send

UART3 Receive

UARTS3 Clear to Send

UART4 Receive

UART4 Clear to Send

SPI1 Data Input
SPI1 Clock Input

SPI1 Slave Select Input

SPI2 Data Input

149

PCD 07202016.doc

SCK2IN SPI2 Clock Input

SS2IN SPI2 Slave Select Input

SDI3 SPI3 Data Input

SCK3IN SPI3 Clock Input

SS3IN SPI3 Slave Select Input

SDl4 SPI4 Data Input

SCK4IN SPI14 Clock Input

SS4IN SPI14 Slave Select Input

CSDI DCI Serial Data Input

CSCK DCI Serial Clock Input

COFS DCI Frame Sync Input

FLTA1 PWML1 Fault Input

FLTA2 PWM2 Fault Input

QEA1 QEI1 Phase A Input

QEA2 QEI2 Phase A Input

QEB1 QEI1 Phase B Input

QEB2 QEI2 Phase B Input

INDX1 QEI1 Index Input

INDX2 QEI2 Index Input

HOME1 QEI1 Home Input

HOME2 QEI2 Home Input

FLT1 PWM1 Fault Input

FLT2 PWM2 Fault Input

FLT3 PWM3 Fault Input

FLT4 PWM4 Fault Input

FLT5 PWMS5 Fault Input

FLT6 PWM6 Fault Input

FLT7 PWM?7 Fault Input

FLT8 PWMS8 Fault Input

SYNCI1 PWM Synchronization Input 1

SYNCI2 PWM Synchronization Input 2

DCIDI DCI Serial Data Input

DCISCKIN DCI Serial Clock Input

DCIFSIN DCI Frame Sync Input

DTCMP1 PWM Dead Time Compensation 1 Input
DTCMP2 PWM Dead Time Compensation 2 Input
DTCMP3 PWM Dead Time Compensation 3 Input
DTCMP4 PWM Dead Time Compensation 4 Input
DTCMP5 PWM Dead Time Compensation 5 Input
DTCMP6 PWM Dead Time Compensation 6 Input
DTCMP7 PWM Dead Time Compensation 7 Input

pin_xx is the CCS provided pin definition. For example: PIN_C7,

150

PreProcessor

PIN_BO, PIN_D3, etc.

Purpose: On PICs that contain Peripheral Pin Select (PPS), this allows the
programmer to define which pin a peripheral is mapped to.
Examples: #pin select ULTX=PIN C6
#pin select UIRX=PIN C7
#pin select INT1=PIN BO
Example None
Files:
Also See: pin_select()
__pcd__
Syntax: __PCD__
Elements: None
Purpose: The PCD compiler defines this pre-processor identifier. It may be used to
determine if the PCD compiler is doing the compilation.
Examples: #ifdef pcd
#device dsPIC33FJ256MC710
fendif
Example Files: ex_sgw.c
Also See: None
#pragma
Syntax: #PRAGMA cmd
Elements: cmd is any valid preprocessor directive.
Purpose: This directive is used to maintain compatibility between C

compilers. This compiler will accept this directive before any other pre-
processor command. In no case does this compiler require this directive.

151

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Examples:

Example Files:

Also See:

#pragma device PIC16C54
ex_cust.c

None

#profile

Syntax: #profile options
Elements: options may be one of the following:
functions Profiles the start/end of functions and all
profileout() messages.
functions, Profiles the start/end of functions,
parameters parameters sent to functions, and all
profileout() messages.
profileout Only profile profilout() messages.
paths Profiles every branch in the code.
off Disable all code profiling.
on Re-enables the code profiling that was
previously disabled with a #profile off
command. This will use the last options
before disabled with the off command.
Purpose: Large programs on the microcontroller may generate lots of profile data,
which may make it difficult to debug or follow. By using #profile the user
can dynamically control which points of the program are being profiled,
and limit data to what is relevant to the user.
Examples: #profile off

void BigFunction (void)
{
// BigFunction code goes here.
// Since #profile off was called above,
// no profiling will happen even for other
// functions called by BigFunction() .
}

#profile on

152

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Example Files:

ex_profile.c

Also See: #use profile(), profileout(), Code Profile overview

#recursive

Syntax: #RECURSIVE

Elements: None

Purpose: Tells the compiler that the procedure immediately following the directive
will be recursive.

Examples: #recursive

int factorial (int num) {
if (num <= 1)
return 1;
return num * factorial (num-1);

}

Example Files: None
Also See: None
#reserve
Syntax: #RESERVE address
or
#RESERVE address, address, address
or
#RESERVE start:end
Elements: address is a RAM address, start is the first address and end is the last ad
Purpose: This directive allows RAM locations to be reserved from use by the

compiler. #RESERVE must appear after the #DEVICE otherwise it will
have no effect. When linking multiple compilation units be aware this

153

PCD 07202016.doc

directive applies to the final object file.

Examples: #DEVICE dsPIC30F2010
#RESERVE ~ 0x800:0x80B3

Example Files: ex_cust.c

Also See: #ORG

#rom

Syntax: #ROM address = {list}
#ROM type address = {list}

Elements: address is a ROM word address, list is a list of words separated by
commas

Purpose: Allows the insertion of data into the .HEX file. In particular, this may be

used to program the '84 data EEPROM, as shown in the following
example.

Note that if the #ROM address is inside the program memory space, the
directive creates a segment for the data, resulting in an error if a #ORG
is over the same area. The #ROM data will also be counted as used
program memory space.

The type option indicates the type of each item, the default is 16 bits.
Using char as the type treats each item as 7 bits packing 2 chars into
every pcm 14-bit word.

When linking multiple compilation units be aware this directive applies to
the final object file.

Some special forms of this directive may be used for verifying program
memory:

#ROM address = checksum
This will put a value at address such that the entire program memory
will sum to 0x1248

#ROM address = crcl6

154

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

This will put a value at address that is a crc16 of all the program
memory except the specified address

#ROM address = crcl6(start, end)
This will put a value at address that is a crc16 of all the program
memory from start to end.

#ROM address = crc8
This will put a value at address that is a crc16 of all the program
memory except the specified address

Examples; #rom getnev ("EEPROM ADDRESS")={1,2,3,4,5,6,7,8}
#rom int8 0x1000={" (c)CCS, 2010"}

Example Files: None

Also See: #ORG

#separate

Syntax: #SEPARATE options
Elements: options is optional, and are:

STDCALL — Use the standard Microchip calling method, used in C30.
WO0-W?7 is used for function parameters, rest of the working registers are
not touched, remaining function parameters are pushed onto the stack.

ARG=Wx:Wy — Use the working registers Wx to Wy to hold function
parameters. Any remaining function parameters are pushed onto the
stack.

DND=Wx:Wy — Function will not change Wx to Wy working registers.

AVOID=Wx:Wy — Function will not use Wx to Wy working registers for
function parameters.

NO RETURN - Prevents the compiler generated return at the end of a
function.

You cannot use STDCALL with the ARG, DND or AVOID parameters.

155

PCD 07202016.doc

Purpose:

Examples:

If you do not specify one of these options, the compiler will determine the
best configuration, and will usually not use the stack for function
parameters (usually scratch space is allocated for parameters).

Tells the compiler that the procedure IMMEDIATELY following the
directive is to be implemented SEPARATELY. This is useful to prevent
the compiler from automatically making a procedure INLINE. This will
save ROM space but it does use more stack space. The compiler will
make all procedures marked SEPARATE, separate, as requested, even
if there is not enough stack space to execute.

#separate ARG=WO:W7 AVOID=W8:W15 DND=W8:W15
swapbyte (int *a, int *b) {

int t;
t=*a;
*az*b;
*b=t;
}
Example Files: ex_cust.c
Also See: #INLINE
#serialize
Syntax: #SERIALIZE(id=xxx, next="x" | file="filename.txt" " |
listfile="filename.txt", "prompt="text", log="filename.txt") -
or
#SERIALIZE(dataee=x, binary=x, next="x" | file="filename.txt" |
listfile="filename.txt", prompt="text", log="filename.txt")
Elements: id=xxx - Specify a C CONST identifier, may be int8, int16, int32 or char

array

Use in place of id parameter, when storing serial number to EEPROM:
dataee=x - The address x is the start address in the data EEPROM.
binary=x - The integer x is the number of bytes to be written to address
specified. -or-

string=x - The integer x is the number of bytes to be written to address
specified.

156

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Purpose:

Examples:

unicode=n - If nis a 0, the string format is normal unicode. For n>0n
indicates the string
number in a USB descriptor.

Use only one of the next three options:

file="filename.txt" - The file x is used to read the initial serial number
from, and this file is updated by the ICD programmer. It is assumed this
is a one line file with the serial number. The programmer will increment
the serial number.

listfile="filename.txt" - The file x is used to read the initial serial
number from, and this file is updated by the ICD programmer. It is
assumed this is a file one serial number per line. The programmer will
read the first line then delete that line from the file.

next="x" - The serial number X is used for the first load, then the hex file
is updated to increment x by one.

Other optional parameters:

prompt="text" - If specified the user will be prompted for a serial
number on each load. If used with one of the above three options then
the default value the user may use is picked according to the above
rules.

log=xxx - A file may optionally be specified to keep a log of the date,
time, hex file name and serial number each time the part is programmed.
If no id=xxx is specified then this may be used as a simple log of all
loads of the hex file.

Assists in making serial numbers easier to implement when working with
CCS ICD units. Comments are inserted into the hex file that the ICD
software interprets.

//Prompt user for serial number to be placed

//at address of serialNumA

//Default serial number = 200int8int8 const serialNumA=100;
#serialize (id=serialNumA, next="200", prompt="Enter the serial
number")

//Adds serial number log in seriallog.txt
#serialize (id=serialNumA, next="200", prompt="Enter the serial
number", log="seriallog.txt")

//Retrieves serial number from serials.txt
#serialize (id=serialNumA,listfile="serials.txt")

157

PCD 07202016.doc

Example Files:

Also See:

//Place serial number at EEPROM address 0, reserving 1 byte
#serialize (dataee=0,binary=1,next="45",prompt="Put in Serial
number")

//Place string serial number at EEPROM address 0, reserving
2 bytes

#serialize (dataee=0, string=2,next="AB",prompt="Put in
Serial number")

None

None

H#task

(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The
#TASK directive is needed just before each RTOS task to enable the compiler to tell which
functions are RTOS tasks. An RTOS task cannot be called directly like a regular function

can.
Syntax: #TASK (options)
Elements: options are separated by comma and may be:
rate=time
Where time is a number followed by s, ms, us, or ns. This specifies how
often the task will execute.
max=time
Where time is a number followed by s, ms, us, or ns. This specifies the
budgeted time for this task.
queue=bytes
Specifies how many bytes to allocate for this task's incoming messages.
The default value is 0.
enabled=value
Specifies whether a task is enabled or disabled by rtos_run().
True for enabled, false for disabled. The default value is enabled.
Purpose: This directive tells the compiler that the following function is an RTOS

158

PreProcessor

task.

The rate option is used to specify how often the task should execute.
This must be a multiple of the minor_cycle option if one is specified in
the #USE RTOS directive.

The max option is used to specify how much processor time a task will
use in one execution of the task. The time specified in max must be
equal to or less than the time specified in the minor_cycle option of the
#USE RTOS directive before the project will compile successfully. The
compiler does not have a way to enforce this limit on processor time, so
a programmer must be careful with how much processor time a task
uses for execution. This option does not need to be specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The
default queue value is 0.

Examples: #task (rate=1s, max=20ms, queue=5)
Also See: #USE RTOS
time
Syntax: __TIME__
Elements: None
Purpose: This pre-processor identifier is replaced at compile time with the time of
the compile in the form: "hh:mm:ss"
Examples: printf ("Software was compiled on ");

Example Files:

Also See:

printf(TIME);
None

None

159

PCD 07202016.doc

#type

Syntax:

#TYPE standard-type=size
#TYPE default=area
#TYPE unsigned
#TYPE signed

#TYPE char=signed
#TYPE char=unsigned
#TYPE ARG=Wx:Wy
#TYPE DND=Wx:Wy
#TYPE AVOID=Wx:Wy
#TYPE RECURSIVE
#TYPE CLASSIC

Elements:

Purpose:

standard-type is one of the C keywords short, int, long, float, or double
size is 1,8,16, 48, or 64

area is a memory region defined before the #TYPE using the
addressmod directive

Wx:Wy is a range of working registers (example: W0, W1, W15, etc)

By default the compiler treats SHORT as 8 bits , INT as 16 bits, and
LONG as 32 bits. The traditional C convention is to have INT defined as
the most efficient size for the target processor. This is why it is 16 bits on
the dsPIC/PIC24 ® . In order to help with code compatibility a #TYPE
directive may be used to allow these types to be changed. #TYPE can
redefine these keywords.

Note that the commas are optional. Be warned CCS example programs
and include files may not work right if you use #TYPE in your program.

Classic will set the type sizes to be compatible with CCS PIC programs.
This directive may also be used to change the default RAM area used for
variable storage. This is done by specifying default=area where area is a

addressmod address space.

When linking multiple compilation units be aware this directive only
applies to the current compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to
set the default data type.

160

PreProcessor

The ARG parameter tells the compiler that all functions can use those
working registers to receive parameters. The DND parameters tells the
compiler that all functions should not change those working registers (not
use them for scratch space). The AVOID parameter tells the compiler to
not use those working registers for passing variables to functions. If you
are using recursive functions, then it will use the stack for passing
variables when there is not enough working registers to hold variables; if
you are not using recursive functions, the compiler will allocate scratch
space for holding variables if there is not enough working registers.
#SEPARATE can be used to set these parameters on an individual
basis.

The RECURSIVE option tells the compiler that ALL functions can be
recursive. #RECURSIVE can also be used to assign this status on an
individual basis.

Examples: #TYPE SHORT= 1 , INT= 8 , LONG= 16, FLOAT=48
#TYPE default=area
addressmod (user ram block, 0x100, Ox1FF);
#type default=user ram block // all variable declarations
// in this area will be in

// 0x100-0x1FF

#type default= // restores memory allocation
// back to normal

#TYPE SIGNED

#TYPE RECURSIVE
#TYPE ARG=WO:W7
#TYPE AVOID=W8:W15
#TYPE DND=W8:W15

void main ()

{

int variablel; // variablel can only take values from -128
to 127

}
Example Files: ex_cust.c

Also See: None

161

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

#undef

Syntax: #UNDEF id

Elements: id is a pre-processor id defined via #DEFINE

Purpose: The specified pre-processor ID will no longer have meaning to the pre-
processor.

Examples: #if MAXSIZE<100

#undef MAXSIZE
#define MAXSIZE 100
fendif

Example Files: None

Also See: #DEFINE
_unicode
Syntax:

__unicode(constant-string)
Elements:

Unicode format string
Purpose

This macro will convert a standard ASCII string to a Unicode
format string by inserting a \000 after each character and
removing the normal C string terminator.

For example: _unicode("ABCD")
will return: "A\00B\OOOC\000D" (8 bytes total with the
terminator)

Since the normal C terminator is not used for these strings you
need to do one of the following for variable length strings:

162

PreProcessor

Examples:

Example
Files:

string = _unicode(KEYWORD) "\000\000";
OR

string = _unicode(KEYWORD);

string_size = sizeof(_unicode(KEYWORD));

#define USB_DESC_STRING TYPE 3

#define USB_STRING(X)
(sizeof (_unicode(x))+2),USB DESC STRING TYPE, unicode (x)
#define USB ENGLISH STRING
4,USB_DESC_STRING TYPE,0x09,0x04
//Microsoft

Defined for US-English

char const USB STRING DESC[]=[
USB_ENGLISH_STRING,
USB_STRING ("CCS"),
USB STRING ("CCS HID DEMO")

}i

usb_desc_hid.h

#use capture

Syntax:

#USE CAPTURE(options)

Elements:

ICx/CCPx
Which CCP/Input Capture module to us.

INPUT = PIN_xx

Specifies which pin to use. Useful for device with
remappable pins, this will cause compiler to automatically
assign pin to peripheral.

TIMER=x

Specifies the timer to use with capture unit. If not specified
default to timer 1 for PCM and PCH compilers and timer 3
for PCD compiler.

TICK=x
The tick time to setup the timer to. If not specified it will be

163

PCD 07202016.doc

set to fastest as possible or if same timer was already
setup by a previous stream it will be set to that tick time. If
using same timer as previous stream and different tick time
an error will be generated.

FASTEST
Use instead of TICK=x to set tick time to fastest as
possible.

SLOWEST
Use instead of TICK=x to set tick time to slowest as
possible.

CAPTURE_RISING
Specifies the edge that timer value is captured on.
Defaults to CAPTURE_RISING.

CAPTURE_FALLING
Specifies the edge that timer value is captured on.
Defaults to CAPTURE_RISING.

CAPTURE_BOTH
PCD only. Specifies the edge that timer value is captured
on. Defaults to CAPTURE_RISING.

PRE=x

Specifies number of rising edges before capture event
occurs. Valid options are 1, 4 and 16, default to 1 if not
specified. Options 4 and 16 are only valid when using
CAPTURE_RISING, will generate an error is used with
CAPTURE_FALLING or CAPTURE_BOTH.

ISR=x

PCD only. Specifies the number of capture events to occur
before generating capture interrupt. Valid options are 1, 2,
3 and 4, defaults to 1 is not specified. Option 1 is only valid
option when using CAPTURE_BOTH, will generate an
error if trying to use 2, 3 or 4 with it.

STREAM=id

Associates a stream identifier with the capture module.
The identifier may be used in functions like
get_capture_time().

DEFINE=id

164

PreProcessor

Creates a define named id which specifies the number of
capture per second. Default define name if not specified is
CAPTURES_PER_SECOND. Define name must start with
an ASCI| letter 'A' to 'Z', an ASCII letter 'a' to 'z' or an ASCII
underscore (*_").

Purpose: This directive tells the compiler to setup an input capture
on the specified pin using the specified settings. The
#USE DELAY directive must appear before this directive
can be used. This directive enables use of built-in
functions such as get_capture_time() and
get_capture_event().

Examples: #USE
CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,
FASTEST)

Example None.

Files:

Also See: get capture time(), get capture event()

#use delay

Syntax: #USE DELAY (options))

Elements: Options may be any of the following separated by commas:

clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).

This number can contains commas. This number also supports the
following denominations: M, MHZ, K, KHZ. This specifies the clock the
CPU runs at. Depending on the PIC this is 2 or 4 times the instruction
rate. This directive is not needed if the following type=speed is used and
there is no frequency multiplication or division.

type=speed type defines what kind of clock you are using, and the
following values are valid: oscillator, osc (same as oscillator), crystal, xtal
(same as crystal), internal, int (same as internal) or rc. The compiler will
automatically set the oscillator configuration bits based upon your
defined type. If you specified internal, the compiler will also automatically
set the internal oscillator to the defined speed. Configuration fuses are
modified when this option is used. Speed is the input frequency.

restart_wdt will restart the watchdog timer on every delay_us() and
delay_ms() use.

165

PCD 07202016.doc

Also See:

ACT or ACT=type for device with Active Clock Tuning, type can be
either USB or SOSC. If only using ACT type will default to USB.
ACT=USB causes the compiler to enable the active clock tuning and to
tune the internal oscillator to the USB clock. ACT=SOSC causes the
compiler to enable the active clock tuning and to tune the internal
oscillator to the secondary clock at 32.768 kHz. ACT can only be used
when the system clock is set to run from the internal oscillator.

AUX: type=speed Some chips have a second oscillator used by
specific periphrials and when this is the case this option sets up that
oscillator.

PLL_WAIT when used with a PLL clock, it causes the compiler to poll
PLL ready flag and to only continue program execution when flag
indicates that the PLL is ready.

delay _ms(), delay_us()

#use dynamic_memory

Syntax: #USE DYNAMIC_MEMORY

Elements: None

Purpose: This pre-processor directive instructs the compiler to create the
_DYNAMIC_HEAD object. _DYNAMIC_HEAD is the location where the
first free space is allocated.

Examples: #USE DYNAMIC MEMORY

Example Files:

Also See:

void main () {

}
ex_malloc.c

None

166

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

#use fast_io

Syntax:

#USE FAST_IO (port)

Elements:

Purpose:

Examples:
Example Files:

Also See:

portisA,B,C,D, E,F, G, H,Jor ALL

Affects how the compiler will generate code for input and output
instructions that follow. This directive takes effect until another #use
xxxx_|O directive is encountered. The fast method of doing I/O will cause
the compiler to perform 1/0 without programming of the direction

register. The compiler's default operation is the opposite of this
command, the direction I/O will be set/cleared on each 1/O operation.
The user must ensure the direction register is set correctly via
set_tris_X(). When linking multiple compilation units be aware this
directive only applies to the current compilation unit.

#use fast io(A)
ex_cust.c

#USE FIXED 10, #USE STANDARD 10, set _tris X() , General Purpose
110

#use fixed _io

Syntax:

#USE FIXED_IO (port_outputs=pin, pin?)

Elements:

Purpose:

port is A-G, pin is one of the pin constants defined in the devices .h file.

This directive affects how the compiler will generate code for input and
output instructions that follow. This directive takes effect until another
#USE XXX_IO directive is encountered. The fixed method of doing I/10
will cause the compiler to generate code to make an I/O pin either input
or output every time it is used. The pins are programmed according to
the information in this directive (not the operations actually

performed). This saves a byte of RAM used in standard /0. When
linking multiple compilation units be aware this directive only applies to
the current compilation unit.

167

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Examples:

Example Files:

#use fixed io(a outputs=PIN A2, PIN A3)

None

Also See: #USE FAST 10, #USE STANDARD 10, General Purpose 1/O
#use i2c

Syntax: #USE 12C (options)

Elements: Options are separated by commas and may be:

MASTER

Sets to the master mode

MULTI_MASTER
SLAVE

SCL=pin
SDA=pin
ADDRESS=nn
FAST
FAST=nnnnnn
SLOW
RESTART_WDT

FORCE_HW
FORCE_SW
NOFLOAT_HIGH

SMBUS
STREAM=id

NO_STRETCH
MASK=nn

Set the multi_master mode

Set the slave mode

Specifies the SCL pin (pin is a bit address)
Specifies the SDA pin

Specifies the slave mode address

Use the fast 12C specification.

Sets the speed to nnnnnn hz

Use the slow 12C specification

Restart the WDT while waiting in 12C_READ

Use hardware 12C functions.
Use software 12C functions.

Does not allow signals to float high, signals are
driven from low to high
Bus used is not [2C bus, but very similar

Associates a stream identifier with this 12C port.
The identifier may then be used in functions like
i2c_read or i2c_write.

Do not allow clock streaching

Set an address mask for parts that support it

168

PreProcessor

Purpose:

Examples:

Example Files:

Also See:

12C1 Instead of SCL= and SDA= this sets the pins to
the first module
12C2 Instead of SCL= and SDA= this sets the pins to

the second module

NOINIT No initialization of the 12C peripheral is
performed. Use I2C_INIT() to initialize
peripheral at run time.

Only some chips allow the following:

DATA_HOLD No ACK is sent until I2C_READ is called for
data bytes (slave only)

ADDRESS_HOLD No ACK is sent until I2C_read is called for the
address byte (slave only)

SDA_HOLD Min of 300ns holdtime on SDA a from SCL goes
low

CCS offers support for the hardware-based 12C™ and a software-based
master 12C™ device.(For more information on the hardware-based 12C
module, please consult the datasheet for your target device; not all PICs
support [2C™.

The 12C library contains functions to implement an 12C bus. The #USE
I12C remains in effect for the 12C_START, 12C_STOP, 12C_READ,
I2C_WRITE and 12C_POLL functions until another USE 12C is
encountered. Software functions are generated unless the FORCE_HW
is specified. The SLAVE mode should only be used with the built-in SSP.
The functions created with this directive are exported when using
multiple compilation units. To access the correct function use the stream
identifier.

#use I2C(master, sda=PIN BO, scl=PIN Bl)

#use I2C(slave,sda=PIN C4,scl=PIN C3
address=0xa0, FORCE HW)

#use I2C(master, scl=PIN B0, sda=PIN Bl, fast=450000)
//sets the target speed to 450 KBSP

ex_extee.c with 16¢74.h

i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr,
i2c isr state, i2c_write, i2c_read, 12C Overview

169

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink3.click()

PCD 07202016.doc

#use profile()

Syntax: #use profile(options)
Elements: options may be any of the following, comma separated:
ICD Default — configures code profiler to use the ICD
connection.
TIMER1 Optional. If specified, the code profiler run-

time on the microcontroller will use the
Timerl peripheral as a timestamp for all
profile events. If not specified the code
profiler tool will use the PC clock, which may

not be accurate for fast events.

BAUD=x Optional. If specified, will use a different baud rate
between the microcontroller and the code profiler tool.
This may be required on slow microcontrollers to
attempt to use a slower baud rate.

Purpose: Tell the compiler to add the code profiler run-time in the microcontroller
and configure the link and clock.

Examples: #profile(ICD, TIMER1, baud=9600)

Example Files: ex_profile.c

Also See: #profile(), profileout(), Code Profile overview
#use pwm()
Syntax: #use pwm (options)
Elements: options are separated by commas and may be:
PWMx or CCPx Selects the CCP to use, x being the
module number to use.
PWMx or OCx Selects the Output Compare module, x being

170

PreProcessor

OUTPUT=PIN_xx

TIMER=X

FREQUENCY=x

PERIOD=x

BITS=x

the module number to use.

Selects the PWM pin to use, pin must be one
of the OC pins. If device has remappable
pins compiler will assign specified pin to
specified OC module. If OC module not
specified it will assign remappable pin to first
available module.

Selects timer to use with PWM module,
default if not specified is timer 2.

Sets the period of PWM based off specified
value, should not be used if PERIOD is
already specified. If frequency can't be
achieved exactly compiler will generate a
message specifying the exact frequency and
period of PWM. If neither FREQUENCY or
PERIOD is specified, the period defaults to
maximum possible period with maximum
resolution and compiler will generate a
message specifying the frequency and
period of PWM, or if using same timer as
previous stream instead of setting to
maximum possible it will be set to the same
as previous stream. If using same timer as
previous stream and frequency is different
compiler will generate an error.

Sets the period of PWM, should not be used
if FREQUENCY is already specified. If
period can't be achieved exactly compiler will
generate a message specifying the exact
period and frequency of PWM. If neither
PERIOD or FREQUENCY is specified, the
period defaults to maximum possible period
with maximum resolution and compiler will
generate a message specifying the
frequency and period of PWM, or if using
same timer as previous stream instead of
setting to maximum possible it will be set to
the same as previous stream. If using same
timer as previous stream and period is
different compiler will generate an error.
Sets the resolution of the the duty cycle, if
period or frequency is specified will adjust
the period to meet set resolution and will
generate an message specifying the

171

PCD 07202016.doc

Purpose:

Examples:

Also See:

DUTY=x
PWM_ON

PWM_OFF
STREAM=id

frequency and duty of PWM. If period or
frequency not specified will set period to
maximum possible for specified resolution
and compiler will generate a message
specifying the frequency and period of PWM,
unless using same timer as previous then it
will generate an error if resolution is different
then previous stream. If not specified then
frequency, period or previous stream using
same timer sets the resolution.

Selects the duty percentage of PWM, default
if not specified is 50%.

Initialize the PWM in the ON state, default
state if pwm_on or pwm_off is not specified.
Initalize the PWM in the OFF state.
Associates a stream identifier with the PWM
signal. The identifier may be used in
functions like pwm set duty percent().

This directive tells the compiler to setup a PWM on the specified pin
using the specified frequency, period, duty cycle and resolution. The
#USE DELAY directive must appear before this directive can be used.
This directive enables use of built-in functions such as
set_pwm_duty_percent(), set_pwm_frequency(), set_pwm_period(),

pwm_on() and pwm_off().

None

pwm_on(), pwm_off(), pwm_set_frequency(), pwm_set duty percent(),

pwm_set_duty()

#use rs232

Syntax:

#USE RS232 (options)

Elements:

Options are separated by commas and may be:

STREAM=id

Associates a stream identifier with this
RS232 port. The identifier may then be
used in functions like fputc.

172

PreProcessor

BAUD=x
XMIT=pin
RCV=pin

FORCE_SW

BRGH1OK

ENABLE=pin

DEBUGGER

RESTART_WDT

INVERT

PARITY=X

BITS =X

FLOAT_HIGH

ERRORS

Set baud rate to x
Set transmit pin
Set receive pin

Will generate software serial I/O routines
even when the UART pins are specified.

Allow bad baud rates on chips that have
baud rate problems.

The specified pin will be high during
transmit. This may be used to enable 485
transmit.

Indicates this stream is used to
send/receive data through a CCS ICD unit.
The default pin used is B3, use XMIT= and
RCV= to change the pin used. Both should
be the same pin.

Will cause GETC() to clear the WDT as it
waits for a character.

Invert the polarity of the serial pins
(normally not needed when level converter,
such as the MAX232). May not be used with
the internal UART.

Where xis N, E, or O.

Where x is 5-9 (5-7 may not be used with
the SCI).

The line is not driven high. This is used for
open collector outputs. Bit 6 in
RS232_ERRORS is set if the pin is not high
at the end of the bit time.

Used to cause the compiler to keep receive
errors in the variable RS232_ERRORS and
to reset errors when they occur, and

RS232 BUFFER ERRORS when transmit

173

PCD 07202016.doc

SAMPLE_EARLY

RETURN=pin

MULTI_MASTER

LONG_DATA

DISABLE_INTS

STOP=X

TIMEOUT=X

SYNC_SLAVE

or RECEIVE_BUFFER are used.

A getc() normally samples data in the
middle of a bit time. This option causes the
sample to be at the start of a bit time. May
not be used with the UART.

For FLOAT_HIGH and MULTI_MASTER
this is the pin used to read the signal back.
The default for FLOAT_HIGH is the XMIT
pin and for MULTI_MASTER the RCV pin.

Uses the RETURN pin to determine if
another master on the bus is transmitting at
the same time. If a collision is detected bit 6
is set in RS232_ERRORS and all future
PUTC's are ignored until bit 6 is cleared.
The signal is checked at the start and end
of a bit time. May not be used with the
UART.

Makes getc() return an int16 and putc
accept an int16. This is for 9 bit data
formats.

Will cause interrupts to be disabled when
the routines get or put a character. This
prevents character distortion for software
implemented 1/O and prevents interaction
between I/O in interrupt handlers and the
main program when using the UART.

To set the number of stop bits (default is 1).
This works for both UART and non-UART
ports.

To set the time getc() waits for a byte in
milliseconds. If no character comes in within
this time the RS232_ERRORS is set to 0 as
well as the return value form getc(). This
works for both UART and non-UART ports.

Makes the RS232 line a synchronous slave,
making the receive pin a clock in, and the

174

PreProcessor

SYNC_MASTER

SYNC_MATER_CONT

UART1

UART1A
UART2
UART2A

NOINIT

ICD

UART3

UART4

data pin the data in/out.

Makes the RS232 line a synchronous
master, making the receive pin a clock out,
and the data pin the data in/out.

Makes the RS232 line a synchronous
master mode in continuous receive mode.
The receive pin is set as a clock out, and
the data pin is set as the data in/out.

Sets the XMIT= and RCV= to the chips first
hardware UART.

Uses alternate UART pins

Sets the XMIT= and RCV= to the chips
second hardware UART.
Uses alternate UART pins

No initialization of the UART peripheral is
performed. Useful for dynamic control of the
UART baud rate or initializing the peripheral
manually at a later point in the program's
run time. If this option is used, then
setup_uart() needs to be used to initialize
the peripheral. Using a serial routine (such
as getc() or putc()) before the UART is
initialized will cause undefined behavior.
Indicates this stream is used to
send/receive data through a CCS ICD unit.
The default transmit pin is the PIC's
ICSPDAT/PGD pin and the default receive
pin is the PIC's ICSPCLK/PGC pin. Use
XMIT= and RCV= to change the pins
used.

PCD devices with multiple programming pin
pairs, use #device ICSP=x to specify which
pin pair ICD it is connected to. Option is not
available when Debugging, see
DEBUGGER option above.

Sets the XMIT= and RCV= to the device's
third hardware UART.

Sets the XMIT=_and RCV=_to the device's

175

PCD 07202016.doc

ICD

MAX_ERROR=x

Serial Buffer Options:
RECEIVE_BUFFER=x

TRANSMIT_BUFFER=Xx

TXISR

NOTXISR

Flow Control Options:

RTS = PIN_xx
RTS_LEVEL=x
CTS = PIN_xx

fourth hardware UART.

Indicates this stream uses the ICD in a
special pass through mode to send/receive
serial data to/from PC. The ICSP clock line
is the PIC's receive pin, usually pin B6, and
the ICSP data line is the PIC's transmit pin,
usually pin B7.

Specifies the max error percentage the
compiler can set the RS232 baud rate from
the specified baud before generating an
error. Defaults to 3% if not specified.

Size in bytes of UART circular receive
buffer, default if not specified is zero. Uses
an interrupt to receive data, supports RDA
interrupt or external interrupts.

Size in bytes of UART circular transmit
buffer, default if not specified is zero.

If TRANSMIT_BUFFER is greater then zero
specifies using TBE interrupt for
transmitting data. Default is NOTXISR if
TXISR or NOTXISR is not specified. TXISR
option can only be used when using
hardware UART.

If TRANSMIT_BUFFER is greater then zero
specifies to not use TBE interrupt for
transmitting data. Default is NOTXISR if
TXISR or NOTXISR is not specified and
XMIT_BUFFER is greater then zero

Pin to use for RTS flow control. When
using FLOW_CONTROL_MODE this pin is
driven to the active level when it is ready to
receive more data. In SIMPLEX_ MODE the
pin is driven to the active level when it has
data to transmit.

FLOW_CONTROL_MODE can only be use
when using RECEIVE_BUFFER

Specifies the active level of the RTS pin,
HIGH is active high and LOW is active low.
Defaults to LOW if not specified.

Pin to use for CTS flow control. In both
FLOW_CONTROL_MODE and

SIMPLEX MODE this pin is sampled to see

176

PreProcessor

if it clear to send data. If pin is at active
level and there is data to send it will send
next data byte.

CTS_LEVEL=x Specifies the active level of the CTS pin,
HIGH is active high and LOW is active low.
Default to LOW if not specified

FLOW_CONTROL_MODE Specifies how the RTS pin is used. For
FLOW_CONTROL_MODE the RTS pin is
driven to the active level when ready to
receive data. Defaults to
FLOW_CONTROL_MODE when neither
FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS pin is
not specified then this option is not used.

SIMPLEX_MODE Specifies how the RTS pin is used. For
SIMPLEX_MODE the RTS pin is driven to
the active level when it has data to send.
Defaults to FLOW_CONTROL_MODE
when neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS pin is
not specified then this option is not used.

Purpose: This directive tells the compiler the baud rate and pins used for serial I/O.
This directive takes effect until another RS232 directive is encountered. The
#USE DELAY directive must appear before this directive can be used. This
directive enables use of built-in functions such as GETC, PUTC, and
PRINTF. The functions created with this directive are exported when using
multiple compilation units. To access the correct function use the stream
identifier.

When using parts with built-in UART and the UART pins are specified, the
SCI will be used. If a baud rate cannot be achieved within 3% of the desired
value using the current clock rate, an error will be generated. The definition of
the RS232_ERRORS is as follows:

No UART:
e Bit 7 is 9th bit for 9 bit data mode (get and put).
e Bit 6 set to one indicates a put failed in float high mode.

With a UART:

e Used only by get:

e Copy of RCSTA register except:

e Bit 0 is used to indicate a parity error.

177

PCD 07202016.doc

The definition of the RS232_BUFFER_ERRORS variable is as follows:
o[BIt 0 UART Receive overrun error occurred.

o[1Bit 1 Receive Buffer overflowed.

o[0Bit 2 Transmit Buffer overflowed.

Warning:

The PIC UART will shut down on overflow (3 characters received by the
hardware with a GETC() call). The "ERRORS" option prevents the shutdown
by detecting the condition and resetting the UART.

Examples: #use rs232 (baud=9600, xmit=PIN A2, rcv=PIN A3)

Example ex_cust.c

Files:

Also See: getc(), putc(), printf(), setup uart(), RS2332 I/O overview, kbhit(), puts(),
putc_send(),
rcv_buffer_bytes(), tx_buffer_bytes(), rcv_buffer full(), tx_buffer_full(),
tx_buffer_available()

#use rtos

(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC micro controller to run regularly
scheduled tasks without the need for interrupts. This is accomplished by a function
(RTOS_RUN()) that acts as a dispatcher. When a task is scheduled to run, the dispatch
function gives control of the processor to that task. When the task is done executing or does
not need the processor anymore, control of the processor is returned to the dispatch function
which then will give control of the processor to the next task that is scheduled to execute at
the appropriate time. This process is called cooperative multi-tasking.

Syntax:

#USE RTOS (options)

Elements:

options are separated by comma and may be:

timer=X Where x is 0-4 specifying the timer used by
the RTOS.
minor_cycle=time Where time is a number followed by s, ms, us,

ns. This is the longest time any task will run.
Each task's execution rate must be a multiple

178

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

of this time. The compiler can calculate this if it
is not specified.

statistics Maintain min, max, and total time used by each
task.
Purpose: This directive tells the compiler which timer on the PIC to use for monitoring

and when to grant control to a task. Changes to the specified timer's
prescaler will effect the rate at which tasks are executed.

This directive can also be used to specify the longest time that a task will
ever take to execute with the minor_cycle option. This simply forces all task
execution rates to be a multiple of the minor_cycle before the project will
compile successfully. If the this option is not specified the compiler will use a
minor_cycle value that is the smallest possible factor of the execution rates of
the RTOS tasks.

If the statistics option is specified then the compiler will keep track of the
minimum processor time taken by one execution of each task, the maximum
processor time taken by one execution of each task, and the total processor
time used by each task.

When linking multiple compilation units, this directive must appear exactly the
same in each compilation unit.

Examples; #use rtos(timer=0, minor cycle=20ms)

Also See: #TASK

#use spl
Syntax: #USE SPI (options)
Elements: Options are separated by commas and may be:
MASTER Set the device as the master. (default)
SLAVE Set the device as the slave.
BAUD=n Target bits per second, default is as fast as
possible.
CLOCK_HIGH=n High time of clock in us (not needed if BAUD= is
used). (default=0)
CLOCK_LOW=n Low time of clock in us (not needed if BAUD= is

used). (default=0)

179

PCD 07202016.doc

Purpose:

Dl=pin
DO=pin
CLK=pin
MODE=n
ENABLE=pin
LOAD=pin

DIAGNOSTIC=pin
SAMPLE_RISE
SAMPLE_FALL
BITS=n
SAMPLE_COUNT=n

LOAD_ACTIVE=n
ENABLE_ACTIVE=n
IDLE=n
ENABLE_DELAY=n

DATA_HOLD=n
LSB_FIRST
MSB_FIRST
STREAM=id
SPI1

SPI2
FORCE_SW
FORCE_HW
SPI3

SPI4
NOINIT
XFER16

Optional pin for incoming data.

Optional pin for outgoing data.

Clock pin.

The mode to put the SPI bus.

Optional pin to be active during data transfer.
Optional pin to be pulsed active after data is
transferred.

Optional pin to the set high when data is sampled.
Sample on rising edge.

Sample on falling edge (default).

Max number of bits in a transfer. (default=32)
Number of samples to take (uses majority vote).
(default=1

Active state for LOAD pin (0O, 1).

Active state for ENABLE pin (0, 1). (default=0)
Inactive state for CLK pin (0, 1). (default=0)
Time in us to delay after ENABLE is activated.
(default=0)

Time between data change and clock change
LSB is sent first.

MSB is sent first. (default)

Specify a stream name for this protocol.

Use the hardware pins for SPI Port 1

Use the hardware pins for SPI Port 2

Use a software implementation even when
hardware pins are specified

Use the pic hardware SPI.

Use the hardware pins for SPI Port 3

Use the hardware pins for SPI Port 4

Do not initialize the hardware SPI Port

Uses 16 BIT transfers instead of two 8 BIT
transfers

The SPI library contains functions to implement an SPI bus. After setting all of
the proper parameters in #USE SPI, the spi_xfer() function can be used to
both transfer and receive data on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The
most common pins present on hardware SPI are: DI, DO, and CLK. These
pins don’t need to be assigned values through the options; the compiler will
automatically assign hardware-specific values to these pins. Consult your
PIC’s data sheet as to where the pins for hardware SPI are. If hardware SPI
is not used, then software SPI will be used. Software SPI is much slower than
hardware SPI, but software SPI can use any pins to transfer and receive data

180

PreProcessor

Examples:

Example
Files:
Also See:

other than just the pins tied to the PIC’s hardware SPI pins.

The MODE option is more or less a quick way to specify how the stream is
going to sample data. MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1
sets IDLE=0 and SAMPLE_FALL. MODE=2 sets IDLE=1 and
SAMPLE_FALL. MODE=3 sets IDLE=1 and SAMPLE_RISE. There are only
these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams:
one to send data and another to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options are
defaulted as indicated above.

#use spi (DI=PIN7B1 , DO=PIN7BO , CLK=PIN7B2 ’ ENABLE=PIN7B4 ,
BITS=16)

// uses software SPI

#use spi (FORCE_HW, BITS=16, stream=SPI_STREAM)
// uses hardware SPI and gives this stream the name SPI STREAM

None

spi_xfer()

#use standard _io

Syntax: #USE STANDARD_IO (port)
Elements: portisA,B,C,D, E, F, G, H,Jor ALL
Purpose: This directive affects how the compiler will generate code for input and output

instructions that follow. This directive takes effect until another #USE
XXX_10O directive is encountered. The standard method of doing 1/0 will
cause the compiler to generate code to make an 1/O pin either input or output
every time it is used. On the 5X processors this requires one byte of RAM
for every port set to standard /0.

Standard_io is the default /O method for all ports.

When linking multiple compilation units be aware this directive only applies to
the current compilation unit.

181

PCD 07202016.doc

Examples: #use standard io (A)

Example ex_cust.c

Files:

Also See: #USE FAST 10, #USE FIXED 10, General Purpose 1/O
#use timer

Syntax: #USE TIMER (options)

Elements: TIMER=x

Sets the timer to use as the tick timer. x is a valid timer that the PIC has.
Default value is 1 for Timer 1.

TICK=xx

Sets the desired time for 1 tick. xx can be used with ns(nanoseconds), us
(microseconds), ms (milliseconds), or s (seconds). If the desired tick time
can't be achieved it will set the time to closest achievable time and will
generate a warning specifying the exact tick time. The default value is 1us.

BITS=x

Sets the variable size used by the get_ticks() and set_ticks() functions for
returning and setting the tick time. x can be 8 for 8 bits, 16 for 16 bits, 32 for
32bits or 64 for 64 bits. The default is 32 for 32 bits.

ISR
Uses the timer's interrupt to increment the upper bits of the tick timer. This
mode requires the the global interrupt be enabled in the main program.

NOISR

The get_ticks() function increments the upper bits of the tick timer. This
requires that the get_ticks() function be called more often then the timer's
overflow rate. NOISR is the default mode of operation.

STREAM=id
Associates a stream identifier with the tick timer. The identifier may be used
in functions like get_ticks().

182

file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

PreProcessor

DEFINE=id

Creates a define named id which specifies the number of ticks that will occur
in one second. Default define name if not specified is
TICKS_PER_SECOND. Define name must start with an ASCII letter ‘A’ to
'Z', an ASCII letter 'a' to 'z' or an ASCII underscore (*_").

COUNTER or COUNTER=x

Sets up specified timer as a counter instead of timer. x specifies the
prescallar to setup counter with, default isl if x is not specified specified. The
function get_ticks() will return the current count and the function set_ticks()
can be used to set count to a specific starting value or to clear counter.

Purpose: This directive creates a tick timer using one of the PIC's timers. The tick
timer is initialized to zero at program start. This directive also creates the
define TICKS_PER_SECOND as a floating point number, which specifies
that number of ticks that will occur in one second.

Examples: #USE TIMER(TIMER=1,TICK=1ms,BITS=16,NOISR)

unsigned intl6 tick difference (unsigned intlé current, unsigned
intlé previous) {
return (current - previous);

}

void main (void) {
unsigned intlé current tick, previous_ tick;
current tick = previous tick = get ticks();
while (TRUE) {
current tick = get ticks();
if (tick difference (current tick, previous tick) > 1000) {
output toggle (PIN BO);
previous tick = current tick;

}

Example None
Files:
Also See: get_ticks(), set_ticks()

183

PCD 07202016.doc

#use touchpad

Syntax:

#USE TOUCHPAD (options)

Elements:

Purpose:

Examples:

RANGE=x

Sets the oscillator charge/discharge current range. If x is L, current is
nominally 0.1 microamps. If x is M, current is nominally 1.2 microamps. If X is
H, current is nominally 18 microamps. Default value is H (18 microamps).

THRESHOLD=x

X is a number between 1-100 and represents the percent reduction in the
nominal frequency that will generate a valid key press in software. Default
value is 6%.

SCANTIME=xxMS

xX is the number of milliseconds used by the microprocessor to scan for one
key press. If utilizing multiple touch pads, each pad will use xx milliseconds to
scan for one key press. Default is 32ms.

PIN=char
If a valid key press is determined on “PIN”, the software will return the
character “char” in the function touchpad_getc(). (Example: PIN_BO="A")

SOURCETIME=xxus (CTMU only)
xx is thenumber of microseconds each pin is sampled for by ADC during
each scan time period. Default is 10us.

This directive will tell the compiler to initialize and activate the Capacitive
Sensing Module (CSM)or Charge Time Measurement Unit (CTMU) on the
microcontroller. The compiler requires use of the TIMERO and TIMER1
modules for CSM and Timerl ADC modules for CTMU, and global interrupts
must still be activated in the main program in order for the CSM or CTMU to
begin normal operation. For most applications, a higher RANGE, lower
THRESHOLD, and higher SCANTIME will result better key press detection.
Multiple PIN's may be declared in “options”, but they must be valid pins used
by the CSM or CTMU. The user may also generate a TIMERO ISR with
TIMERO's interrupt occuring every SCANTIME milliseconds. In this case, the
CSM's or CTMU's ISR will be executed first.

#USE TOUCHPAD (THRESHOLD=5, PIN7D5='5', PIN7B0='C')
void main (void) {

char c;

enable interrupts (GLOBAL) ;

184

PreProcessor

Example
Files:
Also See:

while (1) {
c = TOUCHPAD GETC(); //will wait until a pin is detected
} //if PIN B0 is pressed, c will have
VCV
} //1if PIN D5 is pressed, c will have
15t -
None

touchpad_state(), touchpad_getc(), touchpad_hit()

#warning

Syntax: #WARNING text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate a warning at the location this directive
appears in the file. The text may include macros that will be expanded for the
display. This may be used to see the macro expansion. The command may
also be used to alert the user to an invalid compile time situation.
To prevent the warning from being counted as a warning, use this syntax:
#warning/information text

Examples: #if BUFFER SIZE < 32
#warning Buffer Overflow may occur
#endif

Example ex_psp.c

Files:

Also See: #ERROR

#word

Syntax: #WORD id = x

185

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Elements:

Purpose:

Examples:

Example
Files:
Also See:

id is a valid C identifier,
X is a C variable or a constant

If the id is already known as a C variable then this will locate the variable at
address x. In this case the variable type does not change from the original
definition. If the id is not known a new C variable is created and placed at
address x with the type int16

Warning: In both cases memory at x is not exclusive to this variable. Other
variables may be located at the same location. In fact when x is a variable,
then id and x share the same memory location.

#word data = 0x0860

struct {

short C;

short Z;

short OV;

short N;

short RA;

short IPLO;

short IPL1;

short IPL2;

int upperByte : 8;
} status register;
#word status_register = 0x42

short zero = status register.Z;
None

#bit, #byte, #locate, #reserve, Named Reqisters, Type Specifiers, Type
Qualifiers, Enumerated Types, Structures & Unions, Typedef

#zero_ram

Syntax:

#ZERO_RAM

Elements:

Purpose:

None

This directive zero's out all of the internal registers that may be used to hold

186

PreProcessor

Examples:

Example
Files:
Also See:

variables before program execution begins.

#zero ram
void main () {

}

ex_cust.c

None

187

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

BUILT-IN FUNCTIONS

BUILT-IN FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the PIC
microcontroller's peripherals. This makes it very easy for the users to configure and use
the peripherals without going into in depth details of the registers associated with the
functionality. The functions categorized by the peripherals associated with them are listed
on the next page. Click on the function name to get a complete description and parameter
and return value descriptions.

abs()

Syntax: value = abs(x)

Parameters: X is any integer or float type.

Returns: Same type as the parameter.

Function: Computes the absolute value of a number.
Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: signed int target,actual;

error = abs(target-actual);

Example Files: None

Also See: labs()

189

PCD 07202016.doc

sin() cos() tan() asin() acos()
atan() sinh() cosh() tanh() atan2()

Syntax: val = sin (rad)
val = cos (rad)
val = tan (rad)
rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters: rad is any float type representing an angle in Radians -2pi to 2pi.
val is any float type with the range -1.0 to 1.0.
Value is any float type

Returns: rad is a float with a precision equal to val representing an angle in Radians
-pi/2 to pi/2

val is a float with a precision equal to rad within the range -1.0 to 1.0.

radl is a float with a precision equal to val representing an angle in
Radians 0 to pi

rad2 is a float with a precision equal to val representing an angle in
Radians -pi to pi

Result is a float with a precision equal to value

Function: These functions perform basic Trigonometric functions.
sin returns the sine value of the parameter (measured in
radians)
cos returns the cosine value of the parameter (measured in radians)
tan returns the tangent value of the parameter (measured in
radians)

asin returns the arc sine value in the range [-pi/2,+pi/2] radians
acos returns the arc cosine value in the range[0,pi] radians

atan returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2 returns the arc tangent of y/x in the range [-pi,+pi] radians
sinh returns the hyperbolic sine of x

190

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

cosh returns the hyperbolic cosine of x
tanh returns the hyperbolic tangent of x

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the
errno variable. The user can check the errno to see if an error has occurred
and print the error using the perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:
cosh: when the argument is too large
sinh: when the argument is too large

All devices

#INCLUDE <math.h>

float phase;

// Output one sine wave

for (phase=0; phase<2*3.141596; phase+=0.01)
set _analog voltage(sin(phase)+1);

ex_tank.c

lod(), log10(), exp(), pow(), sqart()

adc_done() adc_done2()

Syntax: value =adc_done();
value = adc_done2();
value=adc_done([channel])
Parameters: None

channel is an optional parameter for specifying the channel to check if the
conversion is done. If not specified will use channel specified in the last
call to set_adc_channel(), read_adc() or adc_done(). Only available for

191

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

dsPIC33EPxxGSxxx family.

A short int. TRUE if the A/D converter is done with conversion, FALSE if it
is still busy.

Can be polled to determine if the A/D has valid data.
Only available on devices with built in analog to digital converters
None

intl6 value;

setup adc ports (sANO|sAN1l, VSS VDD);
setup_adc (ADC_CLOCK DIV _4|ADC TAD MUL 8);
set _adc_channel (0);

read adc (ADC_START ONLY);

intl done = adc done();
while (!done) {
done = adc_done();

}

value = read adc (ADC_READ ONLY) ;
printf ("A/C value = $LX\n\r”, value);
}

None

Also See: setup_adc(), set _adc_channel(), setup_adc_ports(), read adc(), ADC
Overview
adc_read()
Syntax: result=adc_read(register)
Parameters: register - ADC register to read:
. ADC _RESULT
. ADC_ACCUMULATOR
. ADC_FILTER
Returns: int8 or in16 read from the specified register. Return size depends on which
register is being read. For example, ADC_RESULT register is 16 bits and
ADC_COUNT register is 8-bits.
Function: Reads one of the Analog-to-Digital Converter with Computation (ADC2)

192

Built-in Functions

Availability:
Requires:
Examples:
Also See:

Module registers

All devices with an ADC2 Module

Constants defined in the device's .h file

FilteredResult=adc read(ADC FILTER);

ADC Overview, setup_adc(), setup_adc_ports(), set_adc _channel(),

read_adc(),
#DEVICE, adc_write(), adc_status(), set_adc_trigger()

adc_status()

Syntax: status=adc_status()
Parameters: None
Returns: int8 value of the ADSTAT register
Function: Read the current value of the ADSTAT register of the Analog-to-Digital
Converter with Computation (ADC2) Module.
Availability: All devices with an ADC2 Module
Requires: Nothing
Examples; while ((adc_status() & ADC UPDATING)==0);
Average=adc read (ADC FILTER) ;
Also See: ADC Overview, setup_adc(), setup_adc_ports(), set_adc_channel(),
read_adc(),
#DEVICE, adc_read(), adc_write(), set_adc_trigger()
adc_write()
Syntax: adc_write(register, value)
Parameters: register - ADC register to write:
. ADC_REPEAT
. ADC_SET_POINT
. ADC_LOWER_THRESHOLD
. ADC_UPPER_THRESHOLD
Returns: undefined
Function: Write one of the Analog-to-Digital Converter with Computation (ADC2)
Module registers.
Availability: All devices with an ADC2 Module
Requires: Constants defined in the device's .h file
Examples: adc_write (ADC_SET_POINT, 300);
Also See: ADC Overview, setup _adc(), setup_adc_ports(), set adc_channel(),

193

PCD 07202016.doc

read_adc(),
#DEVICE, adc_read(), adc_status(), set_adc_trigger()

assert()

Syntax: assert (condition);

Parameters: condition is any relational expression

Returns: Nothing

Function: This function tests the condition and if FALSE will generate an error
message on STDERR (by default the first USE RS232 in the
program). The error message will include the file and line of the
assert(). No code is generated for the assert() if you #define NODEBUG. In
this way you may include asserts in your code for testing and quickly
eliminate them from the final program.

Availability: All devices

Requires: assert.h and #USE RS232

Examples: assert (number of entries<TABLE SIZE);

// 1f number of entries is >= TABLE SIZE then
// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56

Example Files: None

Also See: #USE RS232, RS232 I/O Overview

atoe

Syntax: atoe(string);

Parameters: string is a pointer to a null terminated string of characters.
Returns: Result is a floating point number

194

Built-in Functions

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Converts the string passed to the function into a floating point
representation. If the result cannot be represented, the behavior is
undefined. This function also handles E format numbers .

All devices

#INCLUDE <stdlib.h>

char string [10];

float32 x;

strcpy (string, "12E3");
x = atoe(string);
// x is now 12000.00

None
atoi(), atol(), atoi32(), atof(), printf()

atof()

atof48() atof64()

Syntax:

result = atof (string)
or

result = atof48(string)
or
result=atof64(string)
or
result-strtof48(string))

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

string is a pointer to a null terminated string of characters.

Result is a floating point number in single, extended or double precision

format

Converts the string passed to the function into a floating point
representation. If the result cannot be represented, the behavior is
undefined.

All devices

#INCLUDE <stdlib.h>

char string [10];

float x;

195

strtof48()

PCD 07202016.doc

Example Files:

Also See:

strcpy (string, "123.456");
x = atof (string);

// x is now 123.456
ex_tank.c

atoi(), atol(), atoi32(), printf()

pin_select()

Syntax:

pin_select(peripheral_pin, pin, [unlock],[lock])

Parameters:

Returns:

Availability:
Requires:
Examples:

peripheral_pin — a constant string specifying which peripheral pin to map
the specified pin to. Refer to #pin_select for all available strings. Using
“NULL” for the peripheral_pin parameter will unassign the output peripheral
pin that is currently assigned to the pin passed for the pin parameter.

pin — the pin to map to the specified peripheral pin. Refer to device's
header file for pin defines. If the peripheral_pin parameter is an input,
passing FALSE for the pin parameter will unassign the pin that is currently
assigned to that peripheral pin.

unlock — optional parameter specifying whether to perform an unlock
sequence before writing the RPINRx or RPORX register register
determined by peripheral_pin and pin options. Default is TRUE if not
specified. The unlock sequence must be performed to allow writes to the
RPINRx and RPORX registers. This option allows calling pin_select()
multiple times without performing an unlock sequence each time.

lock — optional parameter specifying whether to perform a lock sequence
after writing the RPINRx or RPORX registers. Default is TRUE if not
specified. Although not necessary it is a good idea to lock the RPINRx and
RPORX registers from writes after all pins have been mapped. This option
allows calling pin_select() multiple times without performing a lock
sequence each time.

Nothing.

On device with remappable peripheral pins.
Pin defines in device's header file.
pin_select(“U2TX",PIN_BO0);

196

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

/IMaps PIN_BO to U2TX //peripheral pin, performs unlock
/land lock sequences.

pin_select(“U2TX”,PIN_BO,TRUE,FALSE);

/IMaps PIN_BO to U2TX //peripheral pin and performs
/lunlock sequence.

pin_select(“U2RX”,PIN_B1,FALSE, TRUE);

/IMaps PIN_B1 to U2RX //peripheral pin and performs lock

/lsequence.
Example Files: None.
Also See: #pin_select

atoi() atol() atoi32() atol32()
atoi48() atoi64()

Syntax: ivalue = atoi(string)

or
Ivalue = atol(string)

or
i32value = atoi32(string)
or
i48value=atoi48(string)
or
i64value=atoi64(string)
or

L32vale=atol32(string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: ivalue is an 8 bit int.
Ivalue is a 16 bit int.
i32value is a 32 bit int.
48value is a 48 bit int.
i64value is a 64 bit int.
L32value is a 32 bit long.

Function: Converts the string passed to the function into an int
representation. Accepts both decimal and hexadecimal argument. If the

197

PCD 07202016.doc

Availability:
Requires:

Examples:

Example Files:

Also See:

result cannot be represented, the behavior is undefined.
All devices
#INCLUDE <stdlib.h>

char string[10];
int x;

strcpy(string,"123");

x = atoi (string);
// x is now 123

input.c
printf()

at_clear_interrupts()

Syntax: at_clear_interrupts(interrupts);
Parameters: interrupts - an 8-bit constant specifying which AT interrupts to disable.
The constants are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT
Returns: Nothing
Function: To disable the Angular Timer interrupt flags. More than one interrupt can
be cleared at a time by or'ing multiple constants together in a single call, or
calling function multiple times for each interrupt to clear.
Availability: All devices with an AT module.
Requires: Constants defined in the device's header file
Examples: #INT-AT1

198

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Example Files:

Also See:

voidl isr(void)

[
if (at_interrupt active (AT PERIOD INTERRUPT))

[
handle period interrupt();
at clear interrupts (AT _PERIOD INTERRUPT) ;

]
if (at_interrupt (active (AT PHASE INTERRUPT);

[
handle phase interrupt();
at clear interrupts (AT_PHASE INTERRUPT);

]

None

at_set_resolution(), at_get_resolution(), at_set_missing_pulse_delay(),
at_get _missing_pulse _delay(), at_get_period(), at_get phase_counter(),
at_set set point(), at get set point(), at get set_point_error(),
at_enable interrupts(), at_disable interrupts(), at_interrupt_active(),
at_setup cc(), at_set compare time(), at_get_capture(), at_get_status(),

setup_at()

at_disable_interrupts()

Syntax:

at_disable_interrupts(interrupts);

Parameters:

Returns:

Function:

interrupts - an 8-bit constant specifying which AT interrupts to disable.
The constants are defined in the device's header file as:
- AT_PHASE_INTERRUPT

AT_MISSING_PULSE_INTERRUPT

AT_PERIOD_INTERRUPT

AT_CC3_INTERRUPT

AT_CC2_INTERRUPT

AT_CC1_INTERRUPT

Nothing
To disable the Angular Timer interrupts. More than one interrupt can be

disabled at a time by or'ing multiple constants together in a single call, or
calling function multiple times for eadch interrupt to be disabled.

199

PCD 07202016.doc

Availability:
Requires:

Examples:

Example Files:

Also See:

All devices with an AT module.

Constants defined in the device's header file

at disable interrupts (AT PHASE INTERRUPT) ;
at disable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUPT);

None

at_set resolution(), at_get resolution(), at_set_missing_pulse delay(),
at_get missing pulse delay(), at_get period(), at_get phase counter(),
at_set set point(), at get set point(), at get set_point_error(),
at_enable interrupts(), at_clear interrupts(), at_interrupt_active(),
at_setup cc(), at_set compare time(), at_get_capture(), at_get_status(),

setup_at()

at_enable_interrupts()

Syntax:

at_enable_interrupts(interrupts);

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

interrupts - an 8-bit constant specifying which AT interrupts to enable.
The constants are defined in the device's header file as:
- AT_PHASE_INTERRUPT

AT_MISSING_PULSE_INTERRUPT

AT _PERIOD_INTERRUPT

AT _CC3_INTERRUPT

AT_CC2_INTERRUPT

AT_CC1_INTERRUPT

Nothing

To enable the Angular Timer interrupts. More than one interrupt can be
enabled at a time by or'ing multiple constants together in a single call, or
calling function multiple times for each interrupt to be enabled.

All devices with an AT module.

Constants defined in the device's header file

at_enable interrupts (AT_PHASE INTERRUPT);
at_enable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUPT);

None

200

Built-in Functions

Also See: setup_at(), at_set_resolution(), at_get_resolution(),
at_set_missing_pulse_delay(), at_get_missing_pulse_delay(),
at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point(), at_get_set_point_error(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status()

at_get_capture()

Syntax: result=at_get_capture(which);;

Parameters: which - an 8-bit constant specifying which AT Capture/Compare module to
get the capture time from, can be 1, 2 or 3.

Returns: A 16-bit integer

Function: To get one of the Angular Timer Capture/Compare modules capture time.
Availability: All devices with an AT module.

Requires: Nothing

Examples: resultl=at get capture(l);

result2=at get capture(2);
Example Files: None

Also See: setup_at(), at_set_resolution(), at_get_resolution(),
at_set_missing_pulse_delay(), at_get_missing_pulse_delay(),
at_get _phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point(), at_get_set _point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_set_compare_time(), at_get_status()

201

PCD 07202016.doc

at_get_missing_pulse _delay()

Syntax: result=at_get_missing_pulse_delay();
Parameters: None.

Returns: A 16-bit integer

Function: To setup the Angular Timer Missing Pulse Delay
Availability: All devices with an AT module.

Requires: Nothing

Examples: result=at_get missing pulse delay();

Example Files:

Also See:

None

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),
at_get period(), at get phase counter(), at_set_set point(),

at get set point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup _cc(), at_set_compare_time(), at_get_capture(), at_get_status(),
setup_at()

at_get _period()

Syntax: result=at_get_period();

Parameters: None.

Returns: A 16-bit integer. The MSB of the returned value specifies whether the
period counter rolled over one or more times. 1 - counter rolled over at
least once, 0 - value returned is valid.

Function: To get Angular Timer Measured Period

Availability: All devices with an AT module.

Requires: Nothing

202

Built-in Functions

Examples: result=at get period();

Example Files: None

Also See: at_set resolution(), at_get resolution(), at_set_missing pulse delay(),
at_get missing pulse delay(), at get phase counter(), at set set point(),
at_get set point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup cc(), at_set_compare_time(), at_get capture(), at_get status(),

setup_at()

at_get phase_counter()

Syntax: result=at_get_phase_counter();

Parameters: None.

Returns: A 16-bit integer.

Function: To get the Angular Timer Phase Counter

Availability: All devices with an AT module.

Requires: Nothing

Examples: result=at get phase counter();

Example Files: None

Also See: at_set resolution(), at_get resolution(), at_set missing_pulse_delay(),

at_get _missing pulse delay(), at_get period(), at_set_set point(),
at_get set point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_set_compare_time(), at_get_capture(), at_get_status(),

setup_at()

203

PCD 07202016.doc

at_get_resolution()

Syntax: result=at_get_resolution();

Parameters: None

Returns: A 16-bit integer

Function: To setup the Angular Timer Resolution
Availability: All devices with an AT module.

Requires: Nothing

Examples; result=at get resolution();

Example Files: None

Also See: at_set resolution(), at_set missing_pulse delay(),

at

get _missing pulse _delay(), at_get period(), at_get phase counter(),

at

set_set point(), at get set point(), at_get_set_point_error(),

at

enable interrupts(), at_disable interrupts(), at_clear_interrupts(),

at

interrupt_active(), at_setup_cc(), at_set_compare_time(),

at

get_capture(), at_get_status(), setup_at()

at_get_set _point()

Syntax: result=at_get_set_point();
Parameters: None

Returns: A 16-bit integer

Function: To get the Angular Timer Set Point
Availability: All devices with an AT module.
Requires: Nothing

Examples: result=at get set point();

204

Built-in Functions

Example Files:

Also See:

None

at_set resolution(), at_get _resolution(), at_set_missing pulse delay(),
at_get _missing_pulse delay(), at_get period(), at_get phase counter(),
at_set_set _point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup _cc(), at_set_compare_time(), at_get capture(), at_get_status(),

setup_at()

at_get _set _point_error()

Syntax: result=at_get_set_point_error();

Parameters: None

Returns: A 16-bit integer

Function: To get the Angular Timer Set Point Error, the error of the measured period
value compared to the threshold setting.

Availability: All devices with an AT module.

Requires: Nothing

Examples: result=at get set point error();

Example Files:

Also See:

None

at_set _resolution(), at_get_resolution(), at_set_missing_pulse_delay(),
at_get _missing_pulse_delay(), at_get _period(), at_get phase_counter(),
at_set_set_point(), at_get_set point(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup _cc(), at_set_compare _time(), at_get capture(), at_get_status(),

setup_at()

205

PCD 07202016.doc

at_get_status()

Syntax: result=at_get_status();

Parameters: None

Returns: An 8-bit integer. The possible results are defined in the device's header
meAa}I"s_.STATUS_PERIOD_AN D_PHASE_VALID

AT_STATUS_PERIOD_LESS_THEN_PREVIOUS

Function: To get the status of the Angular Timer module.

Availability: All devices with an AT module.

Requires: Nothing

Examples: if ((at_get status()&AT_ STATUS PERIOD AND PHASE VALID)==

Example Files:

Also See:

AT _STATUS PERIOD AND PHASE VALID
[
Period=at get period();
Phase=at get phase();
]

None

at_set resolution(), at_get resolution(), at_set_missing_pulse delay(),
at_get missing_pulse_delay(), at_get_period(), at_get phase counter(),
at_set set point(), at get set point(), at _get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_set_compare_time(),
at_get_capture(), setup_at()

at_interrupt_active()

Syntax:

result=at_interrupt_active(interrupt);

Parameters:

interrupts - an 8-bit constant specifying which AT interrupts to check if its
flag is set. The constants are defined in the device's header file as:
AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT

206

Built-in Functions

Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

TRUE if the specified AT interrupt's flag is set, interrupt is active, or
FALSE if the flag is clear, interrupt is not active.

To check if the specified Angular Timer interrupt flag is set.
All devices with an AT module.
Constants defined in the device's header file

#INT-AT1
voidl isr(void)
[
if (at_interrupt active (AT PERIOD INTERRUPT))
[
handle period interrupt();
at clear interrupts (AT PERIOD INTERRUPT) ;
]
if (at_interrupt (active (AT PHASE INTERRUPT) ;

[
handle phase interrupt();
at clear interrupts (AT PHASE INTERRUPT) ;

]

None

at_set resolution(), at_get resolution(), at_set_missing_pulse delay(),
at_get _missing pulse delay(), at_get period(), at_get phase counter(),
at_set set point(), at get set point(), at get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_setup_cc(), at_set_compare_time(), at_get_capture(), at_get_status(),

setup_at()

at_set_compare_time()

Syntax:

at_set_compare_time(which, compare_time);

Parameters:

which - an 8-bit constant specifying which AT Capture/Compare module
to set the compare time for, can be 1, 2, or 3.

207

PCD 07202016.doc

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

compare_time - a 16-bit constant or variable specifying the value to
trigger an interrupt/ouput pulse.

Nothing

To set one of the Angular Timer Capture/Compare module's compare
time.

All devices with an AT module.

Constants defined in the device's header file

at set compare time (1, 0x1FF);
at set compare time (3,compare time);

None

at_set resolution(), at_get resolution(), at_set _missing pulse delay(),

at_get _missing pulse delay(), at_get period(), at_get phase counter(),

at_set set point(), at get set point(), at get_set_point_error(),
at_enable interrupts(), at_disable interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_get_capture(), at_get_status(),

setup_at()

at_set_missing pulse delay()

Syntax: at_set_missing_pulse_delay(pulse_delay);

Parameters: pulse_delay - a signed 16-bit constant or variable to set the missing
pulse delay.

Returns: Nothing

Function: To setup the Angular Timer Missing Pulse Delay

Availability: All devices with an AT module.

Requires: Nothing

Examples: at_set missing pulse delay(pulse delay);

208

Built-in Functions

Example Files:

Also See:

None

at_set resolution(), at_get resolution(), at_get missing pulse delay(),
at_get period(), at_get phase counter(), at_set set point(),

at_get _set point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup cc(), at_set_compare_time(), at_get capture(), at_get_status(),
setup at()

at_set_resolution()

Syntax: at_set_resolution(resolution);

Parameters: resolution - a 16-bit constant or variable to set the resolution.
Returns: Nothing

Function: To setup the Angular Timer Resolution

Availability: All devices with an AT module.

Requires: Nothing

Examples; at set resolution(resolution);

Example Files:

Also See:

None

at_get _resolution(), at_set_missing pulse delay(),

at_get _missing pulse delay(), at_get period(), at_get phase counter(),
at_set set point(), at get set point(), at _get_set_point_error(),
at_enable_interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup_cc(), at_set_compare_time(),
at_get_capture(), at_get_status(), setup_at()

209

PCD 07202016.doc

at_set_set point()

Syntax: at_set_set_point(set_point);

Parameters: set_point - a 16-bit constant or variable to set the set point. The set point
determines the threshold setting that the period is compared against for
error calculation.

Returns: Nothing

Function: To get the Angular Timer Set Point

Availability: All devices with an AT module.

Requires: Nothing

Examples: at_set set point (set point);

Example Files:

Also See:

None

at_set resolution(), at_get resolution(), at_set_missing_pulse delay(),
at_get _missing pulse delay(), at_get period(), at_get phase counter(),
at_get set point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_set_compare_time(), at_get_capture(), at_get_status(),

setup_at()

at_setup_cc()

Syntax:

at_setup_cc(which, settings);

Parameters:

which - an 8-bit constant specifying which AT Capture/Compare to
setup, can be 1, 2 or 3.

settings - a 16-bit constant specifying how to setup the specified AT
Capture/Compare module. See the device's header file for all options.
Some of the typical options include:

AT_CC_ENABLED

AT_CC_DISABLED

AT CC CAPTURE MODE

210

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

AT_CC_COMPARE_MODE
AT_CAPTURE_FALLING_EDGE
AT_CAPTURE_RISING_EDGE

Nothing

To setup one of the Angular Timer Capture/Compare modules to the
specified settings.

All devices with an AT module.

Constants defined in the device's header file

at_setup cc(1,AT CC _ENABLED|AT CC_CAPTURE_MODE |
AT CAPTURE_FALLING_EDGE|AT CAPTURE INPUT ATCAP);

at setup cc(2,AT CC ENABLED|AT CC CAPTURE MODE |
AT CC ACTIVE HIGH);

None

Also See: at_set resolution(), at_get resolution(), at_set_missing_pulse delay(),
at_get _missing pulse delay(), at_get _period(), at_get phase counter(),
at _set_set point(), at_get set point(), at_get_set_point_error(),
at_enable interrupts(), at_disable_interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_set_compare_time(), at_get_capture(),
at get status(), setup_at()

bit_clear()

Syntax: bit_clear(var, bit)

Parameters: var may be a any bit variable (any Ivalue)
bit is a number 0- 63 representing a bit number, 0 is the least significant
bit.

Returns: undefined

Function: Simply clears the specified bit in the given variable. The least significant
bit is 0. This function is the similar to: var &= ~(1<<bit);

Availability: All devices

211

PCD 07202016.doc

Requires:

Examples:

Example Files:

Also See:

Nothing
int x;
x=5;

bit clear(x,2);
// % is now 1

ex_patg.c

bit_set(), bit test()

bit_first()

Syntax: N = bit_first (value, var)

Parameters: value is a 0 to 1 to be shifted in
var is a 16 bit integer.

Returns: An 8 bit integer

Function: This function sets N to the 0 based position of the first occurrence of
value. The search starts from the right or least significant bit.

Availability: 30F/33F/24-bit devices

Requires: Nothing

Examples: Intl6 var = 0x0033;

Example Files:

Also See:

Int8 N = 0;

// N = 2

N = bit first (0, var);
None

shift_right(), shift_left(), rotate right(), rotate left()

212

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

bit_last()

Built-in Functions

Syntax: N = bit_last (value, var)
N = bit_last(var)

Parameters: value is a 0 to 1 to search for
var is a 16 bit integer.

Returns: An 8-bit integer

Function: The first function will find the first occurrence of value in the var starting
with the most significant bit.
The second function will note the most significant bit of var and then
search for the first different bit.
Both functions return a 0 based result.

Availability: 30F/33F/24-bit devices

Requires: Nothing

Examples: //Bit pattern

Example Files:

//11101110 11111111
Intl6 var = OxEEFF;
Int8 N = 0;

//N is assigned 12

N = bit last (0, var);
//N is assigned 12

N = bit last(var);

None

Also See: shift_right(), shift_left(), rotate right(), rotate left()

bit_set()

Syntax: bit_set(var, bit)

Parameters: var may be any variable (any Ivalue)
bit is a number 0- 63 representing a bit number, 0 is the least significant
bit.

Returns: Undefined

213

PCD 07202016.doc

Function:

Availability:
Requires:

Examples:

Example Files:

Sets the specified bit in the given variable. The least significant bit is 0.
This function is the similar to: var |= (1<<bit);

All devices
Nothing
int x;
x=5;

bit set(x,3);
// x 1s now 13

ex_patg.c

Also See: bit_clear(), bit_test()

bit_test()

Syntax: value = bit_test (var, bit)

Parameters: var may be a any bit variable (any Ivalue)
bit is a number 0- 63 representing a bit number, 0 is the least significant
bit.

Returns: Oor1l

Function: Tests the specified bit in the given variable. The least significant bit is 0.
This function is much more efficient than, but otherwise similar to:
((var & (1<<bit)) != 0)

Availability: All devices

Requires: Nothing

Exanuﬂes; if(bit test(x,3) || !bit test (x,1)){

//either bit 3 is 1 or bit 1 is O
}

if (data!=0)

for (i=31;!bit test(data, i);i--) ;
// 1 now has the most significant bit in data
// that is set to a 1

214

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Example Files:

ex_patg.c

Also See: bit_clear(), bit_set()

bsearch()

Syntax: ip = bsearch (&key, base, num, width, compare)

Parameters: key: Object to search for
base: Pointer to array of search data
num: Number of elements in search data
width: Width of elements in search data
compare: Function that compares two elements in search data

Returns: bsearch returns a pointer to an occurrence of key in the array pointed to
by base. If key is not found, the function returns NULL. If the array is not
in order or contains duplicate records with identical keys, the result is
unpredictable.

Function: Performs a binary search of a sorted array

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: int nums(5]={1,2,3,4,5};

Example Files:

Also See:

int compar (const void *argl,const void *arg2);

void main () {
int *ip, key;
key = 3;

ip = bsearch(&key, nums, 5, sizeof(int), compar);

}

int compar (const void *argl,const void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O

else return 1;

}

None

gsort()

215

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

calloc()
Syntax: ptr=calloc(nmem, size)
Parameters: nmem is an integer representing the number of member objects
size is the number of bytes to be allocated for each one of them.
Returns: A pointer to the allocated memory, if any. Returns null otherwise.
Function: The calloc function allocates space for an array of nmem objects whose
size is specified by size. The space is initialized to all bits zero.
Availability: All devices
Requires: #INCLUDE <stdlibm.h>
Examples: int * iptr;

Example Files:

iptr=calloc(5,10);
// iptr will point to a block of memory of
// 50 bytes all initialized to O.

None

Also See: realloc(), free(), malloc()

ceil()

Syntax: result = ceil (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the smallest integer value greater than the
argument. CEIL(12.67) is 13.00.

Availability: All devices

Requires: #INCLUDE<math.h>

216

Built-in Functions

Examples:

Example Files:

Also See:

// Calculate cost based on weight rounded
// up to the next pound

cost = ceil(weight) * DollarsPerPound;

None

floor

clear_interrupt()

Syntax: clear_interrupt(level)

Parameters: level - a constant defined in the devices.h file

Returns: undefined

Function: Clears the interrupt flag for the given level. This function is designed for
use with a specific interrupt, thus eliminating the GLOBAL level as a
possible parameter. Some chips that have interrupt on change for
individual pins allow the pin to be specified like INT_RA1.

Availability: All devices

Requires: Nothing

Exan”ﬂes; clear interrupt (int timerl);

Example Files:

Also See:

None

enable interrupts , #INT , Interrupts Overview

disable_interrupts(), interrupt_actvie()

217

PCD 07202016.doc

clear_pwm1_interrupt()
clear_pwm2_interrupt()
clear_pwma3_interrupt()
clear_pwm4 _interrupt()
clear_pwmb5 interrupt()
clear_pwm6 _interrupt()

Syntax: clear_pwm1_interrupt (interrupt)
clear_pwm2_interrupt (interrupt)
clear_pwma3_interrupt (interrupt)
clear_pwm4_interrupt (interrupt)
clear_pwmb5_interrupt (interrupt)
clear_pwm6_interrupt (interrupt)
Parameters: interrupt - 8-bit constant or variable. Constants are defined in the
device's header file as:
. PWM_PERIOD_INTERRUPT
. PWM_DUTY_INTERRUPT
. PWM_PHASE_INTERRUPT
. PWM_OFFSET_INTERRUPT
Returns: undefined.
Function: Clears one of the above PWM interrupts, multiple interrupts can be
cleared by or'ing multiple options together.
Availability: Devices with a 16-bit PWM module.
Requires: Nothing
Examp|es; clear pwml interrupt (PWM PERIOD INTERRUPT) ;

Example Files:

Also See:

clear_pwml_interrupt (PWM_PERIOD_ INTERRUPT |
PWM_ DUTY INTERRUPT) ;

setup_pwm(), set pwm_duty(), set pwm_phase(), set pwm_period(),
set_pwm_offset(), enable _pwm interrupt(), disable pwm interrupt(),
pwm_interrupt_active()

218

Built-in Functions

cog_status()

Syntax: value=cog_status();

Parameters: None

Returns: value - the status of the COG module

Function: To determine if a shutdown event occurred on the Complementary Output
Generator
(COG) module.

Availability: All devices with a COG module.

Examples: if (cog status ()==COG AUTO SHUTDOWN)

Example Files:

Also See:

cog restart();

None

setup_cog(), set_cog_dead band(), set_cog_blanking(), set_cog_phase(),
cog_restart

cog_restart()

Syntax: cog_restart();

Parameters: None

Returns: Nothing

Function: To restart the Complementary Output Generator (COG) module after an
auto-shutdown
event occurs, when not using auto-restart option of module.

Availability: All devices with a COG module.

Examples: if (cog status ()==COG AUTO SHUTDOWN)

Example Files:

Also See:

cog restart();

None

setup _cog(), set_cog dead band(), set_cog_blanking(),
set_cog_phase(), cog_status()

219

PCD 07202016.doc

crc_calc() crc_calc8()
crc_calcl6() crc_calc32()
Syntax: Result = crc_calc (data,[width]);

Result = crc_calc(ptr,len,[width]);

Result = crc_calc8(data,[width]);

Result = crc_calc8(ptr,len,[width]);

Result = crc_calc16(data,[width]); /lsame as crc_calc()
Result = crc_calc16(ptr,len,[width]); /lsame as crc_calc()
Result = crc_calc32(data,[width]);

Result = crc_calc32(ptr,len,[width]);

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

data- This is one double word, word or byte that needs to be processed
when using
crc_calc16(), or crc_calc8(), crc_calc32()

ptr- is a pointer to one or more double words, words or bytes of data

len- number of double words, words or bytes to process for function calls
crc_calcl16(), or crc_calc8(), crc_calc32()

width- optional parameter used to specify the input data bit width to use
with the functions crc_calc16(), and crc_calc8(), crc_calc32() Only
available on devices with a 32-bit CRC peripheral.

If not specified, it defaults to the width of the return value of the function,
8-bit for crc_calc8(), 16-bit for crc_calc16() and 32-bit for crc_calc32().
For devices with a 16-bit for CRC the input data bit width is the same as
the return bit width, crc_calc16() and 8-bit crc_calc8().

Returns the result of the final CRC calculation.

This will process one data double word, word or byte or len double words,
words or bytes of data using the CRC engine.

Only the devices with built in CRC module.

Nothing

intle datal8];

Result = crc calc(data,8);
None

220

Built-in Functions

Also See: setup_crc(); crc_init()

crc_init(mode)

Syntax: crc_init (data);

Parameters: data - This will setup the initial value used by write CRC shift register.
Most commonly, this register is set to 0x0000 for start of a new CRC
calculation.

Returns: undefined

Function: Configures the CRCWDAT register with the initial value used for CRC
calculations.

Availability: Only the devices with built in CRC module.

Requires: Nothing

Examples: crc_init (); // Starts the CRC accumulator out at 0

crc_init (OXFEEE); // Starts the CRC accumulator out at OxFEEE

Example Files: None

Also See: setup_crc(), crc_calc(), crc_calc8()

cwg_status()

Syntax: value = cwg_status();

Parameters: None

Returns: the status of the CWG module

Function: To determine if a shutdown event occured causing the module to auto-
shutdown

Availability: On devices with a CWG module.

221

PCD 07202016.doc

Examples: if (cwg status(== CWG_AUTO SHUTDOWN)
cwg_restart();

Example Files: None

Also See: setup_cwa(), cwg_restart()

cwg_restart()

Syntax: cwg_restart();

Parameters: None

Returns: Nothing

Function: To restart the CWG module after an auto-shutdown event occurs, when

not using auto-raster option of module.

Availability: On devices with a CWG module.

Examples: if (cwg status() == CWG AUTO SHUTDOWN)
cwg _restart();

Example Files: None

Also See: setup_cwq(), cwg_status()

dac_write()

Syntax: dac_write (value)

dac_write (channel, value)

Parameters: Value: 8-bit integer value to be written to the DAC module
Value: 16-bit integer value to be written to the DAC module
channel: Channel to be written to. Constants are:

DAC_RIGHT

222

Built-in Functions

DAC_DEFAULT

DAC_LEFT
Returns: undefined
Function: This function will write a 8-bit integer to the specified DAC channel.

This function will write a 16-bit integer to the specified DAC channel.

Availability: Only available on devices with built in digital to analog converters.
Requires: Nothing
Examples: int i = 0;
setup dac(DAC VDD | DAC_ OUTPUT) ;
while (1) {
it++;

dac_write(1i);
}
int i = 0;
setup dac (DAC_RIGHT ON, 5);
while (1) {

i++;

dac_write (DAC RIGHT | 1i);
}

Also See: setup_dac(), DAC Overview, see header file for device selected

dci_data received()

Syntax: dci_data_received()

Parameters: none

Returns: An intl. Returns true if the DCI module has received data.

Function: Use this function to poll the receive buffers. It acts as a kbhit() function for
Availability: gﬁlly available on devices with DCI

Requires: None

223

PCD 07202016.doc

Examples:

Example Files:
Also See:

while(1)
if(dci_data_received())

/Iread data, load buffers, etc...

}
}

None
DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(),
dci transmit ready()

dci_read()

Syntax: dci_read(left_ channel, right_ channel);

Parameters: left_channel- A pointer to a signed int16 that will hold the incoming audio
data for the left channel (on a stereo system). This data is received on the
bus before the right channel data (for situations where left & right channel
does have meaning)
right_channel- A pointer to a signed int16 that will hold the incoming audio
data for the right channel (on a stereo system). This data is received on
the bus after the data in left channel.

Returns: undefined

Function: Use this function to read two data words. Do not use this function with
DMA. This function is provided mainly for applications involving a stereo
codec.

If your application does not use both channels but only receives on a slot
(see setup_dci), use only the left channel.

Availability: Only available on devices with DCI

Requires: None

Examples: while(1)

dci_read(&left_channel, &right_channel);
dci_write(&left_channel, &right_channel);

224

Built-in Functions

Example Files: None
Also See: DCI Overview, setup_dci(), dci_start(), dci_write(), dci_transmit_ready(
), dci_data_received()

dci_start()

Syntax: dci_start();

Parameters: None

Returns: undefined

Function: Starts the DCI module’s transmission. DCI operates in a continous

transmission mode (unlike other transmission protocols that transmit only
when they have data). This function starts the transmission. This function
is primarily provided to use DCI in conjunction with DMA

Availability: Only available on devices with DCI.
Requires: None
Examples: dci_initialize((1I2S_MODE | DCI_MASTER |

DCI_CLOCK_OUTPUT | SAMPLE_RISING_EDGE |
UNDERFLOW_LAST |
MULTI_DEVICE_BUS),DCI_1WORD_FRAME |
DCI_16BIT_WORD | DCI_2WORD_INTERRUPT,
RECEIVE_SLOTO | RECEIVE_SLOT1, TRANSMIT_SLOTO |
TRANSMIT_SLOT1, 6000);

dci_start();
Example Files: None
Also See: DCI Overview, setup_dci(), dci_write(), dci_read(), dci_transmit_ready(

), dci_data_received()

225

PCD 07202016.doc

dci_transmit_ready()

Syntax: dci_transmit_ready()
Parameters: None
Returns: An intl. Returns true if the DCI module is ready to transmit

(there is space open in the hardware buffer).

Function: Use this function to poll the transmit buffers.
Availability: Only available on devices with DCI
Requires: None

Examples: while(1)

if(dci_transmit_ready())

/Itransmit data, load buffers, etc...

}
}
Example Files: None
Also See: DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(),

dci_data_received()

dci_write()
Syntax: dci_write(left_channel, right_channel);
Parameters: left channel- A pointer to a signed int16 that holds the outgoing audio data

for the left channel (on a stereo system). This data is transmitted on the
bus before the right channel data (for situations where left & right channel
does have meaning)

right channel- A pointer to a signed int16 that holds the outgoing audio
data for the right channel (on a stereo system). This data is transmitted on
the bus after the data in left channel.

Returns: undefined

226

Built-in Functions

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Use this function to transmit two data words. Do not use this function with
DMA. This function is provided mainly for applications involving a stereo
codec.

If your application does not use both channels but only transmits on a slot
(see setup_dci()), use only the left channel. If you transmit more than two
slots, call this function multiple times.

Only available on devices with DCI

None
while(1)
{

dci_read(&left_channel, &right_channel);
dci_write(&left_channel, &right_channel);

}

None

DCI Overview, setup_dci(), dci_start(), dci_read(), dci_transmit_ready(),
dci data received()

delay_cycles()

Syntax: delay_cycles (count)

Parameters: count - a constant 1-255

Returns: undefined

Function: Creates code to perform a delay of the specified number of instruction
clocks (1-255). An instruction clock is equal to four oscillator clocks.
The delay time may be longer than requested if an interrupt is serviced
during the delay. The time spent in the ISR does not count toward the
delay time.

Availability: All devices

Requires: Nothing

Examples: delay cycles(1); // Same as a NOP

227

PCD 07202016.doc

delay cycles(25); // At 20 mhz a 5us delay
Example Files: ex_cust.c

Also See: delay us(), delay _ms()

delay_ms()

Syntax: delay_ms (time)

Parameters: time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16, now
the upper byte affects the time.

Returns: undefined

Function: This function will create code to perform a delay of the specified
length. Time is specified in milliseconds. This function works by executing
a precise number of instructions to cause the requested delay. It does not
use any timers. If interrupts are enabled the time spent in an interrupt
routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced
during the delay. The time spent in the ISR does not count toward the

delay time.
Availability: All devices
Requires: #USE DELAY
Examples: #use delay (clock=20000000)

delay ms(2);

void delay seconds(int n) {
for (;n!=0; n- -)
delay ms(1000);

}

Example Files: ex_sqgw.c

228

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Also See:

delay us(), delay cycles(), #USE DELAY

delay_us()

Syntax: delay_us (time)

Parameters: time - a variable 0-65535(int16) or a constant 0-65535
Note: Previous compiler versions ignored the upper byte of an intl6, now
the upper byte affects the time.

Returns: undefined

Function: Creates code to perform a delay of the specified length. Time is specified
in microseconds. Shorter delays will be INLINE code and longer delays
and variable delays are calls to a function. This function works by
executing a precise number of instructions to cause the requested
delay. It does not use any timers. If interrupts are enabled the time spent
in an interrupt routine is not counted toward the time.
The delay time may be longer than requested if an interrupt is serviced
during the delay. The time spent in the ISR does not count toward the
delay time.

Availability: All devices

Requires: #USE DELAY

Examples: #use delay(clock=20000000)

Example Files:

Also See:

do {
output high (PIN BO);
delay us (duty);
output low (PIN BO);
delay us (period-duty);
} while (TRUE) ;

ex_sqw.c

delay ms(), delay cycles(), #USE DELAY

229

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

disable_interrupts()

Syntax: disable_interrupts (name)
disable_interrupts (INTR_XX)
disable_interrupts (expression)

Parameters: name - a constant defined in the devices .h file
INTR_XX — Allows user selectable interrupt options like INTR_NORMAL,
INTR_ALTERNATE, INTR_LEVEL
expression — A non-constant expression

Returns: When INTR_LEVELX is used as a parameter, this function will return the
previous level.

Function: Disables the interrupt for the given name. Valid specific names are the
same as are used in #INT_xxx and are listed in the devices .h file. Note
that it is not necessary to disable interrupts inside an interrupt service
routine since interrupts are automatically disabled.

INTR_GLOBAL — Disables all interrupts that can be disabled
INTR_NORMAL — Use normal vectors for the ISR
INTR_ALTERNATE — Use alternate vectors for the ISR
INTR_LEVELO .. INTR_LEVEL7 — Disables interrupts at this level and
below, enables interrupts above this level

INTR_CN_PIN | PIN_xx — Disables a CN pin interrupts

expression — Disables interrupts during evaluation of the expression.

Availability: All dsPIC and PIC24 devices

Requires: Should have a #INT_xxxx, constants are defined in the devices .h file.

Exan“ﬂes; disable interrupts(INT RDA); // RS232 OFF

disable interrupts(memcpy(bufferl,buffer2,10)) ;
enable interrupts (ADC DONE) ;
enable interrupts (RB_CHANGE) ;

// these enable the interrupts

230

Built-in Functions

Example Files: None

Also See: enable_interrupts(), #INT xxxx, Interrupts Overview, clear_interrupt()

interrupt_active()

disable_pwml_interrupt()
disable_pwm2_interrupt()
disable_pwm3_interrupt()
disable _pwm4_interrupt()
disable_pwmb5_interrupt()
disable _pwm6 _interrupt()

Syntax: disable_pwm1_interrupt (interrupt)
disable_pwm2_interrupt (interrupt)
disable_pwm3_interrupt (interrupt)
disable_pwm4_interrupt (interrupt)
disable_pwmb5_interrupt (interrupt)
disable_pwm®6_interrupt (interrupt)

Parameters: interrupt - 8-bit constant or variable. Constants are defined in the
device's header file as:
o PWM_PERIOD_INTERRUPT
o PWM_DUTY_INTERRUPT
o PWM_PHASE_INTERRUPT
o PWM_OFFSET_INTERRUPT
Returns: undefined.
Function: Disables one of the above PWM interrupts, multiple interrupts can be

disabled by or'ing multiple options together.
Availability: Devices with a 16-bit PWM module.

Requires: Nothing

231

PCD 07202016.doc

Exanuﬂes; disable pwml interrupt (PWM PERIOD INTERRUPT) ;
disable pwml interrupt (PWM PERIOD INTERRUPT |
PWM DUTY INTERRUPT) ;

Example Files:

Also See: setup_pwm(), set_ pwm_duty(), set pwm_phase(), set pwm_period(),
set pwm_offset(), enable pwm _interrupt(), clear pwm_interrupt(),
pwm_interrupt_active()

div() Idiv()

Syntax: idiv=div(num, denom)
Idiv =Idiv(Inum, Idenom)

Parameters: num and denom are signed integers.
num is the numerator and denom is the denominator.
Inum and Idenom are signed longs , signed int32, int48 or int64
Inum is the numerator and Idenom is the denominator.

Returns: idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The
div function returns a structure of type div_t, comprising of both the
quotient and the remainder. The Idiv function returns a structure of type
Idiv_t, comprising of both the quotient and the remainder.

Function: The div and Idiv function computes the quotient and remainder of the
division of the numerator by the denominator. If the division is inexact, the
resulting quotient is the integer or long of lesser magnitude that is the
nearest to the algebraic quotient. If the result cannot be represented, the
behavior is undefined; otherwise quot*denom(ldenom)+rem shall equal

num(linum).
Availability: All devices.
Requires: #INCLUDE <STDLIB.H>
Examples: div_t idiv;

ldiv_t lidiv;
idiv=div(3,2);
//idiv will contain quot=1 and rem=1

1idiv=1div (300,250) ;
//1lidiv will contain lidiv.quot=1 and lidiv.rem=50

232

Built-in Functions

Example Files:

Also See:

None

None

dma_start()

Syntax: dma_start(channel, mode, addressA, addressB, count);

Parameters: Channel- The channel used in the DMA transfer
mode - The mode used for the DMA transfer.
addressA- The start RAM address of the buffer to use located within the
DMA RAM bank.
addressB- If using PING_PONG mode the start RAM address of the
second buffer to use located within the DMA RAM bank.
count - Number of DMA transfers to do. Value must be one less than
actual number of transfers.

Returns: void

Function: Starts the DMA transfer for the specified channel in the specified mode of
operation.

Availability: Devices that have the DMA module.

Requires: Nothing

Exan“ﬂes; dma_ start (2, DMA CONTINOUS | DMA PING PONG, 0x4000,

Example Files:

Also See:

0x4200,255);
// This will setup the DMA channel 2 for continuous ping-pong
mode with DMA RAM addresses of 0x4000 and 0x4200.

None

setup_dma(), dma_status()

233

PCD 07202016.doc

dma_status()

Syntax: Value = dma_status(channel);
Parameters: Channel — The channel whose status is to be queried.
Returns: Returns a 8-bit int. Possible return values are :

DMA_IN_ERROR 0x01
DMA_OUT_ERROR 0x02
DMA_B_SELECT 0x04

Function: This function will return the status of the specified channel in the DMA
module.

Availability: Devices that have the DMA module.

Requires: Nothing

Examples: Int8 value;

value = dma_status(3); // This will return the status of
channel 3 of the DMA module.

Example Files: None

Also See: setup_dma(), dma_start().

enable_interrupts()

Syntax: enable_interrupts (name)
enable_interrupts (INTR_XX)

Parameters: name- a constant defined in the devices .h file

INTR_XX — Allows user selectable interrupt options like INTR_NORMAL,
INTR_ALTERNATE, INTR_LEVEL

Returns: undefined

Function: Name -Enables the interrupt for the given name. Valid specific names are
the same as are used in #INT_xxx and are listed in the devices .h file.

234

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

INTR_GLOBAL — Enables all interrupt levels (same as INTR_LEVELO)
INTR_NORMAL - Use normal vectors for the ISR
INTR_ALTERNATE — Use alternate vectors for the ISR

INTR_LEVELO .. INTR_LEVEL7 — Enables interrupts at this level and
above, interrupts at lower levels are disabled

INTR_CN_PIN | PIN_xx — Enables a CN pin interrupts
All dsPIC and PIC24 devices

Should have a #INT_xxxx, Constants are defined in the devices .h file.

enable interrupts (INT TIMERO) ;
enable interrupts (INT TIMERL);
enable interrupts (INTR CN PIN|Pin BO);

None

disable enterrupts(), #INT xxxx, Interrupts Overview, clear interrupt()

interrupt_active()

erase_program_memory

Syntax: erase_program_memory (address);

Parameters: address is 32 bits. The least significant bits may be ignored.
Returns: undefined

Function: Erases FLASH_ERASE_SIZE bytes to OXFFFF in program memory.

FLASH_ERASE_SIZE varies depending on the part.

Family FLASH_ERASE_SIZE
dsPIC30F 32 instructions (96 bytes)
dsPIC33FJ 512 instructions (1536 bytes)
PIC24FJ 512 instructions (1536 bytes)
PIC24HJ 512 instructions (1536 bytes)

NOTE: Each instruction on the PCD is 24 bits wide (3 bytes)
See write_program_memory() for more information on program memory

235

PCD 07202016.doc

access.
Availability: All devices

Requires: Nothing

Exan1p|es; Int32 address = 0x2000;

erase program memory (address); // erase block of memory from
0x2000 to 0x2400 for a PIC24HJ/FJ /33FJ device, or erase
0x2000 to 0x2040 for a dsPIC30F chip

Example Files: None

Also See: write program memory(), Program Eeprom Overview

enable_pwml_interrupt()
enable_pwm2_interrupt()
enable_pwm3_interrupt()
enable_pwm4 _interrupt()
enable_pwmb5_interrupt()
enable_pwm6_interrupt()

Syntax: enable_pwm1_interrupt (interrupt)
enable_pwm2_interrupt (interrupt)
enable_pwma3_interrupt (interrupt)
enable_pwm4_interrupt (interrupt)
enable_pwmb5_interrupt (interrupt)
enable_pwm6_interrupt (interrupt)

Parameters: interrupt - 8-bit constant or variable. Constants are defined in the
device's header file as:
. PWM_PERIOD_INTERRUPT
o PWM_DUTY_INTERRUPT
o PWM_PHASE_INTERRUPT
o PWM_OFFSET_INTERRUPT

236

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

undefined.

Enables one of the above PWM interrupts, multiple interrupts can be
enabled by or'ing multiple options together. For the interrupt to occur, the
overall PWMx interrupt still needs to be enabled and an interrupt service
routine still needs to be created.

Devices with a 16-bit PWM module.

Nothing

enable pwml interrupt (PWM PERIOD INTERRUPT) ;
enable pwml interrupt (PWM PERIOD INTERRUPT |
PWM_DUTY_INTERRUPT) ;

setup_pwm(), set_pwm_duty(), set_ pwm_phase(), set_ pwm_period(),
set pwm_offset(), disable pwm _interrupt(), clear pwm _interrupt(),
pwm _interrupt _active()

exp()

Syntax:

result = exp (value)

Parameters:
Returns:

Function:

Availability:

value is any float type
A float with a precision equal to value

Computes the exponential function of the argument. This is e to the power
of value where e is the base of natural logarithms. exp(1) is 2.7182818.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the
errno variable. The user can check the errno to see if an error has
occurred and print the error using the perror function.

Range error occur in the following case:
e exp: when the argument is too large

All devices

237

PCD 07202016.doc

Requires:

Examples:

Example Files:

Also See:

#INCLUDE <math.h>
// Calculate x to the power of y
x power y = exp(y * log(x));

None

pow(), log(), 1og10()

ext_int_edge()

Syntax: ext_int_edge (source, edge)

Parameters: source is a constant 0,1 or 2 for the PIC18XXX and 0 otherwise.
source is a constant from 0 to 4.
Source is optional and defaults to 0.
edge is a constant H_TO_L or L_TO_H representing "high to low" and
"low to high"

Returns: undefined

Function: Determines when the external interrupt is acted upon. The edge may be
L_TO_H or H_TO_L to specify the rising or falling edge.

Availability: Only devices with interrupts

Requires: Constants are in the devices .h file

Examples: ext int edge(2, L TO H); // Set up PIC18 EXT2

Example Files:

Also See:

ext int edge(2, L TO H); // Set up external interrupt 2 to
interrupt

// on rising edge
ext int edge(H TO L); // Sets up EXT
ext int edge(H TO L); // Sets up external interrupt 0 to
interrupt

// on falling edge

ex_wakup.c

#INT _EXT , enable interrupts() , disable interrupts , Interrupts Overview

238

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

fabs()

Built-in Functions

Syntax: result=fabs (value)

Parameters: value is any float type

Returns: result is a float with precision to value

Function: The fabs function computes the absolute value of a float
Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: double result;

Example Files:

Also See:

result=fabs (-40.0)
// result is 40.0

None
abs(), labs()

getc()

getch() getchar() fgetc()

Syntax: value = getc()
value = fgetc(stream)
value=getch()
value=getchar()
Parameters: stream is a stream identifier (a constant byte)
Returns: An 8 bit character
Function: This function waits for a character to come in over the RS232 RCV pin and

returns the character. If you do not want to hang forever waiting for an
incoming character use kbhit() to test for a character available. If a built-in
USART is used the hardware can buffer 3 characters otherwise GETC
must be active while the character is being received by the PIC®.

239

PCD 07202016.doc

Availability:
Requires:

Examples:

Example Files:

Also See:

If fgetc() is used then the specified stream is used where getc() defaults to
STDIN (the last USE RS232).

All devices

#USE RS232

printf ("Continue (Y,N)?");
do {
answer=getch () ;
}while (answer!='Y' && answer!='N");

#use rs232(baud=9600,xmit=pin c6,
rcv=pin c7,stream=HOSTPC)
#use rs232(baud=1200,xmit=pin bl,
rcv=pin b0, stream=GPS)
#use rs232(baud=9600,xmit=pin b3,
stream=DEBUG)

while (TRUE) {
c=fgetc (GPS) ;
fputc (c,HOSTPC) ;
if (c==13)
fprintf (DEBUG, "Got a CR\r\n");
}

ex_stwt.c

putc(), kbhit(), printf(), #USE RS232, input.c, RS232 I/O Overview

gets()

fgets()

Syntax: gets (string)
value = fgets (string, stream)
Parameters: string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)
Returns: undefined
Function: Reads characters (using getc()) into the string until a RETURN (value 13)

is encountered. The string is terminated with a 0. Note that INPUT.C has a
more versatile get_string function.

240

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

If fgets() is used then the specified stream is used where gets() defaults to
STDIN (the last USE RS232).

Availability: All devices
Requires: #USE RS232
Examples: char string[30];

printf ("Password: ");

gets (string);

if (strcmp(string, password))
printf ("OK") ;

Example Files: None

Also See: getc(), get_string in input.c

floor()

Syntax: result = floor (value)

Parameters: value is any float type

Returns: result is a float with precision equal to value

Function: Computes the greatest integer value not greater than the argument. Floor

(12.67) is 12.00.

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: // Find the fractional part of a value
frac = value - floor(value);

Example Files: None

Also See: ceil()

241

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

fmod()

Syntax: result= fmod (vall, val2)

Parameters: vall is any float type
val2 is any float type

Returns: result is a float with precision equal to input parameters vall and val2
Function: Returns the floating point remainder of vall/val2. Returns the value vall -

i*val2 for some integer “i” such that, if val2 is nonzero, the result has the
same sign as vall and magnitude less than the magnitude of val2.

Availability: All devices.
Requires: #INCLUDE <math.h>
Examples: float result;

result=fmod(3,2);
// result is 1

Example Files: None

Also See: None

printf() fprintf()

Syntax: printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

Parameters: String is a constant string or an array of characters null terminated.

C String is a constant string. Note that format specifiers cannot be used in
RAM strings.

242

Built-in Functions

Returns:

Function:

Values is a list of variables separated by commas, fname is a function
name to be used for outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte).
undefined

Outputs a string of characters to either the standard RS-232 pins (first two
forms) or to a specified function. Formatting is in accordance with the
string argument. When variables are used this string must be a

constant. The % character is used within the string to indicate a variable
value is to be formatted and output. Longs in the printf may be 16 or 32
bit. A %% will output a single %. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for
other escape character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults
to STDOUT (the last USE RS232).

Format:

The format takes the generic form %nt. n is optional and may be 1-9 to
specify how many characters are to be outputted, or 01-09 to indicate
leading zeros, or 1.1 to 9.9 for floating point and %w output. t is the type
and may be one of the following:

c Character

S String or character

u Unsigned int

d Signed int

Lu Long unsigned int

Ld Long signed int

X Hex int (lower case)

X Hex int (upper case)

Lx Hex long int (lower case)
LX Hex long int (upper case)

f Float with truncated decimal
g Float with rounded decimal
e Float in exponential format
w Unsigned int with decimal place inserted. Specify two numbers

for n. The first is a total field width. The second is the desired
number of decimal places.

Example formats:

Specifier Value=0x12 Value=0xfe

243

PCD 07202016.doc

%03u 018 254
%u 18 254
%2u 18 *
%5 18 254
%d 18 -2
%X 12 fe
%X 12 FE
%4X 0012 O0OFE
%3.1w 1.8 25.4
* Result is undefined - Assume garbage.
Availability: All Devices
Requires: #USE RS232 (unless fname is used)
Examples: byte x,y,z;

printf ("HiThere") ;

printf ("RTCCValue=>%2x\n\r",get rtcc());
printf ("$2u $X %4X\n\r",x,vy,z);

printf (LCD PUTC, "n=%u",n);

Example Files: ex admm.c, ex_lcdkb.c

Also See: atoi(), puts(), putc(), getc() (for a stream example), RS232 1/O Overview

putc() putchar() fputc()

Syntax: putc (cdata)
putchar (cdata)
fputc(cdata, stream)

Parameters: cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: This function sends a character over the RS232 XMIT pin. A #USE RS232
must appear before this call to determine the baud rate and pin used. The
#USE RS232 remains in effect until another is encountered in the file.

If fputc() is used then the specified stream is used where putc() defaults to

244

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

STDOUT (the last USE RS232).
All devices

#USE RS232

putc('*');

for (i=0; 1<10; i++)

putc (buffer[i]);
putc (13);

ex_tgetc.c
getc(), printf(), #USE RS232, RS232 1/O Overview

puts() fputs()

Syntax: puts (string).
fputs (string, stream)

Parameters: string is a constant string or a character array (null-terminated).
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using putc(). After the
string is sent a CARRIAGE-RETURN (13) and LINE-FEED (10) are sent. In
general printf() is more useful than puts().
If fputs() is used then the specified stream is used where puts() defaults to
STDOUT (the last USE RS232)

Availability: All devices

Requires: #USE RS232

Examples: puts(" ---------—- ")
puts(" | HI ")
puts(" -—-—————-—- ")

Example Files: None

Also See:

printf(), gets(), RS232 1/0 Overview

245

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

free()

Syntax: free(ptr)

Parameters: ptr is a pointer earlier returned by the calloc, malloc or realloc.

Returns: No value

Function: The free function causes the space pointed to by the ptr to be deallocated,
that is made available for further allocation. If ptr is a null pointer, no action
occurs. If the ptr does not match a pointer earlier returned by the calloc,
malloc or realloc, or if the space has been deallocated by a call to free or
realloc function, the behavior is undefined.

Availability: All devices.

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;

Example Files:

Also See:

iptr=malloc (10);
free (iptr)
// iptr will be deallocated

None

realloc(), malloc(), calloc()

frexp()

Syntax: result=frexp (value, &exp);
Parameters: value is any float type
exp is a signed int.
Returns: result is a float with precision equal to value
Function: The frexp function breaks a floating point number into a normalized fraction

and an integral power of 2. It stores the integer in the signed int object
exp. The result is in the interval [1/2 tol) or zero, such that value is result
times 2 raised to power exp. If value is zero then both parts are zero.

246

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

All devices.

#INCLUDE <math.h>
float result;

signed int exp;
result=frexp (.5, &exp) ;

// result is .5 and exp is O

None

Also See: Idexp(), exp(), log(), log10(), modf()
scanf()
Syntax: scanf(cstring);
scanf(cstring, values...)
fscanf(stream, cstring, values...)
Parameters: cstring is a constant string.
values is a list of variables separated by commas.
stream is a stream identifier.
Returns: 0 if a failure occurred, otherwise it returns the number of conversion
specifiers that were read in, plus the number of constant strings read in.
Function: Reads in a string of characters from the standard RS-232 pins and formats

the string according to the format specifiers. The format specifier character
(%) used within the string indicates that a conversion specification is to be
done and the value is to be saved into the corresponding argument
variable. A %% will input a single %. Formatting rules for the format
specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf() defaults
to STDIN (the last USE RS232).

Format:
The format takes the generic form %nt. n is an option and may be 1-99
specifying the field width, the number of characters to be inputted. t is the

247

PCD 07202016.doc

type and maybe one of the following:

c

Lu

Ld

Lo

x or X

Lx or LX

Matches a sequence of characters of the number specified
by the field width (1 if no field width is specified). The
corresponding argument shall be a pointer to the initial
character of an array long enough to accept the
sequence.

Matches a sequence of non-white space characters. The
corresponding argument shall be a pointer to the initial
character of an array long enough to accept the
sequence and a terminating null character, which will be
added automatically.

Matches an unsigned decimal integer. The corresponding
argument shall be a pointer to an unsigned integer.

Matches a long unsigned decimal integer. The
corresponding argument shall be a pointer to a long
unsigned integer.

Matches a signed decimal integer. The corresponding
argument shall be a pointer to a signed integer.

Matches a long signed decimal integer. The corresponding
argument shall be a pointer to a long signed integer.

Matches a signed or unsigned octal integer. The
corresponding argument shall be a pointer to a signed or
unsigned integer.

Matches a long signed or unsigned octal integer. The
corresponding argument shall be a pointer to a long
signed or unsigned integer.

Matches a hexadecimal integer. The corresponding
argument shall be a pointer to a signed or unsigned
integer.

Matches a long hexadecimal integer. The corresponding
argument shall be a pointer to a long signed or unsigned
integer.

Matches a signed or unsigned integer. The corresponding
argument shall be a pointer to a signed or unsigned

248

Built-in Functions

integer.

Li Matches a long signed or unsigned integer. The
corresponding argument shall be a pointer to a long
signed or unsigned integer.

f,gore Matches a floating point number in decimal or exponential
format. The corresponding argument shall be a pointer
to a float.

[Matches a non-empty sequence of characters from a set of

expected characters. The sequence of characters
included in the set are made up of all character following
the left bracket ([) up to the matching right bracket (]).
Unless the first character after the left bracketis a *, in
which case the set of characters contain all characters
that do not appear between the brackets. If a - character
is in the set and is not the first or second, where the first
is a”, nor the last character, then the set includes all
characters from the character before the - to the
character after the -.

For example, %[a-z] would include all characters from a to
z in the set and %["a-z] would exclude all characters
from a to z from the set. The corresponding argument
shall be a pointer to the initial character of an array long
enough to accept the sequence and a terminating null
character, which will be added automatically.

n Assigns the number of characters read thus far by the call
to scanf() to the corresponding argument. The
corresponding argument shall be a pointer to an
unsigned integer.

An optional assignment-suppressing character (*) can be
used after the format specifier to indicate that the
conversion specification is to be done, but not saved into
a corresponding variable. In this case, no corresponding
argument variable should be passed to the scanf()
function.

A string composed of ordinary non-white space characters
is executed by reading the next character of the string. If
one of the inputted characters differs from the string, the
function fails and exits. If a white-space character
precedes the ordinary non-white space characters, then

249

PCD 07202016.doc

Availability:
Requires:

Examples:

Example Files:

Also See:

white-space characters are first read in until a non-white

space character is read.

White-space characters are skipped, except for the
conversion specifiers [, ¢ or n, unless a white-space
character precedes the [or ¢ specifiers.

All Devices

#USE RS232

char name[2-];
unsigned int8 number;
signed int32 time;

if (scanf ("%u%s%1d", &énumber, name, &time))
printf"\r\nName: %s, Number: %u, Time:

%$1d", name, number, time) ;

None

RS232 1/0 Overview, getc(), putc(), printf()

get capture()

Syntax: value = get_capture(x)

Parameters: x defines which ccp module to read from.

Returns: A 16-bit timer value.

Function: This function obtains the last capture time from the indicated CCP module
Availability: Only available on devices with Input Capture modules

Requires: None

Examples:

Example Files: ex_ccpmp.c

Also See: setup_ccpx()

250

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

get capture()

Syntax: value = get_capture(x, wait)

Parameters: x defines which input capture result buffer module to read from
wait signifies if the compiler should read the oldest result in the buffer or
the next result to enter the buffer

Returns: A 16-bit timer value.

Function: If wait is true, the current capture values in the result buffer are cleared,
and the next result to be sent to the buffer is returned. If wait is false, the
default setting, the first value currently in the buffer is returned. However,
the buffer will only hold four results while waiting for them to be read, so if
read isn't being called for every capture event, when wait is false, the
buffer will fill with old capture values and any new results will be lost.

Availability: Only available on devices with Input Capture modules

Requires: None

Examples: setup_timer3 (TMR_INTERNAL | TMR DIV BY 8);

Example Files:
Also See:

setup_capture (2, CAPTURE FE | CAPTURE TIMER3);
while (TRUE) {
timerValue = get capture (2, TRUE);
printf (“Capture 2 occurred at: $LU”, timerValue);

}

None
setup_capture(), setup_compare(), Input Capture Overview

251

PCD 07202016.doc

get capture _ccpl() get _capture _ccp2()
get _capture ccp3() get _capture_ccp4()
get_capture_ccp5()

Syntax: value=get_capture_ccpx(wait);

Parameters: wait -signifies if the compiler should read the oldest result in the buffer or
the next result in the buffer or the next result to enter the buffer.

Returns: valuel6 -a 16-bit timer value

Function: If wait is true, the current capture values in the result buffer are cleared,
and the next result to be sent, the buffer is returned. If wait is false, the
default setting, the first value currently in the buffer is return. However, the
buffer will only hold four results while waiting for them to be read. If read is
not being called for every capture event, when wait is false, the buffer will
fill with old capture values and any new result will be lost.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Requires: Nothing

Examples: unsigned intlé6 value;

Example Files:

Also See:

setup_ccpl (CCP_CAPTURE FE);

while (TRUE) {
value=get capture_ccpl (TRUE) ;
printf ("Capture occurred at: %LU", value);

None

set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(),
set_timer_ccpX(), set_timer_period ccpX(), get timer_ccpx(),
get_capture32 ccpX()

252

Built-in Functions

get _capture32 ccpl() get capture32 ccp?2()
get capture32 ccp3() get capture32 ccp4()
get capture32_ccp5()

Syntax: value=get_capture32_ccpx(wait);

Parameters: wait -signifies if the compiler should read the oldest result in the buffer or
the next result in the buffer or the next result to enter the buffer.

Returns: value32 -a 32-bit timer value

Function: If wait is true, the current capture values in the result buffer are cleared,
and the next result to be sent, the buffer is returned. If wait is false, the
default setting, the first value currently in the buffer is return. However, the
buffer will only hold two results while waiting for them to be read. If read is
not being called for every capture event, when wait is false, the buffer will
fill with old capture values and any new result will be lost.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Requires: Nothing

Exanuﬂes; unsigned int32 value;

Example Files:

Also See:

setup ccpl (CCP_CAPTURE FE|CCP TIMER 32 BIT);

while (TRUE) {
value=get capture ccpl (TRUE) ;
printf ("Capture occurred at: $LU", value);

None

set pwmX_ duty(), setup ccpX(), set_ccpX_compare _time(),
set_timer_ccpX(), set_timer_period _ccpX(), get_timer_ccpx(),
get_capture ccpX()

253

PCD 07202016.doc

get _capture_event()

Syntax: result = get_capture_event([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
CAPTURE.

Returns: TRUE if a capture event occurred, FALSE otherwise.

Function: To determine if a capture event occurred.

Availability: All devices.

Requires: #USE CAPTURE

Examples: #USE

Example Files:

Also See:

CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)
if(get_capture_event())

result = get_capture_time();
None

#use_capture, get_capture_time()

get _capture_time()

Syntax: result = get_capture_time([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
CAPTURE.

Returns: An int16 value representing the last capture time.

Function: To get the last capture time.

Availability: All devices.

Requires: #USE CAPTURE

254

Built-in Functions

Examples:

Example Files:

Also See:

#USE CAPTURE (INPUT=PIN C2,CAPTURE RISING, TIMER=1,FASTEST)
result = get capture time();

None

#use capture, get_capture event()

get _capture32()

Syntax:

result = get_capture32(x,[wait]);

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:
Also See:

x is 1-16 and defines which input capture result buffer modules to read
from.

wait is an optional parameter specifying if the compiler should read the
oldest result in

the bugger or the next result to enter the buffer.

A 32-bit timer value

If wait is true, the current capture values in the result buffer are cleared,
and the next result

to be sent to the buffer is returned. If wait is false, the default setting, the
first value currently

in the buffer is returned. However, the buffer will only hold four results
while waiting for them

to be read, so if get_capture32 is not being called for every capture event.
When wait is false,

the buffer will fill with old capture values and any new results will be lost.

Only devices with a 32-bit Input Capture module

Nothing

setup timer2(TMR INTERNAL | TMR DIV BY 1 | TMR 32 BIT);
setup capture(l,CAPTURE FE | CAPTURE TIMER2 | CAPTURE 32 BIT);
while (TRUE) {

timerValue=get capture32 (1, TRUE);

printf ("Capture 1 occurred at: $LU", timerValue);

}

None
setup_capture(), setup_compare(), get_capture(), Input Capture Overview

255

PCD 07202016.doc

get_hspwm_capture()

Syntax: result=get_hspwm_capture(unit);

Parameters: unit - The High Speed PWM unit to set.

Returns: Unsigned in16 value representing the capture PWM time base value.

Function: Gets the captured PWM time base value from the leading edge detection on
the current-limit input.

Availability: Only on devices with a built-in High Speed PWM module

(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxXxMCXxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: None

Examples; result=get hspwm capture(l);

Example None

Files:

Also See: setup_hspwm_unit(), set hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),

setup_hspwm_blanking(), setup _hspwm _trigger(), set_hspwm_override(),
setup_hspwm_chop_clock(), setup_hspwm_unit_chop_clock()
setup_hspwm(), setup _hspwm_secondary()

get_motor_pwm_count()

Syntax: Datal6 = get_motor_pwm_count(pwm);
Parameters: pwm- Defines the pwm module used.

Returns: 16 bits of data

Function: Returns the PWM count of the motor control unit.
Availability: Devices that have the motor control PWM unit.
Requires: None

256

Built-in Functions

Examples:

Example
Files:
Also See:

Datal6 = get motor pmw count (1);

None

setup_motor pwm(), set_motor_unit(), set_motor pwm_event(),
set_motor_pwm_duty();

get_nco_accumulator()

Syntax: value =get_nco_accumulator();

Parameters: none

Returns: current value of accumulator.

Availability: On devices with a NCO module.

Examples; value = get nco_accumulator();

Example None

Files:

Also See: setup_nco(), set _nco_inc_value(), get nco_inc_value()

get_nco_inc_value()

Syntax: value =get_nco_inc_value();

Parameters: None

Returns: - current value set in increment registers.

Availability: On devices with a NCO module.

Examples: value = get nco_inc value();

Example None

Files:

Also See: setup_nco(), set_nco_inc_value(), get nco_accumulator()

257

PCD 07202016.doc

get_ticks()

Syntax: value = get_ticks([stream]);
Parameters: stream — optional parameter specifying the stream defined in #USE TIMER.
Returns: value — a 8, 16, 32 or 64 bit integer. (int8, intl6, int32 or int64)
Function: Returns the current tick value of the tick timer. The size returned depends
on the size of the tick timer.
Availability: All devices.
Requires: #USE TIMER(options)
Examples: #USE TIMER (TIMER=1, TICK=1ms,BITS=16,NOISR)
void main (void) {
unsigned intl6 current tick;
current tick = get ticks();
}
Example None
Files:
Also See: #USE TIMER, set ticks()

get _timerA()

Syntax: value=get_timerA();

Parameters: none

Returns: The current value of the timer as an int8

Function: Returns the current value of the timer. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue counting (254,
255,0,1,2,...).

Availability: This function is only available on devices with Timer A hardware.

Requires: Nothing

Examples: set_timerA(0);

258

Built-in Functions

Example
Files:
Also See:

while (timerA < 200);
none

set_timerA(), setup_timer_A(), TimerA Overview

get_timerB()

Syntax: value=get_timerB();

Parameters: none

Returns: The current value of the timer as an int8

Function: Returns the current value of the timer. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue counting (254,
255,0, 1,2, ...).

Availability: This function is only available on devices with Timer B hardware.

Requires: Nothing

Examples: set timerB(0);
while (timerB < 200);

Example none

Files:

Also See: set_timerB(), setup_timer_B(), TimerB Overview

get_timerx()

Syntax:

value=get_timer1()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
value=get_timer6()
value=get_timer7()
value=get_timer8()

259

PCD 07202016.doc

value=get_timer9()

Parameters:

Returns:
Function:
Availability:
Requires:
Examples:
Example

Files:
Also See:

None

The current value of the timer as an intl6

Retrieves the value of the timer, specified by X (which may be 1-9)
This function is available on all devices that have a valid timerX.

Nothing

if (get_timer2() % O0xAQ0 == HALF WAVE PERIOD)
output toggle (PIN BO);

ex_stwt.c

Timer Overview , setup timerX(), get timerXY(), set_timerX(), set _timerXY()

get_timerxy()

Syntax: value=get_timer23()
value=get_timer45()
value=get_timer67()
value=get_timer89()

Parameters: Void

Returns: The current value of the 32 bit timer as an int32

Function: Retrieves the 32 bit value of the timers X and Y, specified by XY (which may
be 23, 45, 67 and 89)

Availability: This function is available on all devices that have a valid 32 bit enabled
timers. Timers 2 & 3,4 &5, 6 & 7 and 8 & 9 may be used. The target device
must have one of these timer sets. The target timers must be enabled as 32
bit.

Requires: Nothing

Examp|es; if(get_timer23() > TRIGGER TIME)

ExecuteEvent () ;

260

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Example
Files:
Also See:

ex_stwt.c

Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

get timer_ccpl() get timer_ccp2()
get timer_ccp3() get_timer_ccp4()
get _timer_ccp5()

Syntax: value32=get_timer_ccpx();
valuel6=get_timer_ccpx(which);

Parameters: which - when in 16-bit mode determines which timer value to read. 0 reads
the lower timer value (CCPXTMRL), and 1 reads the upper timer value
(CCPXTMRH).

Returns: value32 - the 32-bit timer value.
valuel6- the 16-bit timer value.

Function: This function gets the timer values for the CCP module.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Requires: Nothing

Exan”ﬂes; unsigned int32 value32;

unsigned int32 valuel5;

value32=get timer ccpx(); //get the 32 bit timer value
valuel6=get timer ccpx(0); //get the 16 bit timer value
from

//lower timer
valuel6=get timer ccpx(1l); //get the 16 bit timer value
from

//upper timer

261

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Example None

Files:

Also See: set pwmX_duty(), setup_ccpX(), set ccpX_compare_time(),
set_timer_ccpX(), set_timer_period_ccpX(), get_capture_ccpX(),
get captures32_ccpX()

get_tris_x()

Syntax: value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
value = get_tris_E();
value = get_tris_F();
value = get_tris_G();
value = get_tris_H();
value = get_tris_J();
value = get_tris_K()

Parameters: None

Returns: intl6, the value of TRIS register

Function: Returns the value of the TRIS register of port A, B, C, D, E, F, G, H, J, or K.

Availability: All devices.

Requires: Nothing

Examples: tris_a = GET_TRIS A();

Example None

Files:

Also See: input(), output_low(), output_high()

262

getenv()

Built-in Functions

Syntax:

value = getenv (cstring);

Parameters:

Returns:

Function:

cstring is a constant string with a recognized keyword

A constant number, a constant string or O

This function obtains information about the execution environment. The
following are recognized keywords. This function returns a constant O if the

keyword is not understood.

FUSE_SET:fffff

Returns 1 if fuse fffff is enabled

FUSE_VALID:fffff

ID

DEVICE

CLOCK
VERSION

VERSION_STRING

PROGRAM_MEMORY

STACK
SCRATCH

DATA_EEPROM

EEPROM_ADDRESS

Returns 1 if fuse fffff is valid

Returns the device ID (set by #ID)

Returns the device name string (like
"PIC16C74")

Returns the MPU FOSC
Returns the compiler version as a float

Returns the compiler version as a string

Returns the size of memory for code (in
words)

Returns the stack size
Returns the start of the compiler scratch area

Returns the number of bytes of data
EEPROM

Returns the address of the start of EEPROM.
0 if not supported by the device.

263

PCD 07202016.doc

READ_PROGRAM Returns a 1 if the code memory can be read

ADC_CHANNELS Returns the number of A/D channels

ADC_RESOLUTION Returns the number of bits returned from

READ_ADC()

ICD Returns a 1 if this is being compiled for a ICD

SPI Returns a 1 if the device has SPI

USB Returns a 1 if the device has USB

CAN Returns a 1 if the device has CAN

I2C_SLAVE Returns a 1 if the device has 12C slave H/W

12C_MASTER Returns a 1 if the device has 12C master H/W

PSP Returns a 1 if the device has PSP

COMP Returns a 1 if the device has a comparator

VREF Returns a 1 if the device has a voltage
reference

LCD Returns a 1 if the device has direct LCD H/W

UART Returns the number of H/W UARTS

AUART Returns 1 if the device has an ADV UART

CCPx Returns a 1 if the device has CCP number x

TIMERX Returns a 1 if the device has TIMER number

FLASH_WRITE_SIZE

X

Smallest number of bytes that can be written
to FLASH

264

Built-in Functions

FLASH_ERASE_SIZE

BYTES_PER_ADDRE
SS

BITS_PER_INSTRUCT
ION

RAM

SFR:name

BIT:name

SFR_VALID:name

BIT_VALID:name

PIN:PB
UARTX_RX
UARTX_TX

SPIx_DI
SPIXDO
SPIXCLK
ETHERNET

Smallest number of bytes that can be erased
in FLASH

Returns the number of bytes at an address
location

Returns the size of an instruction in bits

Returns the number of RAM bytes available
for your device.

Returns the address of the specified special
file register. The output format can be used
with the preprocessor command #bit. name
must match SFR denomination of your target
PIC (example: STATUS, INTCON, TXREG,
RCREG, etc)

Returns the bit address of the specified
special file register bit. The output format will
be in “address:bit”, which can be used with
the preprocessor command #byte. name
must match SFR.bit denomination of your
target PIC (example: C, Z, GIE, TMROIF, etc)

Returns TRUE if the specified special file
register name is valid and exists for your
target PIC (example:
getenv("SFR_VALID:INTCON"))

Returns TRUE if the specified special file
register bit is valid and exists for your target
PIC (example: getenv("BIT_VALID:TMROIF"))

Returns 1 if PB is a valid I/0 PIN (like A2)
Returns UARTXPin (like PINXC7)
Returns UARTXPin (like PINXC6)

Returns SPIxDI Pin

Returns SPIXDO Pin

Returns SPIXCLK Pin

Returns 1 if device supports Ethernet

265

PCD 07202016.doc

QEI
DAC

DSP
DCI
DMA
CRC
CWG
NCO
CLC

DSM

OPAMP

RTC

CAP_SENSE

EXTERNAL_MEMORY
INSTRUCTION_CLOC
K

ENH16

ENH24

IC

ICx

oC

Returns 1 if device has QEI
Returns 1 if device has a D/A Converter

Returns 1 if device supports DSP instructions
Returns 1 if device has a DCI module
Returns 1 if device supports DMA

Returns 1 if device has a CRC module
Returns 1 if device has a CWG module
Returns 1 if device has a NCO module

Returns 1 if device has a CLC module
Returns 1 if device has a DSM module
Returns 1 if device has op amps

Returns 1 if device has a Real Time Clock

Returns 1 if device has a CSM cap sense
module and 2 if it has a CTMU module

Returns 1 if device supports external program
memory

Returns the MPU instruction clock

Returns 1 for Enhanced 16 devices

Returns 2 for Enhanced 24 devices

Returns number of Input Capture units device
has

Returns TRUE if ICx is on this part

Returns number of Output Compare units
device has

266

Built-in Functions

Availability:

Requires:

Examples:

Example
Files:
Also See:

OCx Returns TRUE if OCx is on this part

RAM_START Returns the starting address of the first
general purpose RAM location

PSV Returns TRUE if program space visibility
(PSV) is enabled. If PSV is enabled, data in
program memory (‘const char * or 'rom char
*) can be assigned to a regular RAM pointer
(‘char *') and a regular RAM pointer can
dereference data from program memory or
RAM.

All devices
Nothing
#IF getenv ("VERSION")<3.050
#ERROR Compiler version too old

#ENDIF

for (i=0;i<getenv ("DATA EEPROM") ;i++)
write eeprom(i,0);

#IF getenv ("FUSE VALID:BROWNOUT")
#FUSE BROWNOUT
#ENDIF

#byte status reg=GETENV (“SFR:STATUS”)

#bit carry flag=GETENV (“BIT:C”)
None

None

267

PCD 07202016.doc

goto_address()

Syntax: goto_address(location);
Parameters: location is a ROM address, 16 or 32 bit int.
Returns: Nothing
Function: This function jumps to the address specified by location. Jumps outside of
the current function should be done only with great caution. This is not a
normally used function except in very special situations.
Availability: All devices
Requires: Nothing
Examples: #define LOAD_REQUEST PIN_Bl
#define LOADER 0x1£f00
if (input (LOAD REQUEST))
goto_address (LOADER) ;
Example setimp.h
Files:
Also See: label _address()

high_speed _adc_done()

Syntax:

value = high_speed_adc_done([pair]);

Parameters:

Returns:

Function:

pair — Optional parameter that determines which ADC pair's ready flag to
check. If not used all ready flags are checked.

An intl6. If pairis used 1 will be return if ADC is done with conversion, 0
will be return if still busy. If pair isn't use it will return a bit map of which
conversion are ready to be read. For example a return value of 0x0041
means that ADC pair 6, AN12 and AN13, and ADC pair 0, ANO and AN1,
are ready to be read.

Can be polled to determine if the ADC has valid data to be read.

268

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Availability: Only on dsPIC33FJxxGSxxx devices.
Requires: None
Examples: intl6 result[2]

setup high speed adc pair(l, INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc(ADC_CLOCK DIV 4);

read high speed adc(l, ADC START ONLY);

while (!'high speed adc done(1l));

read high speed adc (1, ADC READ ONLY, result);
printf ("AN2 value = $LX, AN3 value =
$LX\n\r”,result[0],result[1l]);

Example None
Files:
Also See: setup_high_speed_adc(), setup_high_speed adc_pair(),

read_high _speed_adc()

12c_init()

Syntax: i2c_init([stream],baud);
Parameters: stream — optional parameter specifying the stream defined in
#USE 12C.

baud — if baud is 0, 12C peripheral will be disable. If baud is 1, 12C
peripheral is initialized and enabled with baud rate specified in #USE 12C
directive. If baud is > 1 then 12C peripheral is initialized and enabled to
specified baud rate.

Returns: Nothing

Function: To initialize 12C peripheral at run time to specified baud rate.
Availability: All devices.

Requires: #USE 12C

Examples: #USE 12C(MASTER,I2C1, FAST,NOINIT)

i2c_init(TRUE); //initialize and enable 12C peripheral to baud
rate specified in //#USE 12C

i2c_init(500000); //initialize and enable 12C peripheral to a
baud rate of 500 //KBPS

269

PCD 07202016.doc

Example
Files:
Also See:

None

12C POLL(), i2c_speed(), 12C_SlaveAddr(), 12C ISR_STATE()
J2C WRITE(),
12C_READ(), USE 12C(), 12C()

12c_isr_state()

Syntax: state = i2c_isr_state();
state = i2c_isr_state(stream);
Parameters: None
Returns: state is an 8 bit int
0 - Address match received with R/W bit clear, perform i2c_read() to read
the 12C address.
1-0x7F - Master has written data; i2c_read() will immediately return the
data
0x80 - Address match received with R/W bit set; perform i2c_read() to
read the 12C address, and use i2c_write() to pre-load the transmit buffer
for the next transaction (next 12C read performed by master will read this
byte).
0x81-0xFF - Transmission completed and acknowledged; respond with
i2c_write() to pre-load the transmit buffer for the next transation (the next
12C read performed by master will read this byte).
Function: Returns the state of I2C communications in 12C slave mode after an SSP
interrupt. The return value increments with each byte received or sent.
If Ox00 or 0x80 is returned, an i2C_read() needs to be performed to read
the 12C address that was sent (it will match the address configured by
#USE 12C so this value can be ignored)
Availability: Devices with i2c hardware
Requires: #USE 12C
Examples: #INT_SSP
void i2c_isr() {
state = i2c_isr state();
if (state== 0) i2c_read();
i@c_read();
if (state == 0x80)

i2c _read(2);
if (state >= 0x80)
i2c write(send buffer[state - 0x80]);
else if (state > 0)

270

Built-in Functions

rcv_buffer[state - 1] = i2c_read();
}
Example ex_slave.c
Files:
Also See: i2c_poll, i2c_speed, i2¢c_start, i2c_stop, i2c_slaveaddr, i2c_write, i2c_read,

#USE [2C, 12C Overview

12c_poll()

Syntax: i2c_poll()
i2c_poll(stream)

Parameters: stream (optional)- specify the stream defined in #USE 12C
Returns: 1 (TRUE) or 0 (FALSE)
Function: The [2C_POLL() function should only be used when the built-in SSP is

used. This function returns TRUE if the hardware has a received byte in
the buffer. When a TRUE is returned, a call to 12C_READ() will
immediately return the byte that was received.

Availability: Devices with built in 12C
Requires: #USE 12C
Examples: if (i2c-poll())
buffer [index]=i2c-read();//read data
Example None
Files:
Also See: i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr, i2c_isr_state, i2c_write,

i2c_read, #USE I2C, 12C Overview

12c_read()

Syntax: data =i2c_read();
data = i2c_read(ack);
data = i2c_read(stream, ack);

271

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

ack -Optional, defaults to 1.

0 indicates do not ack.

1 indicates to ack.

2 slave only, indicates to not release clock at end of read. Use when
i2c_isr_state ()

returns 0x80.

stream - specify the stream defined in #USE 12C

data - 8 bit int

Reads a byte over the 12C interface. In master mode this function will
generate the clock and in slave mode it will wait for the clock. There is no
timeout for the slave, use i2c_poll() to prevent a lockup. Use restart_wdt()
in the #USE 12C to strobe the watch-dog timer in the slave mode while
waiting.

All devices.

#USE 12C

i2c_start();

i2c write(Oxal);

datal = i2c_read(TRUE) ;
data2 = i2c_read(FALSE);

i2c_stop();

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state,
i2c_write, #USE I12C, 12C Overview

i12c_slaveaddr()

Syntax: 12C_SlaveAddr(addr);
12C_SlaveAddr(stream, addr);
Parameters: addr = 8 bit device address
stream(optional) - specifies the stream used in #USE 12C
Returns: Nothing
Function: This functions sets the address for the 12C interface in slave mode.

272

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Availability: Devices with built in 12C
Requires: #USE 12C
Examples: i2c_SlaveAddr (0x08) ;
i2c_SlaveAddr (i2cStreaml, 0x08);
Example ex_slave.c
Files:
Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_isr_state, i2c_write, i2c_read,

#USE I12C, 12C Overview

12c_speed()

Syntax: i2c_speed (baud)
i2c_speed (stream, baud)

Parameters: baud is the number of bits per second.
stream - specify the stream defined in #USE [2C

Returns: Nothing.

Function: This function changes the 12c bit rate at run time. This only works if the
hardware 12C module is being used.

Availability: All devices.

Requires: #USE 12C

Examples: I2C_Speed (400000);

Example none

Files:

Also See: i2c_poll, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write,

i2c_read, #USE I2C, 12C Overview

273

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

12c_start()

Syntax:

i2c_start()
i2c_start(stream)
i2c_start(stream, restart)

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

stream: specify the stream defined in #USE [2C

restart: 2 — new restart is forced instead of start

1 — normal start is performed

0 (or not specified) — restart is done only if the compiler last encountered a
12C_START and no [2C_STOP

undefined

Issues a start condition when in the 12C master mode. After the start
condition the clock is held low until I2C_WRITE() is called. If another
I12C_start is called in the same function before an i2c_stop is called, then a
special restart condition is issued. Note that specific I12C protocol depends
on the slave device. The I2C_START function will now accept an optional
parameter. If 1 the compiler assumes the bus is in the stopped state. If 2
the compiler treats this 12C_START as a restart. If no parameter is passed
a 2 is used only if the compiler compiled a 12C_START last with no
I2C_STOP since.

All devices.

#USE 12C

i2c_start();

(
i2c _write (0xa0); // Device address
i2c_write (address); // Data to device
i2c_start(); // Restart
i2c_write(Oxal); // to change data direction
data=i2c_read(0); // Now read from slave

i2c_stop();

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write,
i2c_read, #USE I2C, 12C Overview

274

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

12c_stop()

Syntax: i2c_stop()
i2c_stop(stream)
Parameters: stream: (optional) specify stream defined in #USE [2C
Returns: undefined
Function: Issues a stop condition when in the 12C master mode.
Availability: All devices.
Requires: #USE 12C
Examples: i2c _start(); // Start condition
i2c write(Oxa0); // Device address
i2c write(5); // Device command
i2c write(12); // Device data
i2c_stop(); // Stop condition
Example ex_extee.c with 2416.c
Files:
Also See: i2c_poll, i2c_speed, i2c_start, i2c_slaveaddr, i2c_isr_state, i2c_write,
i2c_read, #USE 12C, |12C Overview
12c_write()
Syntax: i2c_write (data)
i2c_write (stream, data)
Parameters: data is an 8 bit int
stream - specify the stream defined in #USE 12C
Returns: This function returns the ACK Bit.
0 means ACK, 1 means NO ACK, 2 means there was a collision if in
Multi_Master Mode.
This does not return an ACK if using i2c in slave mode.
Function: Sends a single byte over the 12C interface. In master mode this function will

generate a clock with the data and in slave mode it will wait for the clock

275

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

PCD 07202016.doc

Availability:
Requires:

Examples:

Example
Files:
Also See:

from the master. No automatic timeout is provided in this function. This
function returns the ACK bit. The LSB of the first write after a start
determines the direction of data transfer (0 is master to slave). Note that
specific 12C protocol depends on the slave device.

All devices.

#USE 12C
long cmd;

i2c _start(); // Start condition
i2c_write(0xa0);// Device address
i2c_write(cmd);// Low byte of command
i2c_write(cmd>>8);// High byte of command
i2c_stop(); // Stop condition

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state,
i2c_read, #USE I2C, 12C Overview

input()

Syntax:

value = input (pin)

Parameters:

Returns:

Function:

Availability:

Pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #define PIN_A3 5651 .

The PIN could also be a variable. The variable must have a value equal to
one of the constants (like PIN_A1) to work properly. The tristate register is
updated unless the FAST_1O mode is set on port A. note that doing 1/O
with a variable instead of a constant will take much longer time.

0 (or FALSE) if the pin is low,

1 (or TRUE) if the pin is high

This function returns the state of the indicated pin. The method of I/O is
dependent on the last USE *_|O directive. By default with standard I/O
before the input is done the data direction is set to input.

All devices.

276

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Requires:

Examples:

Example
Files:
Also See:

Pin constants are defined in the devices .h file

while (!input (PIN Bl));
// waits for Bl to go high

if (input (PIN_AO0))
printf ("AO0 is now high\r\n");

int16 i=PIN B1;

while(!'1i);
//waits for Bl to go high

ex_pulse.c

input_x(), output_low(), output high(), #USE FIXED |0, #USE FAST 10,
#USE STANDARD 10, General Purpose I/O

input_change_x()

Syntax: value = input_change_a();
value = input_change_b();
value = input_change_c();
value = input_change_d();
value = input_change_e();
value = input_change_f();
value = input_change_g();
value = input_change_h();
value = input_change_j();
value = input_change_Kk();

Parameters: None

Returns: An 8-bit or 16-bit int representing the changes on the port.

Function: This function reads the level of the pins on the port and compares them to
the results the last time the input_change_x() function was called. A 1is
returned if the value has changed, 0 if the value is unchanged.

Availability: All devices.

277

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Requires:
Examples:
Example

Files:
Also See:

None
pin check = input change b();
None

input(), input_x(), output_x(), #USE FIXED 10, #USE FAST |0, #USE
STANDARD 10, General Purpose 1/0O

input_state()

Syntax: value = input_state(pin)

Parameters: pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #define PIN_A3 5651 .

Returns: Bit specifying whether pin is high or low. A 1 indicates the pin is high and a
0 indicates it is low.

Function: This function reads the level of a pin without changing the direction of the
pin as INPUT() does.

Availability: All devices.

Requires: Nothing

Examples; level = input state(pin A3);
printf ("level: %d",level);

Example None

Files:

Also See: input(), set tris_x(), output low(), output high(), General Purpose /O

278

Built-in Functions

input_x()

Syntax: value = input_a()
value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()
value = input_g()
value = input_h()
value = input_j()
value = input_k()

Parameters: None

Returns: An 16 bit int representing the port input data.

Function: Inputs an entire word from a port. The direction register is changed in
accordance with the last specified #USE *_|O directive. By default with
standard 1/O before the input is done the data direction is set to input.

Availability: All devices.

Requires: Nothing

Examples: data = input_b();

Example ex_psp.c

Files:

Also See: input(), output x(), #USE FIXED_IO, #USE FAST |0, #USE

STANDARD_IO

interrupt_active()

Syntax: interrupt_active (interrupt)
Parameters: Interrupt — constant specifying the interrupt
Returns: Boolean value

279

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Function: The function checks the interrupt flag of the specified interrupt and returns
true in case the flag is set.
Availability: Device with interrupts
Requires: Should have a #INT_xxxx, Constants are defined in the devices .h file.
Examples; interrupt active (INT TIMERO) ;
interrupt active (INT TIMERI1);
Example None
Files:
Also See: disable_interrupts() , #INT , Interrupts Overview
clear _interrupt, enable_interrupts()
isalnum(char) isalpha(char) iscntrl(x)
isdigit(char) isgraph(x)
islower(char) iIsspace(char)
iIsupper(char) isxdigit(char) isprint(x)
Ispunct(x)
Syntax: value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)
Parameters: datac is a 8 bit character
Returns: 0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if datac does

match the criteria.

280

Built-in Functions

Function: Tests a character to see if it meets specific criteria as follows:
isalnum(x) Xis 0.9,'A'..'Z', or'a'..'z'
isalpha(x) Xis'A'..'"Z' or'a'..'z
isdigit(x) Xis'0'..'9'
islower(x) Xis'a'..'z'
isupper(x) Xis'A'..'Z
isspace(x) X is a space
isxdigit(x) Xis'0'..'9', 'A'..'F', or 'a'..'f
iscntrl(x) X is less than a space
isgraph(x) X is greater than a space
isprint(x) X is greater than or equal to a space
ispunct(x) X is greater than a space and not a letter or number

Availability: All devices.

Requires: #INCLUDE <ctype.h>

Examples: char 1d[20];

if (isalpha (id[0])) {
valid id=TRUE;
for(i=1;i<strlen (id) ;i++)
valid id=valid id && isalnum(id[i]);
} else
valid id=FALSE;

Example ex_str.c

Files:

Also See: isamong()

iIsamong()

Syntax: result = isamong (value, cstring)

Parameters: value is a character

cstring is a constant sting
Returns: 0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring
Function: Returns TRUE if a character is one of the characters in a constant string.

281

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Availability:

Requires:

Examples:

Example
Files:
Also See:

All devices

Nothing
char x= 'x';
if (isamong (x,
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
printf ("The character is valid");

#INCLUDE <ctype.h>

isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(), isxdigit()

itoa()

Syntax: string = itoa(i32value, i8base, string)
string = itoa(i48value, i8base, string)
string = itoa(i64value, i8base, string)
Parameters: i32value is a 32 bit int
i48value is a 48 bit int
i64value is a 64 bit int
i8base is a 8 bit int
string is a pointer to a null terminated string of characters
Returns: string is a pointer to a null terminated string of characters
Function: Converts the signed int32 , int48, or a int64 to a string according to the
provided base and returns the converted value if any. If the result cannot be
represented, the function will return 0.
Availability: All devices
Requires: #INCLUDE <stdlib.h>
Examples: int32 x=1234;

char string[5];

itoa(x,10, string);
// string is now “1234”

282

Built-in Functions

Example
Files:
Also See:

None

None

kbhit()

Syntax: value = kbhit()
value = kbhit (stream)

Parameters: stream is the stream id assigned to an available RS232 port. If the stream
parameter is not included, the function uses the primary stream used by
getc().

Returns: 0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or
TRUE) if a character is ready for getc()

Function: If the RS232 is under software control this function returns TRUE if the start
bit of a character is being sent on the RS232 RCV pin. If the RS232 is
hardware this function returns TRUE if a character has been received and is
waiting in the hardware buffer for getc() to read. This function may be used
to poll for data without stopping and waiting for the data to appear. Note that
in the case of software RS232 this function should be called at least 10
times the bit rate to ensure incoming data is not lost.

Availability: All devices.

Requires: #USE RS232

Exan“ﬂes; char timed getc() {

long timeout;

timeout error=FALSE;

timeout=0;

while (!kbhit () && (++timeout<50000)) // 1/2

// second

delay us(10);

if (kbhit())
return (getc()) ;

else {
timeout error=TRUE;

283

PCD 07202016.doc

Example
Files:
Also See:

return (0) ;
}
ex_tgetc.c
getc(), #USE RS232, RS232 1/0O Overview

label address()

Syntax: value = label_address(label);
Parameters: label is a C label anywhere in the function
Returns: A 16 bit int in PCB,PCM and a 32 bit int for PCH, PCD
Function: This function obtains the address in ROM of the next instruction after the
label. This is not a normally used function except in very special situations.
Availability: All devices.
Requires: Nothing
Examples: start:
a = (bt+tc)<k2;
end:
printf ("It takes %lu ROM locations.\r\n",
label address(end)-label address(start));
Example setimp.h
Files:
Also See: goto_address()

labs()

Syntax: result = labs (value)
Parameters: value is a 16 , 32, 48 or 64 bit signed long int
Returns: A signed long int of type value

284

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Function: Computes the absolute value of a long integer.

Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Exan1p|es; if (labs(target value - actual value) > 500)
printf ("Error is over 500 points\r\n");

Example None

Files:

Also See: abs()

ldexp()

Syntax: result= Idexp (value, exp);

Parameters: value is float any float type
exp is a signed int.

Returns: result is a float with value result times 2 raised to power exp.
result will have a precision equal to value

Function: The Idexp function multiplies a floating-point number by an integral power of
2.

Availability: All devices.
Requires: #INCLUDE <math.h>

Examples: float result;
result=1ldexp(.5,0);
// result is .5

Example None
Files:
Also See: frexp(), exp(), log(), log10(), modf()

285

PCD 07202016.doc

log()

Syntax: result = log (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the natural logarithm of the float x. If the argument is less than or
equal to zero or too large, the behavior is undefined.
Note on error handling:
"errno.h" is included then the domain and range errors are stored in the
errno variable. The user can check the errno to see if an error has occurred
and print the error using the perror function.
Domain error occurs in the following cases:
¢ log: when the argument is negative

Availability: All devices

Requires: #INCLUDE <math.h>

Examples: Inx = log(x);

Example None

Files:

Also See: l0og10(), exp(), pow()

l0g10()

Syntax: result =1og10 (value)

Parameters: value is any float type

Returns: A float with precision equal to value

Function: Computes the base-ten logarithm of the float x. If the argument is less than

or equal to zero or too large, the behavior is undefined.

286

Built-in Functions

Availability:

Requires:
Examples:
Example

Files:
Also See:

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the
errno variable. The user can check the errno to see if an error has occurred
and print the error using the perror function.

Domain error occurs in the following cases:
¢ log10: when the argument is negative

All devices
#INCLUDE <math.h>
db = loglO(read adc()*(5.0/255))*10;

None

log(), exp(), pow()

longjmp()

Syntax: longjmp (env, val)

Parameters: env: The data object that will be restored by this function
val: The value that the function setjmp will return. If val is 0 then the function
setjmp will return 1 instead.

Returns: After longjmp is completed, program execution continues as if the
corresponding invocation of the setjmp function had just returned the value
specified by val.

Function: Performs the non-local transfer of control.

Availability: All devices

Requires: #INCLUDE <setjmp.h>

Examples: longjmp (jmpbuf, 1);

Example None

Files:

Also See: setimp()

287

PCD 07202016.doc

make8()

Syntax: i8 = MAKES(var, offset)
Parameters: var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3.
Returns: An 8 bit integer
Function: Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8)) &
0xff) except it is done with a single byte move.
Availability: All devices
Requires: Nothing
Examples: int32 x;
int y;
y = make8(x,3); // Gets MSB of x
Example None
Files:
Also See: make16(), make32()

makel6()

Syntax: 116 = MAKE16(varhigh, varlow)

Parameters: varhigh and varlow are 8 bit integers.

Returns: A 16 bit integer

Function: Makes a 16 bit number out of two 8 bit numbers. If either parameter is 16 or
32 bits only the Isb is used. Same as: i16 =
(int16)(varhigh&O0xff)*0x100+(varlow&0xff) except it is done with two byte
moves.

Availability: All devices

Requires: Nothing

288

Built-in Functions

Examples: long x;
int hi,lo;

x = makel6 (hi, lo);

Example [tc1298.c
Files:
Also See: make8(), make32()

make32()

Syntax: i32 = MAKE32(varl, var2, var3, var4)

Parameters: varl-4 are a 8 or 16 bit integers. var2-4 are optional.

Returns: A 32 bit integer

Function: Makes a 32 bit number out of any combination of 8 and 16 bit numbers.
Note that the number of parameters may be 1 to 4. The msb is first. If the
total bits provided is less than 32 then zeros are added at the msb.

Availability: All devices

Requires: Nothing

Examples: int32 x;
int y;
long z;

x = make32(1,2,3,4); // x is 0x01020304

y=0x12;
z=0x4321;

x = make32(y,z); // x is 0x00124321

X make32(y,y,z); // x is 0x12124321

Example ex_fregc.c
Files:
Also See: make8(), makel6()

289

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

malloc()

Syntax: ptr=malloc(size)

Parameters: size is an integer representing the number of byes to be allocated.
Returns: A pointer to the allocated memory, if any. Returns null otherwise.

Function: The malloc function allocates space for an object whose size is specified by
size and whose value is indeterminate.

Availability: All devices
Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;
iptr=malloc (10);
// iptr will point to a block of memory of 10 bytes.

Example None
Files:
Also See: realloc(), free(), calloc()

memcpy() memmove()

Syntax: memcpy (destination, source, n)
memmove(destination, source, n)

Parameters: destination is a pointer to the destination memaory.
source is a pointer to the source memory,.
n is the number of bytes to transfer

Returns: undefined

Function: Copies n bytes from source to destination in RAM. Be aware that array
names are pointers where other variable names and structure names are
not (and therefore need a & before them).

Memmove performs a safe copy (overlapping objects doesn't cause a
problem). Copying takes place as if the n characters from the source are

290

Built-in Functions

first copied into a temporary array of n characters that doesn't overlap the
destination and source objects. Then the n characters from the temporary
array are copied to destination.

Availability: All devices
Requires: Nothing
Examples: memcpy (&structhA, &structB, sizeof (structd));

memcpy (arrayA,arrayB,sizeof (arrayhdh));
memcpy (&structh, &databyte, 1);

char a[20]="hello";
memmove (a,a+2,5) ;
// a is now "llo"

Example None

Files:

Also See: strcpy(), memset()
memset()

Syntax: memset (destination, value, n)

Parameters: destination is a pointer to memory.
value is a 8 bit int

n is a 16 bit int.
Returns: undefined
Function: Sets n number of bytes, starting at destination, to value. Be aware that array

names are pointers where other variable names and structure names are
not (and therefore need a & before them).

Availability: All devices

Requires: Nothing
Exanuﬂes; memset (arrayA, 0, sizeof (arrayh));
memset (arrayB, '?', sizeof (arrayB)):;

memset (&structA, OxFF, sizeof (structhd));

291

PCD 07202016.doc

Example None
Files:

Also See: memcpy()

modf()

Syntax: result= modf (value, & integral)

Parameters: value is any float type
integral is any float type

Returns: result is a float with precision equal to value

Function: The modf function breaks the argument value into integral and fractional
parts, each of which has the same sign as the argument. It stores the
integral part as a float in the object integral.

Availability: All devices

Requires: #INCLUDE <math.h>

Exanuﬂes; float 48 result, integral;
result=modf (123.987, &integral) ;
// result is .987 and integral is 123.0000

Example None

Files:

Also See: None

_mul()

Syntax: prod=_mul(vall, val2);

Parameters: vall and val2 are both 8-bit, 16-bit, or 48-bit integers

Returns:
vall val2 prod
8 8 16
16* 16 32

292

Built-in Functions

32* 32 64
48* 48 64**
*or less

** large numbers will overflow with wrong results

Function: Performs an optimized multiplication. By accepting a different type than it
returns, this function avoids the overhead of converting the parameters to
a larger type.

Availability: All devices

Requires: Nothing

Examples: int a=50, b=100;
long int c;
c = mul(a, b); //c holds 5000

Example None

Files:

Also See: None

nargs()

Syntax: void foo(char * str, int count, ...)

Parameters: The function can take variable parameters. The user can use stdarg
library to create functions that take variable parameters.

Returns: Function dependent.

Function: The stdarg library allows the user to create functions that supports
variable arguments.
The function that will accept a variable number of arguments must have
at least one actual, known parameters, and it may have more. The
number of arguments is often passed to the function in one of its actual
parameters. If the variable-length argument list can involve more that
one type, the type information is generally passed as well. Before
processing can begin, the function creates a special argument pointer of
type va_list.

Availability: All devices

293

PCD 07202016.doc

Requires:

Examples:

Example
Files:
Also See:

#INCLUDE <stdarg.h>

int foo(int num, ...)
{

int sum = 0;

int i;
va list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr

for (i=0; i<num; i++)

sum = sum + va arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

}

void main ()

{

int total;

total = foo(2,4,6,9,10,2);
}

None

va_start(), va _end(), va_arg()

offsetof() offsetofbit()

Syntax: value = offsetof(stype, field);
value = offsetofbit(stype, field);
Parameters: stype is a structure type name.
Field is a field from the above structure
Returns: An 8 bit byte
Function: These functions return an offset into a structure for the indicated field.
offsetof returns the offset in bytes and offsetofbit returns the offset in bits.
Availability: All devices
Requires: #INCLUDE <stddef.h>
Exan”ﬂes; struct time structure ({

294

Built-in Functions

int hour, min, sec;
int zone : 4;
intl daylight savings;

x = offsetof (time structure, sec);
// x will be 2
x = offsetofbit (time structure, sec);
// x will be 16
x = offsetof (time structure,
daylight savings);
// x will be 3
x = offsetofbit (time structure,
daylight savings);
// x will be 28

Example None
Files:
Also See: None

output_x()

Syntax: output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)
output_g (value)
output_h (value)
output_j (value)
output_k (value)

Parameters: value is a 16 bit int
Returns: undefined

Function: Output an entire word to a port. The direction register is changed in
accordance with the last specified #USE *_IO directive.

Availability: All devices, however not all devices have all ports (A-E)

Requires: Nothing

295

PCD 07202016.doc

Examples:

Example
Files:
Also See:

OUTPUT B (0xfO0) ;

ex_patg.c

input(), output_low(), output_high(), output_float(), output_bit(), #USE
FIXED |0, #USE FAST 10, #USE STANDARD 10, General Purpose
1/0

output_bit()

Syntax: output_bit (pin, value)

Parameters: Pins are defined in the devices .h file. The actual number is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #define PIN_A3 5651 .
The PIN could also be a variable. The variable must have a value equal
to one of the constants (like PIN_A1) to work properly. The tristate
register is updated unless the FAST 10 mode is set on port A. Note that
doing 1/O with a variable instead of a constant will take much longer time.
Valueisalorao.

Returns: undefined

Function: Outputs the specified value (0 or 1) to the specified I/O pin. The
method of setting the direction register is determined by the last
#USE * 10 directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output _bit(PIN BO, 0);

// Same as output low (pin BO);

output bit(PIN BO,input(PIN Bl));
// Make pin BO the same as Bl

output bit(PIN BO,shift left(&data,l,input (PIN B1l)));
// Output the MSB of data to

// BO and at the same time

// shift Bl into the LSB of data

296

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Example
Files:
Also See:

intlé i=PIN BO;

ouput bit (i,shift left(&data,l, input (PIN Bl)));
//same as above example, but

//uses a variable instead of a constant

ex_extee.c with 9356.c

input(), output_low(), output_high(), output_float(), output x(), #USE
FIXED |0, #USE FAST 10, #USE STANDARD 10, General Purpose
110

output_drive()

Syntax: output_drive(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE PIN_A3 5651

Returns: undefined

Function: Sets the specified pin to the output mode.

Availability: All devices.

Requires: Pin constants are defined in the devices.h file.

Exan“ﬂes; output drive (pin A0); // sets pin A0 to output its value
output _bit (pin B0, input(pin A0)) // makes BO the same as
20

Example None

Files:

Also See: input(), output low(), output high(), output bit(), output x(),

output float()

297

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

PCD 07202016.doc

output_float()

Syntax: output_float (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE PIN_A3 5651
. The PIN could also be a variable to identify the pin. The variable must
have a value equal to one of the constants (like PIN_A1) to work
properly. Note that doing I/O with a variable instead of a constant will
take much longer time.

Returns: undefined

Function: Sets the specified pin to the input mode. This will allow the pin to float
high to represent a high on an open collector type of connection.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: if ((data & 0x80)==0)

output low(pin_ AO);
else
output float (pin_ A0);

Example None

Files:

Also See: input(), output_low(), output_high(), output_bit(), output x(),

output_drive(), #USE FIXED 10, #USE FAST 10, #USE
STANDARD 10, General Purpose I/0O

output_high()

Syntax:

output_high (pin)

Parameters:

Pin to write to. Pins are defined in the devices .h file. The actual value is
a bit address. For example, port a (byte 0x2C2) bit 3 would have a value
of 0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE PIN_A3

5651 . The PIN could also be a variable. The variable must have a value
equal to one of the constants (like PIN_A1) to work properly. The tristate

298

Built-in Functions

Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

register is updated unless the FAST_10 mode is set on port A. Note that
doing I/O with a variable instead of a constant will take much longer time.

undefined

Sets a given pin to the high state. The method of I/0 used is dependent
on the last USE *_10O directive.

All devices.

Pin constants are defined in the devices .h file

output high (PIN AO);
output low (PIN Al);

ex_Sgw.c
input(), output_low(), output float(), output_bit(), output x(), #USE

FIXED 10, #USE FAST 10, #USE STANDARD IO, General Purpose
110

output_low()

Syntax: output_low (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE PIN_A3 5651 .
The PIN could also be a variable. The variable must have a value equal
to one of the constants (like PIN_A1) to work properly. The tristate
register is updated unless the FAST_10 mode is set on port A. Note that
doing I/O with a variable instead of a constant will take much longer time.

Returns: undefined

Function: Sets a given pin to the ground state. The method of I/0O used is
dependent on the last USE * 10 directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

299

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Examples:

Example
Files:
Also See:

output low (PIN_AO);

Intl6i=PIN Al;
output low (PIN Al);

ex_Sgw.c
input(), output_high(), output float(), output bit(), output x(), #USE

FIXED |0, #USE FAST 10, #USE STANDARD 10, General Purpose
110

output_toggle()

Syntax: output_toggle(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE PIN_A3 5651 .

Returns: Undefined

Function: Toggles the high/low state of the specified pin.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Examples: output toggle (PIN B4);

Example None

Files:

Also See: Input(), output_high(), output low(), output_bit(), output_x()

perror()

Syntax: perror(string);

Parameters: string is a constant string or array of characters (null terminated).

Returns: Nothing

300

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

This function prints out to STDERR the supplied string and a description
of the last system error (usually a math error).

All devices.
#USE RS232, #INCLUDE <errno.h>
x = sin(y);

if (errno!=0)
perror ("Problem in find area");

None

RS232 1/0 Overview

pid_busy()

Syntax: result = pid_busy();
Parameters: None
Returns: TRUE if PID module is busy or FALSE is PID module is not busy.
Function: To check if the PID module is busy with a calculation.
Availability: All devices with a PID module.
Requires: Nothing
Exan”ﬂesj pid get result (PID_START ONLY, ADCResult);
while (pid busy());
pid get result(PID READ ONLY, &PIDResult);
Example None
Files:
Also See: setup_pid(), pid_write(), pid_get_result(), pid_read()

301

PCD 07202016.doc

pid_get_result()

Syntax: pid_get_result(set_point, input, &output); //Start and Read
pid_get_result(mode, set_point, input); /IStart Only
pid_get_result(mode, &output) /IRead Only
pid_get_result(mode, set_point, input, &output);

Parameters: mode- constant parameter specifying whether to only start the
calculation, only read the result, or start the calculation and read the
result. The options are defined in the device's header file as:

PID_START_READ

PID_READ_ONLY

PID_START_ONLY
set_point -a 16-bit variable or constant representing the set point of the
control system, the value the input from the control system is compared
against to determine the error in the system.
input - a 16-bit variable or constant representing the input from the
control system.
output - a structure that the output of the PID module will be saved to.
Either pass the address of the structure as the parameter, or a pointer
to the structure as the parameter.

Returns: Nothing

Function: To pass the set point and input from the control system to the PID
module, start the PID calculation and get the result of the PID
calculation. The PID calculation starts, automatically when the input is
written to the PID module's input registers.

Availability: All devices with a PID module.

Requires: Constants are defined in the device's .h file.

Exan“ﬂes; pid get result(SetPoint, ADCResult, &PIDOutput);

//Start and Read
pid _get result (PID_START ONLY, SetPoint, ADCResult);
//Start Only
pid get result(PID READ ONLY, &PIDResult); //Read Only
Example None

302

Built-in Functions

Files:
Also See:

setup_pid(), pid_read(), pid_write(), pid_busy()

pid_read()

Syntax: pid_read(register, &output);
Parameters: register- constant specifying which PID registers to read. The registers
that can be written are defined in the device's header file as:
PID_ADDR_ACCUMULATOR
PID_ADDR_OUTPUT
PID_ADDR_Z1
PID_ADDR_Z2
PID_ADDR_K1
PID_ADDR_K2
PID_ADDR_K3
output -a 16-bit variable, 32-bit variable or structure that specified PID
registers value will be saved to. The size depends on the registers that
are being read. Either pass the address of the variable or structure as
the parameter, or a pointer to the variable or structure as the parameter.
Returns: Nothing
Function: To read the current value of the Accumulator, Output, Z1, Z2, Set Point,
K1, K2 or K3 PID registers. If the PID is busy with a calculation the
function will wait for module to finish calculation before reading the
specified register.
Availability: All devices with a PID module.
Requires: Constants are defined in the device's .h file.
Examples; pid read(PID ADDR 71, &value zl);
Example None
Files:
Also See: setup_pid(), pid_write(), pid_get_result(), pid_busy()

303

PCD 07202016.doc

pid_write()

Syntax:

pid_write(register, &input);

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

register- constant specifying which PID registers to write. The registers
that can be written are defined in the device's header file as:
- PID_ADDR_ACCUMULATOR

PID_ADDR_OUTPUT

PID_ADDR_z1

PID_ADDR_Z2

PID_ADDR_Z3

PID_ADDR_K1

PID_ADDR_K2

PID_ADDR_K3

input -a 16-bit variable, 32-bit variable or structure that contains the data
to be written. The size depends on the registers that are being written.
Either pass the address of the variable or structure as the parameter, or
a pointer to the variable or structure as the parameter.

Nothing

To write a new value for the Accumulator, Output, Z1, Z2, Set Point, K1,
K2 or K3 PID registers. If the PID is busy with a calculation the function

will wait for module to finish the calculation before writing the specified
register.

All devices with a PID module.

Constants are defined in the device's .h file.

pid write(PID_ADDR Zz1l, &value zl);

None

setup_pid(), pid_read(), pid_get_result(), pid_busy()

304

Built-in Functions

pll locked()

Syntax: result=pll_locked();

Parameters: None

Returns: A shortint. TRUE if the PLL is locked/ready,
FALSE if PLL is not locked/ready

Function: This function allows testing the PLL Ready Flag bit to determined if the
PLL is stable and running.

Availability: Devices with a Phase Locked Loop (PLL). Not all devices have a PLL
Ready Flag, for those devices the pll_locked() function will always return
TRUE.

Requires: Nothing.

Examples: while(!pll_locked());

Example None

Files:

Also See: #use delay

pmp_address(address)

Syntax: pmp_address (address);

Parameters: address- The address which is a 16 bit destination address value. This
will setup the address register on the PMP module and is only used in
Master mode.

Returns: undefined

Function: Configures the address register of the PMP module with the destination
address during Master mode operation. The address can be either 14, 15
or 16 hits based on the multiplexing used for the Chip Select Lines 1 and
2.

Availability: Only the devices with a built in Parallel Port module.

Requires: Nothing.

305

PCD 07202016.doc

Examples:

Example
Files:
Also See:

pmp_address (0x2100); // Sets up Address register to 0x2100
None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input full(),pmp_overflow().

See header file for device selected.

pmp_output_full() pmp_input_full()
pmp_overflow() pmp_error()
pmp_timeout()

Syntax:

result = pmp_output_full() /[PMP only
result = pmp_input_full() /IPMP only
result = pmp_overflow() /IPMP only
result = pmp_eror() //[EPMP only
result = pmp_timeout() /[EPMP only

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example

None
A 0 (FALSE) or 1 (TRUE)

These functions check the Parallel Port for the indicated conditions and
return TRUE or FALSE.

This function is only available on devices with Parallel Port hardware on
chips.

Nothing.

while (pmp output full()) ;
pmp_data = command;
while (!pmp input full()) ;
if (pmp_overflow())

error = TRUE;
else

data = pmp data;

None

306

Built-in Functions

Files:
Also See:

setup_pmp(), pmp_write(), pmp_read()

pmp_read()

Syntax:

result = pmp_read (); //Parallel Master Port

result = pmp_read8(address); /[Enhanced Parallel Master

rPeosrlEIt = pmp_readl6(address); /IEnhanced Parallel Master

Er?wrpt)_readS(address,pointer,count); //Enhanced Parallel Master

Er?wr:)_read16(address,pointer,count); //Enhanced Parallel Master
ort

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

address- EPMP only, address in EDS memory that is mapped to
address from parallel port device to read data from or start reading data
from. (All address in EDS memory are word aligned)

pointer- EPMP only, pointer to array to read data to.

count- EPMP only, number of bytes to read. For pmp_read16() number
of bytes must be even.

For pmp_read(), pmp_read8(address) or pmp_read16() an 8 or 16 bit
value. For pmp_read8(address,pointer,count) and
pmp_readl6(address,pointer,count) undefined.

For PMP module, this will read a byte from the next buffer location. For
EPMP module, reads one byte/word or count bytes of data from the
address mapped to the EDS memory location. The address is used in
conjunction with the offset address set with the setup_pmp_cs1() and
setup_pmp_cs2() functions to determine which address lines are high or
low during the read.

Only the devices with a built in Parallel Master Port module or an
Enhanced Parallel Master Port module.

Nothing.

result = pmp read(); //PMP reads next byte of
//data

307

PCD 07202016.doc

result = pmp read8(0x8000); //EPMP reads byte of data

from the address mapped //to first address in
//EDS memory.

pmp readl6 (0x8002,ptr,16); //EPMP reads 16 bytes of

//data and returns to array
//pointed to by ptr
//starting at address mapped
//to address 0x8002 in

//EDS memory.

Example None
Files:
Also See: setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(),

psp_read(), psp_write(), pmp_write(), psp_output_full(), psp_input_full(),
psp_overflow(), pmp_output_full(), pmp_input_full(),pmp_overflow()
pmp_error(), pmp_timeout(), psp_error(), psp_timeout()

pmp_write()

Syntax: pmp_write (data); /[Parallel Master Port
pmp_write8(address,data); /[Enhanced Parallel Master
Er?ﬁrpt)_write8(address,pointer,data); /[Enhanced Parallel Master
Er?ﬁrpt)_writelG(address,data); /[Enhanced Parallel Master
Er?wr[t)_write16(address,pointer,data); /[Enhanced Parallel Master

ort

Parameters: data- The byte of data to be written.
address- EPMP only, address in EDS memory that is mapped to
address from parallel port device to write data to or start writing data to.
(All addresses in EDS memory are word aligned)

pointer- EPMP only, pointer to data to be written

count- EPMP only, number of bytes to write. For pmp_write16() number
of bytes must be even.

Returns: Undefined.

Function: For PMP modules, this will write a byte of data to the next buffer location.

308

Built-in Functions

Availability:

Requires:

Examples:

Example
Files:
Also See:

For EPMP modules writes one byte/word or count bytes of data from the
address mapped to the EDS memory location. The address is used in
conjunction with the offset address set with the setup_pmp_cs1() and
setup_pmp_cs2() functions to determine which address lines are high or
low during write.

Only the devices with a built in Parallel Master Port module or Enhanced
Parallel Master Port modules.

Nothing.
pmp write(data); //Write the data byte to

//the next buffer location.
pmp write8(0x8000,data); //EPMP writes the data byte to

//the address mapped to
//the first location in
//EDS memory.

pmp writel6 (0x8002,ptr,16); //EPMP writes 16 bytes of
//data pointed to by ptr
//starting at address mapped
//to address 0x8002 in
//EDS Memory

None

setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(),
psp_read(), psp_write(), pmp_write(), psp_output_full(), psp_input_full(),
psp_overflow(), pmp_output_full(), pmp_input_full(), pmp_overflow(),
pmp_error(), pmp_timeout(), psp_error(), psp_timeout()

port_x_pullups ()

Syntax:

port_a_pullups (value)
port_b_pullups (value)
port_d_pullups (value)
port_e_pullups (value)
port_j_pullups (value)
port_x_pullups (upmask)
port_x_pullups (upmask, downmask)

Parameters:

value is TRUE or FALSE on most parts, some parts that allow pullups to
be specified on individual pins permit an 8 bit int here, one bit for each
port pin.

upmask for ports that permit pullups to be specified on a pin basis. This

309

PCD 07202016.doc

mask indicates what pins should have pullups activated. A 1 indicates
the pullups is on.

downmask for ports that permit pulldowns to be specified on a pin basis.
This mask indicates what pins should have pulldowns activated. A 1
indicates the pulldowns is on.

Returns: undefined
Function: Sets the input pullups. TRUE will activate, and a FALSE will deactivate.

Availability: Only 14 and 16 bit devices (PCM and PCH). (Note: use
SETUP_COUNTERS on PCB parts).

Requires: Nothing

Examples: port a pullups (FALSE);
Example ex_lcdkb.c, kbd.c

Files:

Also See: input(), input_x(), output_float()

pow() pwr()

Syntax: f=pow (x,y)
f=pwr(xy)

Parameters: x and y are any float type

Returns: A float with precision equal to function parameters x and y.

Function: Calculates X to the Y power.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error has

occurred and print the error using the perror function.

Range error occurs in the following case:
e pow: when the argument X is negative

Availability: All Devices

310

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Requires:
Examples:
Example

Files:
Also See:

#INCLUDE <math.h>
area = pow (size,3.0);
None

None

printf() fprintf()

Syntax: printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)
Parameters: String is a constant string or an array of characters null terminated.
C String is a constant string. Note that format specifiers cannot be used
in RAM strings.
Values is a list of variables separated by commas, fname is a function
name to be used for outputting (default is putc is none is specified.
Stream is a stream identifier (a constant byte).
Returns: undefined
Function: Outputs a string of characters to either the standard RS-232 pins (first

two forms) or to a specified function. Formatting is in accordance with
the string argument. When variables are used this string must be a
constant. The % character is used within the string to indicate a variable
value is to be formatted and output. Longs in the printf may be 16 or 32
bit. A %% will output a single %. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual
for other escape character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults
to STDOUT (the last USE RS232).

311

PCD 07202016.doc

Availability:
Requires:

Examples:

Format:

The format takes the generic form %nt. n is optional and may be 1-9 to
specify how many characters are to be outputted, or 01-09 to indicate
leading zeros, or 1.1 to 9.9 for floating point and %w output. t is the type
and may be one of the following:

C Character

S String or character

u Unsigned int

d Signed int

Lu Long unsigned int

Ld Long signed int

X Hex int (lower case)

X Hex int (upper case)

Lx Hex long int (lower case)

LX Hex long int (upper case)

Float with truncated decimal

Float with rounded decimal

Float in exponential format

Unsigned int with decimal place inserted. Specify
two numbers for n. The first is a total field width.
The second is the desired number of decimal
places.

s 0@ —+

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254

%u 18 254

%2u 18 *

%5 18 254

%d 18 -2

%X 12 fe

%X 12 FE

%4X 0012 00FE
%3.1w 1.8 25.4

* Result is undefined - Assume garbage.
All Devices
#USE RS232 (unless fname is used)

byte x,y,z;
printf ("HiThere");
printf ("RTCCValue=>%2x\n\r",get rtcc());

312

Built-in Functions

Example
Files:
Also See:

printf ("$2u $X %$4X\n\r",x,vy,z);
printf (LCD PUTC, "n=%u",n);

ex_admm.c, ex_lcdkb.c

atoi(), puts(), putc(), getc() (for a stream example), RS232 I/O Overview

profileout()

Syntax:

profileout(string);
profileout(string, value);
profileout(value);

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

string is any constant string, and value can be any constant or variable
integer. Despite the length of string the user specifies here, the code
profile run-time will actually only send a one or two byte identifier tag to
the code profile tool to keep transmission and execution time to a
minimum.

Undefined

Typically the code profiler will log and display function entry and exits, to
show the call sequence and profile the execution time of the functions.
By using profileout(), the user can add any message or display any
variable in the code profile tool. Most messages sent by profileout() are
displayed in the 'Data Messages' and 'Call Sequence' screens of the
code profile tool.

If a profileout(string) is used and the first word of string is "START", the
code profile tool will then measure the time it takes until it sees the same
profileout(string) where the "START" is replaced with "STOP". This
measurement is then displayed in the 'Statistics' screen of the code
profile tool, using string as the name (without "START" or "STOP")

Any device.

#use profile() used somewhere in the project source code.
/l send a simple string.

profileout("This is a text string");

/l send a variable with a string identifier.
profileout("RemoteSensor=", adc);

/' just send a variable.

profileout(adc);

// time how long a block of code takes to execute.

313

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

PCD 07202016.doc

Example
Files:
Also See:

/I this will be displayed in the 'Statistics' of the
/I Code Profile tool.

profileout("start my algorithm");

/* code goes here */

profileout("stop my algorithm™);

ex_profile.c

#use profile(), #profile, Code Profile overview

psmc_blanking()

Syntax: psmc_blanking(unit, rising_edge, rise_time, falling_edge, fall_time);
Parameters: unit is the PSMC unit number 1-4
rising_edge are the events that are ignored after the signal activates.
rise_time is the time in ticks (0-255) that the above events are ignored.
falling_edge are the events that are ignored after the signal goes
inactive.
fall_time is the time in ticks (0-255) that the above events are ignored.
Events:
. PSMC_EVENT_C10UT
. PSMC_EVENT_C20UT
. PSMC_EVENT_C30UT
. PSMC_EVENT_C40UT
. PSMC_EVENT_IN_PIN
Returns: undefined
Function:

This function is used when system noise can cause an incorrect trigger
from one of the specified events. This function allows for ignoring these
events for a period of time around either edge of the signal. See

314

Built-in Functions

Availability:

Requires:
Examples:

Example
Files:

Also See:

setup_psmc() for a definition of a tick.
Pass a 0 or FALSE for the events to disable blanking for an edge.

All devices equipped with PSMC module.

None

setup_psmc(), psmc_deadband(), psmc_sync(), psmc_modulation(),
psmc_shutdown(), psmc_duty(), psmc_freg_adjust(), psmc_pins()

psmc_deadband()

Syntax: psmc_deadband(unit,rising_edge, falling_edge);

Parameters: unit is the PSMC unit number 1-4
rising_edge is the deadband time in ticks after the signal goes active. If
this function is not called, 0 is used.
falling_edge is the deadband time in ticks after the signal goes inactive.
If this function is not called, 0 is used.

Returns: undefined

Function: This function sets the deadband time values. Deadbands are a gap in
time where both sides of a complementary signal are forced to be
inactive. The time values are in ticks. See setup_psmc() for a definition
of a tick.

Availability: All devices equipped with PSMC module.

315

PCD 07202016.doc

Requires:

Examples:

Example
Files:

Also See:

undefined

// 5 tick deadband when the signal goes active.
psmc_deadband (1, 5, 0);

None

setup_psmc(), psmc_sync(), psmc_blanking(), psmc_modulation(),
psmc_shutdown(), psmc_duty(), psmc_freg_adjust(), psmc_pins()

psmc_duty()

Syntax: psmc_pins(unit, pins_used, pins_active_low);

Parameters: unit is the PSMC unit number 1-4
fall_time is the time in ticks that the signal goes inactive (after the start
of the period) assuming the event PSMC_EVENT_TIME has been
specified in the setup_psmc().

Returns: Undefined

Function: This function changes the fall time (within the period) for the active
signal. This can be used to change the duty of the active pulse. Note
that the time is NOT a percentage nor is it the time the signal is active. It
is the time from the start of the period that the signal will go inactive. If
the rise_time was set to 0, then this time is the total time the signal will
be active.

Availability: All devices equipped with PSMC module.

Requires:

316

Built-in Functions

Examples: // For a 10khz PWM, based on Fosc divided by 1
// the following sets the duty from
// 0% to 100% baed on the ADC reading
while (TRUE) {
psmc_duty (1, (read_adc()* (intl16)10)/25)*
(getenv ("CLOCK") /1000000)) ;
}

Example None
Files:
Also See: setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),

psmc_modulation(), psmc_shutdown(), psmc_freq_adjust(), psmc_pins()

psmc_freq adjust()

Syntax: psmc_freq_adjust(unit, freq_adjust);

Parameters: unit is the PSMC unit number 1-4

freq_adjust is the time in tick/16 increments to add to the period. The
value may be 0-15.

Returns: Undefined

Function: This function adds a fraction of a tick to the period time for some modes
of operation.

Availability: All devices equipped with PSMC module.

Requires:

Examples:

Example None

Files:

Also See: setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),

psmc_modulation(), psmc_shutdown(), psmc_dutyt(), psmc_pins()

317

PCD 07202016.doc

psmc_modulation()

Syntax: psmc_modulation(unit, options);
Parameters: unit is the PSMC unit number 1-4
Options may be one of the following:
° PSMC_MOD_OFF
° PSMC_MOD_ACTIVE
° PSMC_MOD_INACTIVE
° PSMC_MOD_C10UT
° PSMC_MOD_C20UT
° PSMC_MOD_C30UT
o PSMC_MOD_C40UT
° PSMC_MOD_CCP1
° PSMC_MOD_CCP2
° PSMC_MOD_IN_PIN
The following may be OR'ed with the above
. PSMC_MOD_INVERT
o PSMC_MOD_NOT_BDF
o PSMC_MOD_NOT_ACE
Returns: undefined
Function:
This function allows some source to control if the PWM is running or not.
The active/inactive are used for software to control the modulation. The
other sources are hardware controlled modulation. There are also
options to invert the inputs, and to ignore some of the PWM outputs for
the purpose of modulation.
Availability: All devices equipped with PSMC module.
Requires:

318

Built-in Functions

Examples:

Example None

Files:

Also See: setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),

psmc_shutdown(), psmc_duty(), psmc_freq_adjust(), psmc_pins()

psmc_pins()

Syntax: psmc_pins(unit, pins_used, pins_active_low);

Parameters: unit is the PSMC unit number 1-4

used_pins is the any combination of the following or'ed together:
o PSMC_A

PSMC_B

PSMC_C

PSMC_D

PSMC_E

PSMC_F

PSMC_ON_NEXT_PERIOD

If the last constant is used, all the changes made take effect on the next
period (as opposed to immediate)

pins_active_low is an optional parameter. When used it lists the same
pins from above as the pins that should have an inverted polarity.

Returns: Undefined
Function: This function identified the pins allocated to the PSMC unit, the polarity

of those pins and it enables the PSMC unit. The tri-state register for
each pin is set to the output state.

319

PCD 07202016.doc

Availability: All devices equipped with PSMC module.

Requires:
Examples: // Simple PWM, 10khz out on pin CO assuming a 20mhz crystal
// Duty is initially set to 25%
setup_psmc (1, PSMC)SINGLE,
PSMC EVENT TIME | PSMC SOURCE FOSC, us (100,
PSMC_EVENT TIME, O,
PSMC_EVENT TIME, us(25));
psmc_pins (1, PSMC A);
Example None
Files:
Also See: setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),

psmc_modulation(), psmc_shutdown(), psmc_duty(), psmc_freq_adjust()

psmc_shutdown()

Syntax: psmc_shutdown(unit, options, source, pins_high);
psmc_shutdown(unit, command);

320

Built-in Functions

Parameters:

Returns:

Function:

Availability:

unit is the PSMC unit number 1-4

Options may be one of the following:

. PSMC_SHUTDOWN_OFF
. PSMC_SHUTDOWN_NORMAL
. PSMC_SHUTDOWN_AUTO_RESTART

command may be one of the following:

. PSMC_SHUTDOWN_RESTART
. PSMC_SHUTDOWN_FORCE
. PSMC_SHUTDOWN_CHECK

source may be any of the following or'ed together:
PSMC_SHUTDOWN_C10UT
PSMC_SHUTDOWN_C20UT
PSMC_SHUTDOWN_C30UT
PSMC_SHUTDOWN_C40UT
PSMC_SHUTDOWN_IN_PIN

pins_high is any combination of the following or'ed together:
3 PSMC_A

PSMC_B

PSMC_C

PSMC_D

PSMC_E

PSMC_F

Non-zero if the unit is now in shutdown.

This function implements a shutdown capability. when any of the listed
events activate the PSMC unit will shutdown and the output pins are
driver low unless they are listed in the pins that will be driven high.

The auto restart option will restart when the condition goes inactive,
otherwise a call with the restart command must be used. Software can
force a shutdown with the force command.

All devices equipped with PSMC module.

321

PCD 07202016.doc

Requires:

Examples:

Example None

Files:

Also See: setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),

psmc_modulation(), psmc_duty(), psmc_freq_adjust(), psmc_pins()

psmc_sync()

Syntax: psmc_sync(slave_unit, master_unit, options);

Parameters: slave_unit is the PSMC unit number 1-4 to be controlled.
master_unit is the PSMC unit number 1-4 to be synchronized to

Options may be:

. PSMC_SOURCE_IS_PHASE
. PSMC_SOURCE_IS_PERIOD
. PSMC_DISCONNECT

The following may be OR'ed with the above:

° PSMC_INVERT _DUTY
° PSMC_INVET_PERIOD
Returns: undefined

Function:
This function allows one PSMC unit (the slave) to be synchronized (the
outputs) with another PSMC unit (the master).

Availability: All devices equipped with PSMC module.

322

Built-in Functions

Requires:

Examples:

Example None

Files:

Also See: setup_psmc(), psmc_deadband(), psmc_sync(), psmc_modulation(),

psmc_shutdown(), psmc_duty(), psmc_freq_adjust(), psmc_pins()

psp_output_full() psp_input_full()
psp_overflow()

Syntax: result = psp_output_full()
result = psp_input_full()
result = psp_overflow()
result = psp_error(); /[EPMP only
result = psp_timeout(); /[EPMP only

Parameters: None
Returns: A 0 (FALSE) or 1 (TRUE)

Function: These functions check the Parallel Slave Port (PSP) for the indicated
conditions and return TRUE or FALSE.

Availability: This function is only available on devices with PSP hardware on chips.
Requires: Nothing
Examples: while (psp_output full()) ;

psp_data = command;
while (!psp input full()) ;
if (psp_overflow())
error = TRUE;
else
data = psp data;

Example ex_psp.c
Files:

323

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Also See: setup_psp(), PSP Overview

psp_read()

Syntax: Result = psp_read ();
Result = psp_read (address);

Parameters: address- The address of the buffer location that needs to be read. If
address is not specified, use the function psp_read() which will read the
next buffer location.

Returns: A byte of data.

Function: psp_read() will read a byte of data from the next buffer location and
psp_read (address) will read the buffer location address.

Availability: Only the devices with a built in Parallel Master Port module of Enhanced
Parallel Master Port module.

Requires: Nothing.

Examples; Result = psp read(); // Reads next byte of data
Result = psp read(3); // Reads the buffer location 3

Example None

Files:

Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),

pmp_write(), psp_output full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input_full(),pmp_overflow().
See header file for device selected.

psp_write()

Syntax: psp_write (data);
psp_write(address, data);

Parameters: address-The buffer location that needs to be written to
data- The byte of data to be written

324

Built-in Functions

Returns: Undefined.

Function: This will write a byte of data to the next buffer location or will write a byte
to the specified buffer location.

Availability: Only the devices with a built in Parallel Master Port module or Enhanced
Parallel Master Port module.

Requires: Nothing.

Examp|es; psp write(data); // Write the data byte to

// the next buffer location.

Example None

Files:

Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input_full(),pmp_overflow().

See header file for device selected.

putc_send(); fputc_send();

Syntax: putc_send();
fputc_send(stream);

Parameters: stream — parameter specifying the stream defined in #USE RS232.

Returns: Nothing

Function: Function used to transmit bytes loaded in transmit buffer over RS232.

Depending on the options used in #USE RS232 controls if function is
available and how it works.

If using hardware UARTx with NOTXISR option it will check if currently
transmitting. If not transmitting it will then check for data in transmit
buffer. If there is data in transmit buffer it will load next byte from
transmit buffer into the hardware TX buffer, unless using CTS flow
control option. In that case it will first check to see if CTS line is at its
active state before loading next byte from transmit buffer into the
hardware TX buffer.

If using hardware UARTXx with TXISR option, function only available if
using CTS flow control option, it will test to see if the TBEX interrupt is

325

PCD 07202016.doc

enabled. If not enabled it will then test for data in transmit buffer to send.
If there is data to send it will then test the CTS flow control line and if at
its active state it will enable the TBEX interrupt. When using the TXISR
mode the TBEX interrupt takes care off moving data from the transmit
buffer into the hardware TX buffer.

If using software RS232, only useful if using CTS flow control, it will
check if there is data in transmit buffer to send. If there is data it will then
check the CTS flow control line, and if at its active state it will clock out
the next data byte.

Availability: All devices
Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50,NOTXISR)
printf(“Testing Transmit Buffer”);
while(TRUE)
putc_send();
Example None
Files:
Also See: USE RS232(), RCV_BUFFER FULL(), TX BUFFER FULL(),
TX BUFFER_BYTES(), GET(), PUTC() RINTE(), SETUP_UART(),
PUTC() SEND
pwm_off()
Syntax: pwm_off([stream]);
Parameters: stream — optional parameter specifying the stream defined
in #USE PWM.
Returns: Nothing.
Function: To turn off the PWM signal.
Availability: All devices.
Requires: #USE PWM

326

Built-in Functions

Examples: #USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)
while(TRUE){
if(kbhit()){
¢ = getc();
if(c=="F")
pwm_off();
}
}
Example None
Files:
Also See: #use pwm, pwm_on(), pwm_set duty percent(),
pwm_set duty(), pwm_set frequency()
pwm_on()
Syntax: pwm_on([stream]);
Parameters: stream — optional parameter specifying the stream defined
in #USE PWM.
Returns: Nothing.
Function: To turn on the PWM signal.
Availability: All devices.
Requires: #USE PWM
Examples: #USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
while (TRUE) {
if (kbhit ()) {
c = getc();
if (c=='0")
pwm_on () ;
}
}
Example None
Files:

327

PCD 07202016.doc

Also See:

#use pwm, pwm_off(), pwm_set duty percent(),
pwm_set duty(), pwm_set frequency()

pwm_set_duty()

Syntax: pwm_set_duty([stream],duty);

Parameters: stream — optional parameter specifying the stream defined in #USE
PWM.
duty — an int16 constant or variable specifying the new PWM high time.

Returns: Nothing.

Function: To change the duty cycle of the PWM signal. The duty cycle
percentage depends on the period of the PWM signal. This function is
faster than pwm_set_duty_percent(), but requires you to know what the
period of the PWM signal is.

Availability: All devices.

Requires: #USE PWM

Examples: #USE PWM(OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)

Example None

Files:

Also See: #use pwm, pwm_on(), pwm_off(), pwm_set frequency(),

pwm_set duty percent()

pwm_set_duty percent

Syntax: pwm_set_duty_percent([stream]), percent

Parameters: stream — optional parameter specifying the stream defined in #USE
PWM.
percent- an intl6 constant or variable ranging from 0 to 1000 specifying
the new PWM duty cycle, D is 0% and 1000 is 100.0%.

Returns: Nothing.

328

Built-in Functions

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

To change the duty cycle of the PWM signal. Duty cycle percentage is
based off the current frequency/period of the PWM signal.

All devices.

#USE PWM

#USE PWM(OUTPUT=PIN7C2, FREQUENCY=10kHz, DUTY=25)
pwm_set duty percent (500); //set PWM duty cycle to 50%
None

#use pwm, pwm_on(), pwm_off(), pwm_set_frequency(),
pwm_set duty()

pwm_set frequency

Syntax: pwm_set_frequency([stream],frequency);

Parameters: stream — optional parameter specifying the stream defined
in #USE PWM.
frequency — an int32 constant or variable specifying the
new PWM frequency.

Returns: Nothing.

Function: To change the frequency of the PWM signal. Warning this
may change the resolution of the PWM signal.

Availability: All devices.

Requires: #USE PWM

Examples: #USE PWM(OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
pwm_set frequency (1000); //set PWM frequency to 1kHz

Example None

Files:

Also See: #use pwm, pwm_on(), pwm_off(), pwm_set duty percent,

pwm_set duty()

329

PCD 07202016.doc

pwml interrupt_active()
pwm2_interrupt_active()
pwm3_interrupt_active()
pwm4_interrupt_active()
pwmb5_interrupt_active()
pwmo6_interrupt_active()

Syntax: result_pwm1_interrupt_active (interrupt)
result_pwm2_interrupt_active (interrupt)
result_pwma3_interrupt_active (interrupt)
result_pwm4_interrupt_active (interrupt)
result_pwmb5_interrupt_active (interrupt)
result_pwm6_interrupt_active (interrupt)

Parameters: interrupt - 8-bit constant or variable. Constants are defined in the
device's header file as:

° PWM_PERIOD_INTERRUPT
° PWM_DUTY_INTERRUPT

° PWM_PHASE_INTERRUPT
° PWM_OFFSET_INTERRUPT

Returns: TRUE if interrupt is active. FALSE if interrupt is not active.

Function: Tests to see if one of the above PWM interrupts is active, interrupt flag is
set.

Availability: Devices with a 16-bit PWM module.

Requires: Nothing

Examp|es; if (pwml interrupt active (PWM_PERIOD INTERRUPT))

clear_pwml_ interrupt (PWM_PERIOD INTERRUPT) ;

Example

Files:

Also See: setup_pwm(), set_pwm_duty(), set pwm_phase(), set pwm_period(),

set_pwm_offset(), enable _pwm interrupt(), clear pwm _interrupt(),
disable pwm _interrupt()

330

Built-in Functions

gei_get_count()

Syntax: value = gei_get_count([unit]);

Parameters: value- The 16-bit value of the position counter.
unit- Optional unit number, defaults to 1.

Returns: void

Function: Reads the current 16-bit value of the position counter.

Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: value = gel get counter();

Example None

Files:

Also See: setup_qgei() , gei_set _count() , gei_status().

gei_set_count()

Syntax: gei_set_count([unit,] value);

Parameters: value- The 16-bit value of the position counter.
unit- Optional unit number, defaults to 1.

Returns: void

Function: Write a 16-bit value to the position counter.

Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: gei set counter (value);

Example None

Files:

Also See: setup_gei() , gei_get _count() , gei_status().

331

PCD 07202016.doc

gei_status()

Syntax: status = gei_status([unit]);

Parameters: status- The status of the QEI module
unit- Optional unit number, defaults to 1.

Returns: void
Function: Returns the status of the QUI module.

Availability: Devices that have the QEI module.

Requires: Nothing.

Examples: status = gei status();

Example None

Files:

Also See: setup gei() , gei_set _count() , gei_get count().

gsort()

Syntax: gsort (base, num, width, compare)

Parameters: base: Pointer to array of sort data
num: Number of elements
width: Width of elements
compare: Function that compares two elements

Returns: None

Function: Performs the shell-metzner sort (not the quick sort algorithm). The
contents of the array are sorted into ascending order according to a
comparison function pointed to by compare.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

Examples: int nums(5]={ 2,3,1,5,4};

332

Built-in Functions

int compar (void *argl,void *arg2);

void main () {
gsort (nums, 5, sizeof (int), compar);

}

int compar (void *argl,void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1

else if (* (int *) argl == (* (int *) arg2) return 0

else return 1;

}

Example ex_gsort.c
Files:
Also See: bsearch()
rand()
Syntax: re=rand()
Parameters: None
Returns: A pseudo-random integer.
Function: The rand function returns a sequence of pseudo-random integers in the
range of 0 to RAND_MAX.
Availability: All devices
Requires: #INCLUDE <STDLIB.H>
Examples: int I;
I=rand();

333

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Example None
Files:
Also See: srand()

rcv_buffer _bytes()

Syntax: value = rcv_buffer_bytes([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE

RS232.
Returns: Number of bytes in receive buffer that still need to be retrieved.
Function: Function to determine the number of bytes in receive buffer that still

need to be retrieved.

Availability: All devices

Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=1
00)
void main(void) {
char c;
if(rcv_buffer_bytes() > 10)
¢ = getc();
}
Example None
Files:
Also See: USE RS232(), RCV_BUFFER FULL(), TX BUFFER FULL(),

TX BUFFER _BYTES(), GETC(), PUTC() ,PRINTF(), SETUP_UART(
), PUTC_SEND()

334

Built-in Functions

rcv_buffer_full()

Syntax: value = rcv_buffer_full([stream]);
Parameters: stream — optional parameter specifying the stream defined in #USE
RS232.
Returns: TRUE if receive buffer is full, FALSE otherwise.
Function: Function to test if the receive buffer is full.
Availability: All devices
Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=1
00)
void main(void) {
charc;
if(rcv_buffer_full())
¢ = getc();
Example None
Files:
Also See: USE_RS232(),RCV_BUFFER BYTES(), TX BUFFER_BYTES()
JIX BUFFER_FULL(), GETC(), PUTC(), PRINTF(), SETUP_UART(
), PUTC SEND()
read adc() read _adc2()
Syntax: value =read_adc ([mode])
value =read_adc2 ([mode])
value=read_adc(mode,[channel]) // dsPIC33EPxxGSxxx family only
Parameters: mode is an optional parameter. If used the values may be:

ADC_START_AND_READ (continually takes readings, this is the
default)

ADC_START_ONLY (starts the conversion and returns)
ADC_READ_ONLY (reads last conversion result)

335

PCD 07202016.doc

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

channel is an optional parameter for specifying the channel to start the
conversion on and/or read the result from. If not specified will use
channel specified in last call to set_adc_channel(), read_adc(), or
adc_done(). Only available for dsPIC33EPxxGSxxx family.

Either a 8 or 16 bit int depending on #DEVICE ADC= directive.

This function will read the digital value from the analog to digital
converter. Calls to setup_adc(), setup_adc_ports() and
set_adc_channel() should be made sometime before this function is
called. The range of the return value depends on number of bits in the
chips A/D converter and the setting in the #DEVICE ADC-= directive as
follows:

#DEVICE 10 bit 12 bit
ADC=8 00-FF 00-FF
ADC=10 0-3FF 0-3FF
ADC=11 X X
ADC=12 0-FFC O-FFF
ADC=16 0-FFCO 0-FFFO

Note: X is not defined
Only available on devices with built in analog to digital converters.
Pin constants are defined in the devices .h file.

intl6 value;
setup_adc_ports (sANO|sAN1, VSS VDD);
setup_adc (ADC_CLOCK_DIV_4|ADC_TAD MUL 8);

while (TRUE)
{
set_adc_channel (0) ;
value = read adc();
printf (“Pin ANO A/C value = $LX\n\r”, value);

delay ms(5000) ;

set adc_channel(1);
read_adc (ADC_START ONLY) ;

value = read adc(ADC READ ONLY);
printf ("Pin AN1 A/D value = $LX\n\r", value);
}

ex_admm.c,

336

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

read_configuration_memory()

Syntax: read_configuration_memory([offset], ramPtr, n)
Parameters: ramPtr is the destination pointer for the read results
count is an 8 bit integer
offset is an optional parameter specifying the offset into configuration
memory to start reading from, offset defaults to zero if not used.
Returns: undefined
Function: Reads n bytes of configuration memory and saves the values to ramPtr.
Availability: All
Requires: Nothing
Examples: int dataflé];
read configuration memory (data, 6);
Example None
Files:
Also See: write_configuration_memory(), read_program_memory(), Configuration

Memory Overview

read _eeprom()

Syntax: value = read_eeprom (address , [N])
read_eeprom(address , variable)
read_eeprom(address , pointer , N)
Parameters: address is an 8 bit or 16 bit int depending on the part
N specifies the number of EEPROM bytes to read
variable a specified location to store EEPROM read results
pointer is a pointer to location to store EEPROM read results
Returns: An 16 bit int
Function: By default the function reads a word from EEPROM at the specified

address. The number of bytes to read can optionally be defined by
argument N. If a variable is used as an argument, then EEPROM is read

337

PCD 07202016.doc

Availability:
Requires:
Examples:
Example

Files:
Also See:

and the results are placed in the variable until the variable data size is

full. Finally, if a pointer is used as an argument, then n bytes of
EEPROM at the given address are read to the pointer.

This command is only for parts with built-in EEPROMS
Nothing

#define LAST VOLUME 10
volume = read EEPROM (LAST VOLUME) ;

None

write_eeprom(), Data Eeprom Overview

read _extended ram()

Syntax: read_extended_ram(page,address,data,count);
Parameters: page — the page in extended RAM to read from
address — the address on the selected page to start reading from
data — pointer to the variable to return the data to
count — the number of bytes to read (0-32768)
Returns: Undefined
Function: To read data from the extended RAM of the PIC.
Availability: On devices with more then 30K of RAM.
Requires: Nothing
Examples: unsigned int8 datal8];
read extended ram(1l,0x0000,data,8);
Example None
Files:
Also See: read extended ram(), Extended RAM Overview

338

Built-in Functions

read _program_memory()

Syntax: READ_PROGRAM_MEMORY (address, dataptr, count);

Parameters: address is 32 bits . The least significant bit should always be 0 in PCM.
dataptr is a pointer to one or more bytes.
count is a 16 bit integer on PIC16 and 16-bit for PIC18

Returns: undefined

Function: Reads count bytes from program memory at address to RAM at
dataptr. BDue to the 24 bit program instruction size on the PCD devices,
every fourth byte will be read as 0x00

Availability: Only devices that allow reads from program memory.

Requires: Nothing

Examples: char buffer[64];
read external memory(0x40000, buffer, 64);

Example None

Files:

Also See: write program memory(), Program Eeprom Overview

read _high_speed _adc()

Syntax:

read_high_speed_adc(pair,mode,result); /I Individual start and
read or

/I read only
read_high_speed_adc(pair,result); /I Individual start and
read
read_high_speed_adc(pair); /I Individual start
only
read_high_speed_adc(mode,result); /I Global start and read
or

/l read only
read_high_speed_adc(result); /I Global start and
read

339

PCD 07202016.doc

read_high_speed_adc(); /Il Global start only

Parameters:

Returns:

Function:

pair — Optional parameter that determines which ADC pair number to
start and/or read. Valid values are 0 to total number of ADC pairs. 0
starts and/or reads ADC pair ANO and AN1, 1 starts and/or reads ADC
pair AN2 and AN3, etc. If omitted then a global start and/or read will be
performed.

mode — Optional parameter, if used the values may be:
- ADC_START_AND_READ (starts conversion and reads
result)
- ADC_START_ONLY (starts conversion and returns)

- ADC_READ_ONLY(reads conversion result)

result — Pointer to return ADC conversion too. Parameter is optional, if
not used the read_fast_adc() function can only perform a start.

Undefined

This function is used to start an analog to digital conversion
and/or read the digital value when the conversion is
complete. Calls to setup_high_speed_adc() and
setup_high_speed_adc_pairs() should be made sometime
before this function is called.

When using this function to perform an individual start and
read or individual start only, the function assumes that the
pair's trigger source was set to
INDIVIDUAL_SOFTWARE_TRIGGER.

When using this function to perform a global start and read,
global start only, or global read only. The function will
perform the following steps:

1. Determine which ADC pairs are set for
GLOBAL_SOFTWARE_TRIGGER.

2. Clear the corresponding ready flags (if
doing a start).

3. Set the global software trigger (if doing a
start).

4. Read the corresponding ADC pairs in
order from lowest to highest (if doing a read).

5. Clear the corresponding ready flags (if

340

Built-in Functions

doing a read).

When using this function to perform a individual read only.
The function can read the ADC result from any trigger
source.

Availability: Only on dsPIC33FJIxxGSxxx devices.

Requires: Constants are define in the device .h file.

Examples: //Individual start and read
intl6 result[2];

setup high speed adc (ADC CLOCK DIV 4);
setup high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
read_high_speed_adc (0, result); //starts conversion for ANO
and ANl and stores

//result in result[0] and result[1l]

//Global start and read
intl6 result([4];

setup_high speed adc (ADC_CLOCK_ DIV 4);
setup_high speed adc pair (0, GLOBAL SOFTWARE TRIGGER) ;
setup_high speed adc pair (4, GLOBAL SOFTWARE TRIGGER);
read high speed adc(result); //starts conversion for ANO,
AN1,

//BN8 and AN9 and

//stores result in result[0],
result //[1], result[2]

and result[3]

Example None
Files:
Also See: setup _high speed adc(), setup_high _speed adc_pair(),

high speed adc done()

read_rom_memory()

Syntax: READ_ROM_MEMORY (address, dataptr, count);

Parameters: address is 32 bits. The least significant bit should always be 0.
dataptr is a pointer to one or more bytes.
count is a 16 bit integer

341

PCD 07202016.doc

Returns:

Function:

Availability:

Requires:
Examples:
Example

Files:
Also See:

undefined

Reads count bytes from program memory at address to dataptr. Due to
the 24 bit program instruction size on the PCD devices, three bytes are
read from each address location.

Only devices that allow reads from program memory.

Nothing

char buffer[64];
read program memory (0x40000, buffer, 64);

None

write_eeprom(), read eeprom(), Program eeprom overview

read _sd_adc()

Syntax: value =read_sd_adc();

Parameters: None

Returns: A signed 32 bit int.

Function: To poll the SDRDY bit and if set return the signed 32 bit value stored in
the SD1RESH and SD1RESL registers, and clear the SDRDY bit. The
result returned depends on settings made with the setup_sd_adc()
function, but will always be a signed int32 value with the most significant
bits being meaningful. Refer to Section 66, 16-bit Sigma-Delta A/D
Converter, of the PIC24F Family Reference Manual for more information
on the module and the result format.

Availability: ~ Only devices with a Sigma-Delta Analog to Digital Converter (SD ADC)
module.

Examples: value = read_sd_adc()

Example None

Files:

342

Built-in Functions

Also See: setup sd_adc(), set sd adc_calibration(), set sd_adc_channel()

realloc()

Syntax: realloc (ptr, size)

Parameters: ptr is a null pointer or a pointer previously returned by calloc or malloc or
realloc function, size is an integer representing the number of byes to be
allocated.

Returns: A pointer to the possibly moved allocated memory, if any. Returns null
otherwise.

Function: The realloc function changes the size of the object pointed to by the ptr to
the size specified by the size. The contents of the object shall be
unchanged up to the lesser of new and old sizes. If the new size is larger,
the value of the newly allocated space is indeterminate. If ptr is a null
pointer, the realloc function behaves like malloc function for the specified
size. If the ptr does not match a pointer earlier returned by the calloc,
malloc or realloc, or if the space has been deallocated by a call to free or
realloc function, the behavior is undefined. If the space cannot be
allocated, the object pointed to by ptr is unchanged. If size is zero and the
ptr is not a null pointer, the object is to be freed.

Availability: All devices

Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;
iptr=malloc (10);
realloc (iptr, 20)

// iptr will point to a block of memory of 20 bytes, if
available.

Example None

Files:

Also See: malloc(), free(), calloc()

343

PCD 07202016.doc

release_io()

Syntax: release_io();

Parameters: none

Returns: nothing

Function: The function releases the 1/O pins after the device wakes up from deep

Availability:

Requires:

Examples:

Example
Files:
Also See:

sleep, allowing
the state of the 1/O pins to change

Devices with a deep sleep module.
Nothing
unsigned intlé restart;

restart = restart cause();

if (restart == RTC_FROM DS)
release io();
None

sleep()

reset_cpu()

Syntax: reset_cpu()

Parameters: None

Returns: This function never returns

Function: This is a general purpose device reset. It will jump to location 0 on PCB
and PCM parts and also reset the registers to power-up state on the
PIC18XXX.

Availability: All devices

Requires: Nothing

Examples: if (checksum!=0)

reset cpul();

344

Built-in Functions

Example
Files:
Also See:

None

None

restart_cause()

Syntax: value = restart_cause()
Parameters: None
Returns: A value indicating the cause of the last processor reset. The actual values
are device dependent. See the device .h file for specific values for a
specific device. Some example values are: RESTART_POWER_UP,
RESTART_BROWNOUT, RESTART_WDT and RESTART_MCLR
Function: Returns the cause of the last processor reset.
In order for the result to be accurate, it should be called immediately in
main().
Availability: All devices
Requires: Constants are defined in the devices .h file.
Examples: switch (restart cause()) {
case RESTART_ BROWNOUT:
case RESTART WDT:
case RESTART MCLR:
handle_error();
}
Example ex_wdt.c
Files:
Also See: restart_wdt(), reset cpu()

345

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

restart_wdt()

Syntax: restart_wdt()
Parameters: None
Returns: undefined
Function: Restarts the watchdog timer. If the watchdog timer is enabled, this must
be called periodically to prevent the processor from resetting.
The watchdog timer is used to cause a hardware reset if the software
appears to be stuck.
The timer must be enabled, the timeout time set and software must
periodically restart the timer. These are done differently on the PCB/PCM
and PCH parts as follows:
PCB/PCM PCH
Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart wdt() restart wdt()
Availability: All devices
Requires: #FUSES
Examples: #fuses WDT // PCB/PCM example
// See setup wdt for a
// PIC18 example
main () |
setup wdt (WDT_ 2304MS) ;
while (TRUE) {
restart _wdt () ;
perform activity();
}
}
Example ex_wdt.c
Files:
Also See: #FUSES, setup_wdt(), WDT or Watch Dog Timer Overview

346

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

rotate left()

Syntax: rotate_left (address, bytes)

Parameters: address is a pointer to memory
bytes is a count of the number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address may be an array
identifier or an address to a byte or structure (such as &data). Bit O of the
lowest BYTE in RAM is considered the LSB.

Availability: All devices

Requires: Nothing

Examples: x = 0x86;
rotate left(&x, 1);
// x 1s now 0x0d

Example None

Files:

Also See: rotate_right(), shift_left(), shift_right()

rotate_right()

Syntax: rotate_right (address, bytes)

Parameters: address is a pointer to memory,
bytes is a count of the number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address may be an array
identifier or an address to a byte or structure (such as &data). Bit O of the
lowest BYTE in RAM is considered the LSB.

Availability: All devices

Requires: Nothing

347

PCD 07202016.doc

Examples: struct {
int cell 1 4;
int cell 2 : 4;
int cell 3 : 4;
int cell 4 : 4; } cells;
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
// cell 1->4, 2->1, 3->2 and 4-> 3

Example None
Files:
Also See: rotate left(), shift left(), shift right()

rtc_alarm_read()

Syntax: rtc_alarm_read(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the alarm
in the RTCC module.

Structure used in read and write functions are defined in the device

header file
as rtc_time_t

Returns: void

Function: Reads the date and time from the alarm in the RTCC module to structure
datetime.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Exanuﬂes; rtc_alarm read(&datetime);

Example None

Files:

Also See: rtc_read(), rtc_alarm_read(), ric_alarm_write(), setup_rtc_alarm(),

rtc_write(), setup_rtc()

348

Built-in Functions

rtc_alarm_write()

Syntax: rtc_alarm_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the alarm
in the RTCC module.

Structure used in read and write functions are defined in the device
header file as rtc_time_t.

Returns: void

Function: Writes the date and time to the alarm in the RTCC module as specified in
the structure date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examp|es; rtc_alarm write (&datetime);

Example None

Files:

Also See: rtc_read(), rtc_alarm_read(), ric_alarm_write(), setup_rtc_alarm(),

rtc_write(), setup_rtc()

rtc_read()

Syntax: rtc_read(&datetime);

Parameters: datetime- A structure that will contain the values returned by the RTCC
module.

Structure used in read and write functions are defined in the device
header file as rtc_time_t.

Returns: void

Function: Reads the current value of Time and Date from the RTCC module and
stores the structure date time.

349

PCD 07202016.doc

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_read(&datetime) ;

Example ex_rtcc.c

Files:

Also See: rtc_read(), rtc_alarm read(), ric_alarm_write(), setup rtc_alarm(),
rtc_write(), setup _rtc()

rtc_write()

Syntax: rtc_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the
RTCC module.
Structure used in read and write functions are defined in the device
header file as rtc_time_t.

Returns: void

Function: Writes the date and time to the RTCC module as specified in the structure
date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_write (&datetime);

Example ex_rtcc.c

Files:

Also See: rtc_read() , rtc_alarm_read() , rtc_alarm_write() , setup_rtc_alarm() ,

rtc_write(), setup_rtc()

350

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

rtos_await()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_await (expre)

Parameters: expre is a logical expression.

Returns: None

Function: This function can only be used in an RTOS task. This function waits for
expre to be true before continuing execution of the rest of the code of the
RTOS task. This function allows other tasks to execute while the task
waits for expre to be true.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_await(kbhit());

Also See: None

rtos_disable()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_disable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.

Returns: None

Function: This function disables a task which causes the task to not execute until
enabled by rtos_enable(). All tasks are enabled by default.

Availability: All devices

Requires: #USE RTOS

Examples: rtos disable (toggle green)

351

PCD 07202016.doc

Also See:

rtos enable

rtos_enable()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_enable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.
Returns: None

Function: This function enables a task to execute at it's specified rate.
Availability: All devices

Requires: #USE RTOS

Examples: rtos _enable (toggle green);

Also See: rtos disable()

rtos_msg_poll()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: i =rtos_msg_poll()

Parameters: None

Returns: An integer that specifies how many messages are in the queue.

Function: This function can only be used inside an RTOS task. This function returns
the number of messages that are in the queue for the task that the
rtos_msg_poll() function is used in.

Availability: All devices

352

Built-in Functions

Requires: #USE RTOS
Examples: if (rtos_msg_poll())

Also See: rtos msq send(), rtos msg read()

rtos_msg_read()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: b =rtos_msg_read()

Parameters: None

Returns: A byte that is a message for the task.

Function: This function can only be used inside an RTOS task. This function reads
in the next (message) of the queue for the task that the rtos_msg_read()
function is used in.

Availability: All devices

Requires: #USE RTOS
Examples: if (rtos msg poll()) {

b = rtos _msg read();
Also See: rtos msq poll(), rtos msg send()

rtos_msg_send()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_msg_send(task, byte)

Parameters: task is the identifier of a function that is being used as an RTOS task
byte is the byte to send to task as a message.

353

PCD 07202016.doc

Returns:

Function:

Availability:

Requires:

Examples:

Also See:

None

This function can be used anytime after rtos_run() has been called.
This function sends a byte long message (byte) to the task identified by
task.

All devices

#USE RTOS

if (kbhit ())
{

rtos_msg_send(echo, getc());

}

rtos_msg_poll(), rtos_msg _read()

rtos_overrun()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_overrun([task])

Parameters: task is an optional parameter that is the identifier of a function that is
being used as an RTOS task

Returns: A O (FALSE) or 1 (TRUE)

Function: This function returns TRUE if the specified task took more time to execute
than it was allocated. If no task was specified, then it returns TRUE if any
task ran over it's alloted execution time.

Availability: All devices

Requires: #USE RTOS(statistics)

Examples: rtos_overrun ()

Also See: None

354

Built-in Functions

rtos_run()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_run()

Parameters: None

Returns: None

Function: This function begins the execution of all enabled RTOS tasks. This
function controls the execution of the RTOS tasks at the allocated rate for
each task. This function will return only when rtos_terminate() is called.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_run()

Also See: rtos terminate()

rtos_signal()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_signal (sem)

Parameters: sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function increments
sem to let waiting tasks know that a shared resource is available for use.

Availability: All devices

355

PCD 07202016.doc

Requires: #USE RTOS
Examples: rtos_signal (uart use)
Also See: rtos wait

rtos_stats()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_stats(task,&stat)

Parameters: task is the identifier of a function that is being used as an RTOS task.
stat is a structure containing the following:
struct rtos_stas_struct {
unsigned int32 task_total_ticks; //number of ticks the task has

/lused
unsigned intl16 task_min_ticks; //the minimum number of ticks
/lused
unsigned intl16 task_max_ticks; //the maximum number of ticks
/lused
unsigned int16 hns_per_tick; /lus = (ticks*hns_per_tick)/10
e
Returns: Undefined
Function: This function returns the statistic data for a specified task.

Availability: All devices

Requires: #USE RTOS(statistics)
Examples: rtos stats(echo, é&stats)
Also See: None

356

Built-in Functions

rtos_terminate()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_terminate()

Parameters: None

Returns: None

Function: This function ends the execution of all RTOS tasks. The execution of the
program will continue with the first line of code after the rtos_run() call in
the program. (This function causes rtos_run() to return.)

Availability: All devices

Requires: #USE RTOS

Examples: rtos_terminate ()

Also See: rtos run()

rtos_wait()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_wait (sem)

Parameters: sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function waits for
sem to be greater than 0 (shared resource is available), then decrements
sem to claim usage of the shared resource and continues the execution
of the rest of the code the RTOS task. This function allows other tasks to
execute while the task waits for the shared resource to be available.

Availability: All devices

357

PCD 07202016.doc

Requires:
Examples:

Also See:

#USE RTOS

rtos wait (uart use)

rtos signal

rtos_vyield()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_yield()
Parameters: None
Returns: None
Function: This function can only be used in an RTOS task. This function stops the
execution of the current task and returns control of the processor to
rtos_run(). When the next task executes, it will start it's execution on
the line of code after the rtos_yield().
Availability: All devices
Requires: #USE RTOS
Examples: void yield(void)
{
printf (“Yielding...\r\n”);
rtos_yield();
printf (“Executing code after yield\r\n”);
}
Also See: None

358

Built-in Functions

set_adc_channel() set_adc_channel2()

Syntax:

set_adc_channel (chan [,neq]))
set_adc_channel(chan, [differential]) //dsPIC33EPxxGSxxx only
set_adc_channel2(chan)

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:
Example

Files:
Also See:

chan is the channel number to select. Channel numbers start at 0 and
are labeled in the data sheet ANO, AN1. For devices with a differential
ADC it sets the positive channel to use.

neg is optional and is used for devices with a differential ADC only. It sets
the negative channel to use, channel numbers can be 0 to 6 or VSS. If no
parameter is used the negative channel will be set to VSS by default.

undefined

differential is an optional parameter to specify if channel is differential or
single-ended. TRUE is differential and FALSE is single-ended. Only
available for dsPIC3EPxxGSxxx family.

Specifies the channel to use for the next read_adc() call. Be aware that
you must wait a short time after changing the channel before you can get
a valid read. The time varies depending on the impedance of the input
source. In general 10us is good for most applications. You need not
change the channel before every read if the channel does not change.

Only available on devices with built in analog to digital converters

Nothing

set_adc_channel (2);
value = read adc();

ex_admm.c

read_adc(), setup_adc(), setup_adc_ports(), ADC Overview

359

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

set_adc_trigger()

Syntax: set_adc_trigger (trigger)
Parameters: trigger - ADC trigger source. Constants defined in device's header, see
the device's .h file for all options. Some typical options include:
o ADC_TRIGGER_DISABLED
o ADC_TRIGGER_ADACT_PIN
. ADC_TRIGGER_TIMER1
° ADC_TRIGGER_CCP1
Returns: undefined
Function: Sets the Auto-Conversion trigger source for the Analog-to-Digital
Converter with Computation (ADC2) Module.
Availability: All devices with an ADC2 Module
Requires: Constants defined in the device's .h file
Examples; set adc trigger (ADC TRIGGER TIMERI1) ;
Also See: ADC Overview, setup_adc(), setup_adc_ports(), set_adc_channel(),

read adc(),
#DEVICE, adc read(), adc write(), adc_status()

set_analog_pins()

Syntax: set_analog_pins(pin, pin, pin, ...)
Parameters: pin - pin to set as an analog pin. Pins are defined in the device's .h file.
The actual value is a bit address. For example, bit 3 of port A at address
5, would have a value of 5*8+3 or 43. This is defined as follows:
#define PIN_A3 43
Returns: undefined
Function: To set which pins are analog and digital. Usage of function depends on

method device has for setting pins to analog or digital. For devices with
ANSELX, x being the port letter, registers the function is used as
described above. For all other devices the function works the same as
setup_adc_ports() function.

360

Built-in Functions

Refer to the setup_adc_ports() page for documentation on how to use.

Availability: ~ On all devices with an Analog to Digital Converter
Requires: Nothing
Examples: set analog pins(PIN_AO,PIN Al,PIN E1,PIN BO,PIN B5);
Example
Files:
Also See: setup_adc _reference(), set_adc_channel(), read adc(), setup_adc(),
setup_adc_ports(),
ADC Overview
scanf()
Syntax: scanf(cstring);
scanf(cstring, values...)
fscanf(stream, cstring, values...)
Parameters: cstring is a constant string.
values is a list of variables separated by commas.
stream is a stream identifier.
Returns: 0 if a failure occurred, otherwise it returns the number of conversion
specifiers that were read in, plus the number of constant strings read in.
Function: Reads in a string of characters from the standard RS-232 pins and

formats the string according to the format specifiers. The format specifier
character (%) used within the string indicates that a conversion
specification is to be done and the value is to be saved into the
corresponding argument variable. A %% will input a single %.

Formatting rules for the format specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf()
defaults to STDIN (the last USE RS232).

Format:
The format takes the generic form %nt. n is an option and may be 1-99

361

PCD 07202016.doc

specifying the field width, the number of characters to be inputted. t is the
type and maybe one of the following:

C

Lu

Ld

Lo

X or X

Lx or LX

Matches a sequence of characters of the number
specified by the field width (1 if no field width is
specified). The corresponding argument shall be a
pointer to the initial character of an array long enough
to accept the sequence.

Matches a sequence of non-white space characters. The
corresponding argument shall be a pointer to the initial
character of an array long enough to accept the
sequence and a terminating null character, which will
be added automatically.

Matches an unsigned decimal integer. The corresponding
argument shall be a pointer to an unsigned integer.

Matches a long unsigned decimal integer. The
corresponding argument shall be a pointer to a long
unsigned integer.

Matches a signed decimal integer. The corresponding
argument shall be a pointer to a signed integer.

Matches a long signed decimal integer. The
corresponding argument shall be a pointer to a long
signed integer.

Matches a signed or unsigned octal integer. The
corresponding argument shall be a pointer to a signed
or unsigned integer.

Matches a long signed or unsigned octal integer. The
corresponding argument shall be a pointer to a long
signed or unsigned integer.

Matches a hexadecimal integer. The corresponding
argument shall be a pointer to a signed or unsigned
integer.

Matches a long hexadecimal integer. The corresponding
argument shall be a pointer to a long signed or
unsigned integer.

362

Built-in Functions

Li

f,gore

Matches a signed or unsigned integer. The corresponding
argument shall be a pointer to a signed or unsigned
integer.

Matches a long signed or unsigned integer. The
corresponding argument shall be a pointer to a long
signed or unsigned integer.

Matches a floating point number in decimal or exponential
format. The corresponding argument shall be a pointer
to a float.

Matches a non-empty sequence of characters from a set
of expected characters. The sequence of characters
included in the set are made up of all character
following the left bracket ([) up to the matching right
bracket (]). Unless the first character after the left
bracket is a #*, in which case the set of characters
contain all characters that do not appear between the
brackets. If a - character is in the set and is not the first
or second, where the first is a *, nor the last character,
then the set includes all characters from the character
before the - to the character after the -.

For example, %[a-z] would include all characters from a to
z in the set and %]["a-z] would exclude all characters
from a to z from the set. The corresponding argument
shall be a pointer to the initial character of an array long
enough to accept the sequence and a terminating null
character, which will be added automatically.

Assigns the number of characters read thus far by the call
to scanf() to the corresponding argument. The
corresponding argument shall be a pointer to an
unsigned integer.

An optional assignment-suppressing character (*) can be
used after the format specifier to indicate that the
conversion specification is to be done, but not saved
into a corresponding variable. In this case, no
corresponding argument variable should be passed to
the scanf() function.

A string composed of ordinary non-white space characters
is executed by reading the next character of the string.
If one of the inputted characters differs from the string,

363

PCD 07202016.doc

Availability:

Requires:

Examples:

Example
Files:
Also See:

the function fails and exits. If a white-space character
precedes the ordinary non-white space characters, then
white-space characters are first read in until a non-
white space character is read.

White-space characters are skipped, except for the
conversion specifiers [, ¢ or n, unless a white-space
character precedes the [or ¢ specifiers.

All Devices

#USE RS232

char name([2-];
unsigned int8 number;
signed int32 time;

if (scanf ("%u%s%1d", &number, name, &time))
printf"\r\nName: %s, Number: %u, Time:
%1d", name, number, time) ;

None

RS232 1/0 Overview, getc(), putc(), printf()

364

Built-in Functions

set_ccpl _compare_time()
set_ccp2_compare_time()
set_ccp3_compare_time()
set_ccp4_compare_time()
set_ccp5 _compare_time()

Syntax:

set_ccpx_compare_time(time);
set_ccpx_compare_time(timeA, timeB);

Parameters:

Returns:

Function:

time - may be a 16 or 32-bit constant or varaible. If 16-bit, it sets the
CCPxRAL register to the value time and CCPxRBL to zero; used for
single edge output compare mode set for 16-bit timer mode. If 32-bit, it
sets the CCPxRAL and CCPxRBL register to the value time, CCPxRAL
least significant word and CCPRBL most significant word; used for single
edge output compare mode set for 32-bit timer mode.

timeA - is a 16-bit constant or variable to set the CCPXRAL register to the
value of timeA, used for dual edge output c ompare and PWM modes.

timeB - is a 16-bit constant or variable to set the CCPxRBL register to the
value of timeB, used for dual edge output compare and PWM modes.

Undefined

This function sets the compare value for the CCP module. If the CCP
module is performing a single edge compare in 16-bit mode, then the
CCPxRBL register is not used. If 32-bit mode, the CCPxRBL is the most
significant word of the compare time. If the CCP module is performing
dual edge compare to generate an output pulse, then timeA, CCPxRAL
register, signifies the start of the pulse, and timeB, CCPxRBL register
signifies the pulse termination time.

365

PCD 07202016.doc

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Requires: Nothing

Exan1p|es; setup_ccpl (CCP_COMPARE PULSE) ;
set timer period ccpl(800);

set _ccpl compare time (200,300); //generate a pulse
starting at time
// 200 and ending at time

300
Example None
Files:
Also See: set_pwmX_duty(), setup_ccpX(), set_timer_period_ccpX(),

set_timer_ccpX(),
get_timer_ccpX(), get_capture_ccpX(), get_captures32_ccpX()

set_cog_blanking()

Syntax: set_cog_blanking(falling_time, rising_time);

Parameters: falling time - sets the falling edge blanking time.

rising time - sets the rising edge blanking time.

Returns: Nothing

Function: To set the falling and rising edge blanking times on the Complementary
Output Generator (COG) module. The time is based off the source clock
of the COG

module, the times are either a 4-bit or 6-bit value, depending on the
device, refer to the

366

Built-in Functions

Availability:
Examples:

Example
Files:
Also See:

device's datasheet for the correct width.
All devices with a COG module.

set cog blanking(10,10);

None

setup _cog(), set_coqg phase(), set_cog _dead band(), cog_status(),
cog_restart

set_cog_dead band()

Syntax: set_cog_dead_band(falling_time, rising_time);

Parameters falling time - sets the falling edge dead-band time.
rising time - sets the rising edge dead-band time.

Returns: Nothing

Function: To set the falling and rising edge dead-band times on the Complementary
Output Generator (COG) module. The time is based off the source clock
of the COG
module, the times are either a 4-bit or 6-bit value, depending on the
device, refer to the
device's datasheet for the correct width.

Availability All devices with a COG module.

iExampIes: set cog dead band(16,32);

Example None

Files:

Also See: setup_cog(), set_cog_phase(), set cog_blanking(), cog_status(),

cog_restart

367

PCD 07202016.doc

set_cog _phase()

Syntax: set_cog_phase(rising_time);
set_cog_phase(falling_time, rising_time);

Parameters falling time - sets the falling edge phase time.
rising time - sets the rising edge phase time.

Returns: Nothing

Function: To set the falling and rising edge phase times on the Complementary
Output Generator (COG) module. The time is based off the source clock
of the COG
module, the times are either a 4-bit or 6-bit value, depending on the
device.
Some devices only have a rising edge delay, refer to the device's
datasheet.

Availability All devices with a COG module.

Examples: set_cog phase (10,10);

Example None

Files:

Also See: setup_coq(), set_cog_dead_band(), set_cog_blanking(), cog_status(),

cog_restart

set_compare_time()

Syntax: set_compare_time(x, time])

Parameters: x is 1-8 and defines which output compare module to set time for
time is the compare time for the primary compare register.

Returns: None

Function: This function sets the compare value for the ccp module.

Availability: Only available on devices with ccp modules.

368

Built-in Functions

Requires:
Examples:
Example

Files:
Also See:

Nothing

ex_ccpls.c

get_capture(), setup_ccpx()

set_compare_time()

Syntax: set_compare_time(x, ocr, [ocrs]])

Parameters: x is 1-16 and defines which output compare module to set time for
ocr is the compare time for the primary compare register.
ocrs is the optional compare time for the secondary register. Used for
dual compare mode.

Returns: None

Function: This function sets the compare value for the output compare module. If
the output compare module is to perform only a single compare than the
ocrs register is not used. If the output compare module is using double
compare to generate an output pulse, the ocr signifies the start of the
pulse and ocrs defines the pulse termination time.

Availability: ~ Only available on devices with output compare modules.

Requires: Nothing

Examples: // Pin OCl will be set when timer 2 is equal to 0xF000
setup_timer2 (TMR_INTERNAL | TIMER DIV BY 8);
setup_compare_ time (1, 0xF000);
setup_compare (1, COMPARE SET ON MATCH | COMPARE TIMERZ2) ;

Example None

Files:

Also See: get capture(), setup_compare(), Output Compare, PWM Overview

369

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

set_dedicated_adc_channel()

Syntax: set_dedicated_adc_channel(core,channel, [differential]);

Parameters: core - the dedicated ADC core to setup

channel - the channel assigned to the specified ADC core. Channels
are defined in the device's .h file as follows:

o ADC_CHANNEL_ANO
ADC_CHANNEL_AN7
ADC_CHANNEL_PGA1
ADC_CHANNEL_ANOALT
ADC_CHANNEL_AN1
ADC_CHANNEL_AN18
ADC_CHANNEL_PGA2
ADC_CHANNEL_ANIALT
ADC_CHANNEL_AN2
ADC_CHANNEL_AN11
ADC_CHANNEL_VREF_BAND_GAP
ADC_CHANNEL_AN3
ADC_CHANNEL_AN15

Not all of the above defines can be used with all the dedicated ADC
cores. Refer to the device's header for which can be used with each
dedicated ADC core.

differential - optional parameter to specify if channel is differential or
single-ended. TRUE is differential and FALSE is single-ended.

Returns: Undefined
Function: Sets the channel that will be assigned to the specified dedicated ADC
core.

Function does not set the channel that will be read with the next call to
read_adc(), use set_adc_channel() or read_adc() functions to set the
channel that will be read.

Availability: On the dsPIC33EPxxGSxxx family of devices.

Requires: Nothing.

370

Built-in Functions

Examples:

Example
Files:
Also See:

setup_dedicated_adc_channel(0,ADC_CHANNEL_ANO);
None

setup_adc(), setup _adc_ports(), set_adc_channel(), read adc(),
adc _done(), setup dedicated adc(), ADC Overview

set_hspwm_override()

Syntax: set_hspwm_override(unit, setting);

Parameters: unit - the High Speed PWM unit to override.
settings - the override settings to use. The valid options vary depending
on the device. See the device's .h file for all options. Some typical
optlons include:

HSPWM_FORCE_H_1
HSPWM_FORCE_H_0
HSPWM_FORCE_L 1
HSPWM_FORCE_L 0

Returns: Undefined

Function: Setup and High Speed PWM uoverride settings.

Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCXxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: None

Examples: setup_hspwm override (1,HSPWM FORCE H 1|HSPWM FORCE L 0);

Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),
setup _hspwm_blanking(), setup _hspwm trigger(), get hspwm capture(),

setup _hspwm_chop clock(), setup _hspwm _unit_chop clock()
setup _hspwm(), setup_hspwm_secondary()

371

PCD 07202016.doc

set_hspwm_phase()

Syntax: set_hspwm_phase(unit, primary, [secondary]);

Parameters: unit - The High Speed PWM unit to set.
primary - A 16-bit constant or variable to set the primary duty cycle.
secondary - An optional 16-bit constant or variable to set the secondary
duty cycle. Secondary duty cycle is only used in Independent PWM
mode. Not available on all devices, refer to device datasheet for
availability.

Returns: undefined

Function: Sets up the specified High Speed PWM unit.

Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dSPIC33EPXXXMCXxX,
and dsPIC33EVxxxGMxxx devices)

Requires: Constants are defined in the device's .h file

Examples: set_hspwm(1,0x1000,0x8000) ;

Example None

Files:

Also See: setup _hspwm_unit(), set_hspwm_duty(), set_hspwm_event(),

setup _hspwm_blanking(), setup_hspwm trigger(),
set_hspwm_override(),

get_hspwm_capture(), setup_hspwm_chop_clock(),
setup _hspwm_unit_chop clock()

setup_hspwm(), setup _hspwm_secondary()

set_input_level x()

Syntax:

set_input_level_a(value)
set_input_level_b(value)
set_input_level_v(value)

372

Built-in Functions

set_input_level_d(value)
set_input_level_e(value)
set_input_level_f(value)
set_input_level_g(value)
set_input_level_h(value)
set_input_level_j(value)
set_input_level_k(value)
set_input_level_Il(value)

Parameters: value is an 8-bit int with each bit representing a bit of the 1/0 port.

Returns: undefined

Function: These functions allow the I/O port Input Level Control (INLVLX) registers
to be set. Each bit in the value represents one pin. A 1 sets the
corresponding pin's input level to Schmitt Trigger (ST) level, and a 0 sets
the corresponding pin's input level to TTL level.

Availability: All devices with ODC registers, however not all devices have all I/O ports
and not all devices port's have a corresponding ODC register.

Requires: Nothing
Examples: set input level a(0x0); //sets PIN A0 input level to ST and
all other
//PORTA pins to TTL level
Example None
Files:
Also See: output_high(), output low(), output_bit(), output_x(), General Purpose I/O

set_motor_pwm_duty()

Syntax: set_motor_pwm_duty(pwm,group,time);

Parameters: pwm- Defines the pwm module used.
group- Output pair number 1,2 or 3.
time- The value set in the duty cycle register.
Returns: void

Function: Configures the motor control PWM unit duty.

373

PCD 07202016.doc

Availability: Devices that have the motor control PWM unit.

Requires: None

Examples; set motor pmw duty(1,0,0x55); // Sets the PWMl Unit a duty
cycle value

Example None

Files:

Also See: get_motor pwm_count(), set_motor pwm_event(), set_motor unit(),

setup_motor pwm()

set_motor_pwm_event()

Syntax: set_motor_pwm_event(pwm,time);

Parameters: pwm- Defines the pwm module used.
time- The value in the special event comparator register used for
scheduling other events.

Returns: void

Function: Configures the PWM event on the motor control unit.

Availability: Devices that have the motor control PWM unit.

Requires: None

Exan”ﬂes; set motor pmw event (pwm, time) ;

Example None

Files:

Also See: get_motor_pwm_count(), setup_motor_pwm(), set_motor_unit(),

set_motor_pwm_duty();

374

Built-in Functions

set_motor_unit()

Syntax: set_motor_unit(pwm,unit,options, active_deadtime, inactive_deadtime);

Parameters: pwm- Defines the pwm module used
Unit- This will select Unit A or Unit B

options- The mode of the power PWM module. See the devices .h file for
all options

active_deadtime- Set the active deadtime for the unit
inactive_deadtime- Set the inactive deadtime for the unit
Returns: void
Function: Configures the motor control PWM unit.

Availability: Devices that have the motor control PWM unit

Requires: None

Examples; set motor unit (pwm,unit,MPWM INDEPENDENT | MPWM FORCE L 1,
active deadtime, inactive deadtime);

Example None

Files:

Also See: get_motor pwm_count(), set motor pwm_event(),

set_motor pwm_duty(), setup_motor pwm()

set_nco_inc_value()

Syntax: set_nco_inc_value(value);

Parameters value- value to set the NCO increment registers
Returns: Undefined

Function: Sets the value that the NCO's accumulator will be incremented by on
each clock pulse. The increment registers are double buffered so the

375

PCD 07202016.doc

Availability
Examples:
Example

Files:
Also See:

new value won't be applied until the accumulator rolls-over.

On devices with a NCO module.

set nco_inc value (inc_value) ; //sets the new increment
value

None

setup_nco(), get nco_accumulator(), get nco_inc value()

set_open_drain_x(value)

Syntax:

set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)

set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)

set_open_drain_k(value)

Parameters:

Returns:

Function

Availability

Examples:

value — is an 8-bit int with each bit representing a bit of the 1/0 port.
value — is a bitmap corresponding to the pins of the port. Setting a bit
causes the corresponding pin to act as an open-drain output.

Nothing

These functions allow the I/O port Open-Drain Control (ODCONX)
registers to be set. Each bit in the value represents one pin. A 1 sets the
corresponding pin to act as an open-drain output, and a 0 sets the
corresponding pin to act as a digital output.

Enables/Disables open-drain output capability on port pins. Not all ports
or port pins have open-drain capability, refer to devices data sheet for port
and pin availability.

Nothing.

On device that have open-drain capability.

set open drain a (0x01); //makes PIN A0 an open-drain
output.

set open drain b (0x001) ; //enables open-drain output on

376

Built-in Functions

Also See

PIN-BO
//disable on all other port B
pins.

output high(), output low(), output bit(), output x(), General Purpose 1/O

set_pulldown()

Syntax: set_Pulldown(state [, pin])
Parameters: Pins are defined in the devices .h file. If no pin is provided in the function
call, then all of the pins are set to the passed in state.
State is either true or false.
Returns: undefined
Function: Sets the pin's pull down state to the passed in state value. If no pin is
included in the function call, then all valid pins are set to the passed in
state.
Availability: All devices that have pull-down hardware.
Requires: Pin constants are defined in the devices .h file.
Exanuﬂes: set _pulldown (true, PIN BO);
//Sets pin BO's pull down state to true
set_pullup (false);
//Sets all pin's pull down state to false
Example None
Files:
Also See: None

377

PCD 07202016.doc

set_pullup()

Syntax: set_Pullup(state, [pin])

Parameters: Pins are defined in the devices .h file. If no pin is provided in the
function call, then all of the pins are set to the passed in state.
State is either true or false.
Pins are defined in the devices .h file. The actual number is a bit
address. For example, port a (byte 5) bit 3 would have a value of
5*8+3 or 43. This is defined as follows: #DEFINE PIN_A3 43 . The pin
could also be a variable that has a value equal to one of the
predefined pin constants. Note if no pin is provided in the function
call, then all of the pins are set to the passed in state.
State is either true or false.

Returns: undefined

Function: Sets the pin's pull up state to the passed in state value. If no pin is
included in the function call, then all valid pins are set to the passed in
state.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file.

Examples: set pullup (true, PIN BO);

//Sets pin BO's pull up state to true
set pullup (false);
//Sets all pin's pull up state to false

Example None

Files:

Also See: None

378

Built-in Functions

set_ pwm1 duty() set_ pwm2_duty()
set_ pwm3_duty() set_ pwm4_duty()
set_pwmb5_duty()

Syntax: set_pwmX_duty (value)

Parameters: value may be an 8 or 16 bit constant or variable.

Returns: undefined

Function: .
PIC24FxxKLxxx devices, writes the 10-bit value to the PWM to set the
duty. An 8-bit value may be used if the most significant bits are not
required. The 10-bit value is then used to determine the duty cycle of the
PWM signal as follows:
o] duty cycle =value/[4 * (PRx +1)]
Where PRXx is the maximum value timer 2 or 4 will count to before rolling
over.
PIC24FxxKMxxx devices, wires the 16-bit value to the PWM to set the
duty. The 16-bit value is then used to determine the duty cycle of the
PWM signal as follows:
e[| duty cycle=value/(CCPxPRL+1)

Where CCPxPRL is the maximum value timer 2 will count to before

toggling the output pin.

Availability: This function is only available on devices with MCCP and/or SCCP
modules.

Requires: None

Examples:

PIC24FxxKLxxx Devices:
// 32 MHz clock
unsigned intl6 duty;

setup_timer2 (T2 DIV _BY 4, 199, 1); //period=50us
setup ccpl (CCP_PWM) ;

duty=400;
//duty=400/[4*(199+1)]1=0.5=5
0

o

379

PCD 07202016.doc

set pwml duty(duty);

PIC24FxxKMxxx Devices:
// 32 MHz clock
unsigned intlé6 duty;

setup_ ccpl (CCP_PWM) ;
set _timer period ccpl(799); //period=50us

duty=400;
//duty=400/(799+1)=0.5=50%
set pwml duty(duty);

Example ex_pwm.c
Files:
Also See: setup_ccpX(), set_ccpX _compare time(), set_timer_period ccpX(),

set_timer_ccpX(), get _timer _ccpX(), get_capture ccpX(),
get _captures32_ccpX()

set_ pwml offset() set_pwm?2_offset()
set_pwm3_offset() set_pwm4_offset()
set_pwmb5_offset() set_pwmb6_offset()
Syntax: set_pwm1_offset (value)

set_pwm?2_offset (value)
set_pwm3_offset (value)
set_pwm4_offset (value)
set_pwmb5_offset (value)
set_pwm6_offset (value)

Parameters: value - 16-bit constant or variable.

Returns: undefined.

Function: Writes the 16-bit to the PWM to set the offset. The offset is used to adjust
the waveform of a slae PWM module relative to the waveform of a master
PWM module.

Availability: Devices with a 16-bit PWM module.

380

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Requires:

Examples:

Example
Files:
Also See:

Nothing

set pwml offset (0x0100);
set pwml offset (offset);

setup_pwm(), set_pwm_duty(), set pwm_period(), clear pwm interrupt(),
set_pwm_phase(), enable _pwm _interrupt(), disable pwm interrupt(),
pwm_interrupt_active()

set pwml period() set pwm2_period()
set_ pwm3_period() set_ pwm4 _period()
set_ pwmb_period() set_ pwm6_period()

Syntax:

set_pwm1l_period (value)
set_pwm2_period (value)
set_pwm3_period (value)
set_pwmd4_period (value)
set_pwmb5_period (value)
set_pwm6_period (value)

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example

value - 16-bit constant or variable.
undefined.

Writes the 16-bit to the PWM to set the period. When the PWM module is
set-up for standard mode it sets the period of the PWM signal. When set-
up for set on match mode, it sets the maximum value at which the phase
match can occur. When in toggle on match and center aligned modes it
sets the maximum value the PWMxTMR will count to, the actual period of
PWM signal will be twice what the period was set to.

Devices with a 16-bit PWM module.

Nothing

set pwml period(0x8000);
set pwml period(period);

381

PCD 07202016.doc

Files:
Also See: setup_pwm(), set_pwm_duty(), set pwm_phase(), clear pwm_interrupt(),
set_ pwm_offset(), enable pwm_interrupt(), disable pwm_interrupt(),

pwm_interrupt_active()

set_ pwml phase() set pwm2_phase()
set_ pwm3_phase() set_ pwm4_phase()
set_ pwmb5 phase() set pwm6_phase()

Syntax: set_pwml_phase (value)
set_pwm2_phase (value)
set_pwm3_phase (value)
set_pwmd4_phase (value)
set_pwm5_phase (value)
set_pwm6_phase (value)

Parameters: value - 16-bit constant or variable.

Returns: undefined.

Function: Writes the 16-bit to the PWM to set the phase. When the PWM module is
set-up for standard mode the phaes specifies the start of the duty cycle,
when in set on match mode it specifies when the output goes high, and
when in toggle on match mode it specifies when the output toggles.

Phase is not used when in center aligned mode.

Availability: Devices with a 16-bit PWM module.

Requires: Nothing

Examples: set_pwml_phase (0) ;
set pwml phase (phase);

Example

Files:

Also See: setup_pwm(), set pwm_duty(), set pwm_period(), clear_pwm_interrupt(),

set_pwm_offset(), enable _pwm interrupt(), disable pwm interrupt(),
pwm_interrupt_active()

382

Built-in Functions

set_open_drain_x()

Syntax:

set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_v(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)

set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)

set_open_drain_k(value)

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example
Files:
Also See:

value is an 16-bit int with each bit representing a bit of the 1/O port.

undefined

These functions allow the I/O port Open-Drain Control (ODC) registers to
be set. Each bit in the value represents one pin. A 1 sets the
corresponding pin to act as an open-drain output, and a 0 sets the
corresponding pin to act as a digital output.

All devices with ODC registers, however not all devices have all I/O ports
and not all devices port's have a corresponding ODC register.

Nothing

set open drain a(0x0001); //makes PIN_AO an open-drain
output

None

output_high(), output_low(), output_bit(), output x(), General Purpose 1/O

383

PCD 07202016.doc

set_rtcc()

set_timerO() set timerl()

set_timer2() set_timer3() set_timer4()
set_timer5()

Syntax: set_timerO(value) or set_rtcc (value)
set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)
Parameters: Timers 1 & 5 get a 16 bit int.
Timer 2 and 4 gets an 8 bit int.
Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it
needs a 16 bit int.
Timer 3 is 8 bit on PIC16 and 16 bit on PIC18
Returns: undefined
Function: Sets the count value of a real time clock/counter. RTCC and Timer0 are
the same. All timers count up. When a timer reaches the maximum
value it will flip over to 0 and continue counting (254, 255, 0, 1, 2...)
Availability: Timer 0 - All devices
Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices
Timer 5 - Only PIC18XX31
Requires: Nothing
Examples: // 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us
set_timer0(81); // 256-(.000035/(4/20000000))
Example ex_patg.c
Files:
Also See: set_timerl(), get timerX() TimerO Overview, TimerlOverview, Timer2

Overview, Timer5 Overview

384

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

set_ticks()
Syntax: set_ticks([stream],value);
Parameters: stream — optional parameter specifying the stream defined in #USE
TIMER
value — a 8, 16, 32 or 64 bit integer, specifying the new value of the tick
timer. (int8, intl6, int32 or int64)
Returns: void
Function: Sets the new value of the tick timer. Size passed depends on the size of
the tick timer.
Availability: All devices.
Requires: #USE TIMER(options)
Examples: #USE TIMER (TIMER=1, TICK=1ms,BITS=16,NOISR)
void main (void) {
unsigned intl6é value = 0x1000;
set_ticks(value);
}
Example None
Files:
Also See: #USE TIMER, get_ticks()

setup_sd_adc_calibration()

Syntax: setup_sd_adc_calibration(model);

Parameters: mode- selects whether to enable or disable calibration mode for the SD
ADC module. The following defines are made in the device's .h file:
1 SDADC_START_CALIBRATION_MODE
2 SDADC_END_CALIBRATION_MODE

Returns: Nothing

385

PCD 07202016.doc

Function:

Availability:

Examples:

Example
Files:
Also See:

To enable or disable calibration mode on the Sigma-Delta Analog to
Digital Converter (SD ADC) module. This can be used to determine the
offset error of the module, which then can be subtracted from future
readings.

Only devices with a SD ADC module.

signed int 32 result, calibration;
set_sd_adc_calibration(SDADC_START_CALIBRATION_MODE);
calibration = read_sd_adc();
set_sd_adc_calibration(SDADC_END_CALIBRATION_MO

DE);
result = read_sd_adc() - calibration;

None

setup_sd_adc(), read_sd_adc(), set_sd_adc_channel()

set_sd_adc_channel()

Syntax: setup_sd_adc(channel);

Parameters: channel- sets the SD ADC channel to read. Channel can be 0 to read
the difference between CHO+ and CHO-, 1 to read the difference
between CH1+ and CH1-, or one of the following:

1 SDADC_CHI1SE_SVSS
2 SDADC_REFERENCE

Returns: Nothing

Function: To select the channel that the Sigma-Delta Analog to Digital Converter
(SD ADC) performs the conversion on.

Availability: Only devices with a SD ADC module.

Examples: set_sd_adc_channel(0);

Example None

Files:

Also See: setup_sd_adc(), read_sd_adc(), set_sd_adc_calibration()

386

Built-in Functions

set_timerA()

Syntax: set_timerA(value);
Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)
Returns: undefined
Function: Sets the current value of the timer. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue counting
(254, 255,0, 1, 2, ...).
Availability: This function is only available on devices with Timer A hardware.
Requires: Nothing
Examples: // 20 mhz clock, no prescaler, set timer A
// to overflow in 35us
set_timerA(81); // 256-(.000035/(4/20000000))
Example none
Files:
Also See: get_timerA(), setup_timer_A(), TimerA Overview

set_timerB()

Syntax: set_timerB(value);

Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)

Returns: undefined

Function: Sets the current value of the timer. All timers count up. When a timer
reaches the maximum value it will flip over to 0 and continue counting
(254, 255,0,1, 2, ...).

Availability: This function is only available on devices with Timer B hardware.

Requires: Nothing

387

PCD 07202016.doc

Examples:

Example
Files:
Also See:

// 20 mhz clock, no prescaler, set timer B
// to overflow in 35us

set timerB(81); // 256-(.000035/(4/20000000))
none

get_timerB(), setup_timer_B(), TimerB Overview

set_timerx()

Syntax: set_timerX(value)
Parameters: A 16 bit integer, specifiying the new value of the timer. (int16)
Returns: void
Function: Allows the user to set the value of the timer.
Availability: This function is available on all devices that have a valid timerX.
Requires: Nothing
Examples: if (EventOccured())
set_timer2(0);//reset the timer.
Example None
Files:
Also See: Timer Overview, setup_timerX(), get_timerXY() , set _timerX() ,

set_timerXY()

set_timerxy()

Syntax: set_timerXY(value)

Parameters: A 32 bit integer, specifying the new value of the timer. (int32)

Returns: void

Function: Retrieves the 32 bit value of the timers X and Y, specified by XY (which
may be 23, 45, 67 and 89)

Availability: This function is available on all devices that have a valid 32 bit enabled

388

Built-in Functions

timers. Timers 2 & 3,4 &5, 6 & 7 and 8 & 9 may be used. The target
device must have one of these timer sets. The target timers must be
enabled as 32 bhit.

Requires: Nothing

Exan1p|es; if (get_timer45() == THRESHOLD)
set timer (THRESHOLD + 0x1000);//skip those timer
values

Example None

Files:

Also See: Timer Overview, setup_timerX(), get_timerXY(), set_timerX(),

set_timerXY()
set_rtcc() set_timer0() set_timerl()
set_timer2() set _timer3() set_timer4()

set_timer5()

Syntax: set_timerO(value) or set_rtcc (value)
set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)
Parameters: Timers 1 & 5 get a 16 bit int.
Timer 2 and 4 gets an 8 bit int.
Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it
needs a 16 bit int.
Timer 3 is 8 bit on PIC16 and 16 bit on PIC18
Returns: undefined
Function: Sets the count value of a real time clock/counter. RTCC and TimerO are
the same. All timers count up. When a timer reaches the maximum
value it will flip over to 0 and continue counting (254, 255, 0, 1, 2...)
Availability: Timer 0 - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices

389

PCD 07202016.doc

Timer 4 - Some PCH devices
Timer 5 - Only PIC18XX31

Requires: Nothing
Examples: // 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us
set_timer0(81); // 256-(.000035/(4/20000000))
Example ex_patg.c
Files:
Also See: set_timerl(), get timerX() Timer0O Overview, TimerlOverview, Timer2
Overview, Timer5 Overview
set_timer_ccpl() set_timer_ccp2()
set_timer_ccp3() set_timer_ccp4()

set_timer_ccp5()

Syntax: set_timer_ccpx(time);
set_timer_ccpx(timeL, timeH);

Parameters: time - may be a 32-bit constant or variable. Sets the timer value for the
CCPx module when in 32-bit mode.
timeL - may be a 16-bit constant or variable to set the value of the lower
timer when CCP module is set for 16-bit mode.
timeH - may be a 16-bit constant or variable to set the value of the
upper timer when CCP module is set for 16-bhit mode.

Returns: Undefined

Function: This function sets the timer values for the CCP module. TimeH is
optional parameter when using 16-bit mode, defaults to zero if not
specified.

Availability: Available only on PIC24FxxKMxxx family of devices with a MCCP and/or

SCCP modules.

390

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Requires: Nothing

Examples: setup_ccpl (CCP_TIMER) ; //set for dual timer mode
set timer ccpl(100,200); //set lower timer value to 100
and upper timer

//value to 200

Example None
Files:
Also See: set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(),

get_capture _ccpX(), set_timer period ccpX(), get_timer_ccpx(),
get_captures32_ccpX()

set_timer_period_ccpl()
set_timer_period_ccp2()
set_timer_period _ccp3()
set_timer_period_ccp4()
set_timer_period_ccp5()

Syntax: set_timer_period_ccpx(time);
set_timer_period_ccpx(timeL, timeH);

Parameters: time - may be a 32-bit constant or variable. Sets the timer period for the
CCPx module when in 32-bit mode.

timeL - is a 16-bit constant or variable to set the period of the lower timer
when CCP module is set for 16-bit mode.

timeH - is a 16-bit constant or variable to set the period of the upper
timer when CCP module is set for 16-bit mode.

Returns: Undefined

391

PCD 07202016.doc

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

This function sets the timer periods for the CCP module. When setting
up CCP module in 32-bit function is only needed when using Timer
mode. Period register are not used when module is setup for 32-bit
compare mode, period is always OxFFFFFFFF. TimeH is optional
parameter when using 16-bit mode, default to zero if not specified.

Available only on PIC24FxxKMxxx family of devices with a MCCP and/or
SCCP modules.

Nothing

setup ccpl (CCP_TIMER) ; //set for dual timer
mode
set_timer period ccpl (800,2000); //set lower timer period
to 800 and

//upper timer period to
2000

None

set_pwmX_duty(), setup_ccpX(), set_ccpX_compare_time(),
set_timer_ccpX(), get_timer_ccpX(), get_capture_ccpX(),
get_captures32_ccpX()

set_tris_x()

Syntax:

set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)

Parameters:

Returns:

value is an 16 bit int with each bit representing a bit of the I/O port.

undefined

392

Built-in Functions

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

These functions allow the I/O port direction (TRI-State) registers to be
set. This must be used with FAST_IO and when /O ports are accessed
as memory such as when a # word directive is used to access an I/0
port. Using the default standard 1/O the built in functions set the 1/0
direction automatically.

Each bit in the value represents one pin. A 1 indicates the pin is input
and a 0 indicates it is output.

All devices (however not all devices have all I/O ports)

Nothing

SET _TRIS B(0xO0F);
// B7,B6,B5,B4 are outputs
// B15,B14,B13,B12,B11,B10,B9,B8, B3,B2,B1,B0 are inputs

Icd.c

#USE FAST 10, #USE FIXED 10, #USE STANDARD |0, General
Purpose 1/0

set_uart_speed()

Syntax: set_uart_speed (baud, [stream, clock])

Parameters: baud is a constant representing the number of bits per second.
stream is an optional stream identifier.
clock is an optional parameter to indicate what the current clock is if it is
different from the #use delay value

Returns: undefined

Function: Changes the baud rate of the built-in hardware RS232 serial port at run-
time.

Availability: This function is only available on devices with a built in UART.

Requires: #USE RS232

393

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Examples:

Example
Files:
Also See:

// Set baud rate based on setting
// of pins BO and Bl

switch(input b() & 3) {

case 0 : set uart speed(2400); break;
case 1 : set uart speed(4800); break;
case 2 : set uart speed(9600); break;
case 3 : set uart speed(19200); break;
}
loader.c

#USE RS232, putc(), getc(), setup uart(), RS232 I/0O Overview,

setimp()

Syntax: result = setjmp (env)

Parameters: env: The data object that will receive the current environment

Returns: If the return is from a direct invocation, this function returns 0.

If the return is from a call to the longjmp function, the setjmp function
returns a nonzero value and it's the same value passed to the longjmp
function.

Function: Stores information on the current calling context in a data object of type
jmp_buf and which marks where you want control to pass on a
corresponding longjmp call.

Availability: All devices

Requires: #INCLUDE <setjmp.h>

Examples: result = setjmp (jmpbuf) ;

Example None

Files:

Also See: longjmp()

394

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

setup_adc(mode) setup_adc2(mode)

Syntax: setup_adc (mode);
setup_adc2(mode);

Parameters: mode- Analog to digital mode. The valid options vary depending on the
device. See the devices .h file for all options. Some typical options
include:

¢ ADC_OFF

¢ ADC_CLOCK_INTERNAL

¢ ADC_CLOCK_DIV_32

e ADC_CLOCK_INTERNAL — The ADC will use an
internal clock

e ADC_CLOCK_DIV_32 — The ADC will use the
external clock scaled down by 32

e ADC_TAD_MUL_16 — The ADC sample time will be
16 times the ADC conversion time

Returns: undefined

Function: Configures the ADC clock speed and the ADC sample time. The ADC
converters have a maximum speed of operation, so ADC clock needs to
be scaled accordingly. In addition, the sample time can be set by using a
bitwise OR to concatenate the constant to the argument.

Availability: Only the devices with built in analog to digital converter.

Requires: Constants are defined in the devices .h file.

Examples; setup adc_ports(ALL_ANALOG) ;
setup_adc (ADC_CLOCK_INTERNAL) ;
set _adc_channel(0);
value = read adc();
setup adc(ADC_OFF) ;

Example ex_admm.c

Files:

Also See: setup_adc_ports(), set_adc_channel(), read_adc(), #DEVICE, ADC

Overview,
see header file for device selected

395

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

setup_adc_ports() setup_adc_ports2()

Syntax:

setup_adc_ports (ports, reference])

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

value - a constant defined in the device's .h file
ports - is a constant specifying the ADC pins to use

reference - is an optional constant specifying the ADC reference to use.
By default, the reference voltage are Vss and Vdd

undefined

Sets up the ADC pins to be analog, digital, or a combination and the
voltage reference to use when computing the ADC value. The allowed
analog pin combinations vary depending on the chip and are defined by
using the bitwise OR to concatenate selected pins together. Check the
device include file for a complete list of available pins and reference
voltage settings. The constants ALL_ANALOG and NO_ANALOGS are
valid for all chips.
Some other example pin definitions are:
. SANL1 | sAN2 - AN1 and AN2 are analog, remaining
pins are digital
o SANO | SAN3 - ANO and AN3 are analog, remaining
pins are digital

This function is only available on devices with A/D hardware.
This function is only available on devices with built-in A/D converters.

Constants are defined in the device's .h file.

// All pins analog (that can be)

setup adc ports (ALL ANALOG) ;

// Pins AO, Al, and A3 are analog and all others are
digital.

// The +5V is used as a reference.
setup_adc_ports (RAO_RA1 RA3 ANALOG) ;

// Pins A0 and Al are analog. Pin RA3 is use for the

reference voltage
// and all other pins are digital.

396

Built-in Functions

Example
Files:

Also See:

setup adc_ports (AO0_RA1 ANALOGRA3 REF) ;
// Set all ADC pins to analog mode.
setup adc_ports (ALL_ANALOG) ;

// Pins ANO, AN1l, and AN3 are analog and all other pins are
digital.

setup adc_ports (sANO|sANI|sAN3) ;
// Pins ANO and ANl are analog. The Vrefl pin and Vdd are
used for

// voltage references.

setup adc ports (sANO|sAN1l, VREF VDD);

ex_admm.c

#USE RS232, putc(), getc(), setup uart(), RS232 1/0 Overview,

setup_adc_reference()

Syntax: setup_adc_reference(reference)

Parameters: reference - the voltage reference to set the ADC. The valid options
depend on the device, see the device's .h file for all options. Typical
options include:

VSS_VDD
VSS_VREF
VREF_VREF
VREF_VDD

Returns: undefined

Function: To set the positive and negative voltage reference for the Analog to
Digital Converter (ADC) uses.

Availability: Only on devices with an ADC and has ANSELX, x being the port letter,
registers for setting which pins are analog or digital.

Requires: Nothing

Exan“ﬂes; set_adc_reference (VSS_VREF) ;

397

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Example
Files:
Also See: set_analog_pins(), set_adc_channel(), read_adc(), setup _adc(),
setup adc_ports(),
ADC Overview
setup_at()
Syntax: setup_at(settings);
Parameters: settings - the setup of the AT module. See the device's header file for
all options. Some typical options include:
AT_ENABLED
AT_DISABLED
AT_MULTI_PULSE_MODE
AT_SINGLE_PULSE_MODE
Returns: Nothing
Function: To setup the Angular Timer (AT) module.
Availability: All devices with an AT module.
Requires: Constants defined in the device's .h file
Examples: setup_at (AT ENABLED|AT MULTI PULSE MODE|AT INPUT ATIN);
Example None
Files:
Also See: at_set resolution(), at_get resolution(), at_set missing_pulse_delay(),

at_get missing_pulse_delay(), at_get_period(), at_get phase_counter(),
at _set_set point(), at get set point(), at_get _set point_error(),
at_enable interrupts(), at_disable interrupts(), at_clear_interrupts(),
at_interrupt_active(), at_setup cc(), at_set compare_time(),
at_get_capture(), at_get status()

398

Built-in Functions

setup_capture()

Syntax: setup_capture(x, mode)
Parameters: x is 1-16 and defines which input capture module is being configured
mode is defined by the constants in the devices .h file
Returns: None
Function: This function specifies how the input capture module is going to function
based on the value of mode. The device specific options are listed in the
device .h file.
Availability: Only available on devices with Input Capture modules
Requires: None
Examples: setup_timer3 (TMR_INTERNAL | TMR DIV BY 8);
setup_capture (2, CAPTURE FE | CAPTURE TIMER3) ;
while (TRUE) {
timerValue = get capture(2, TRUE);
printf (“Capture 2 occurred at: S$LU”, timerValue);
}
Example None
Files:
Also See: get_capture(), setup_compare(), Input Capture Overview

setup_ccpl() setup_ccp2()
setup_ccp3() setup_ccp4()
setup_ccp5() setup_ccp6()

Syntax: setup_ccpx(mode,[pwm]);//PIC24FxxKLxxx devices
setup_ccpx(model,[mode2],[mode3],[dead_time]);//PIC24FxxKMxxx
devices

Parameters:

mode and model are constants used for setting up the CCP module.
Valid constants are defined in the device's .h file, refer to the device's .h

399

PCD 07202016.doc

Returns:

Function:

file for all options. Some typical options are as follows:
CCP_OFF
CCP_COMPARE_INT_AND_TOGGLE
CCP_CAPTURE_FE
CCP_CAPTURE_RE
CCP_CAPTURE_DIV_4
CCP_CAPTURE_DIV_16
CCP_COMPARE_SET_ON_MATCH
CCP_COMPARE_CLR_ON_MATCH
CCP_COMPARE_INT
CCP_COMPARE_RESET_TIMER
CCP_PWM

mode?2 is an optional parameter for setting up more settings of the CCP
module. Valid constants are defined in the device's .h file, refer to the
device's .h file for all options.

mode3 is an optional parameter for setting up more settings of the CCP.
module. Valid constants are defined in the device's .h file, refer to the
device's .h file for all options.

pwm is an optional parameter for devices that have an
ECCP module. this parameter allows setting the shutdown
time. The value may be 0-255.

dead_time is an optional parameter for setting the dead
time when the CCP module is operating in PWM mode with
complementary outputs. The value may be 0-63, O is the
default setting if not specified.

Undefined

Initializes the CCP module. For PIC24FxxKLxxx devices the CCP
module can operate in three modes (Capture, Compare or PWM).

Capture Mode - the value of Timer 3 is copied to the CCPRxH and
CCPRxl registers when

an input event occurs.

Compare Mode - will trigger an action when Timer 3 and the CCPRxL
and CCPRxH registers

are equal.

PWM Mode - will generate a square wave, the duty cycle of the signal
can be adjusted using

the CCPRXL register and the DCxB bits of the CCPxCON register.
The function

set_pwmx_duty() is provided for setting the duty cycle when in PWM

400

Built-in Functions

Availability:

Requires:

Examples:

Example
Files:
Also See:

mode.

PIC24FxxKMxxx devices, the CCP module can operate in four mode
(Timer, Caputure, Compare or PWM). IN Timer mode, it functions as a
timer. The module has to basic modes, it can functions as two
independent 16-bit timers/counters or as a single 32-bit timer/counter.
The mode it operates in is controlled by the option
CCP_TIMER_32_BIT, with the previous options added, the module
operates as a single 32-bit timer, and if not added, it operates as two 16-
bit timers. The function set_timer_period_ccpx() is provided to set the
period(s) of the timer, and the functions set_timer_ccpx() and
get_timer_ccpx() are provided to set and get the current value of the
timer(s).

In Capture mode, the value of the timer is captured when an input event
occurs, it can operate in either 16-bit or 32-bit mode. The functions
get_capture_ccpx() and get_capture32_ccpx() are provided to get the
last capture value.

In Compare and PWM modes, the value of the timers is ¢ ompared to
one or two compare registers, depending on its mode of operation, to
generate a single output transition or a train of output pulses. For signal
output edge modes, CCP_COMPARE_SET_ON_MATCH,
CCP_COMPARE_CLR_ON_MATCH, and CCP_COMPARE_TOGGLE,
the module can operate in 16 or 32-bit mode, all other modes can only
operate in 16-bit mode. However, when in 32-bit mode the timer source
will only rollover when it reaches OxFFFFFFFF or when reset from an
external synchronization source. Therefore, is a period of less than
OXFFFFFFFF is needed, as it requires an external synchronization
source to reset the timer. The functions set_ccpx_compare_time() and
set_pwmx_duty() are provided for setting the compare registers.

Only on devices with the MCCP and/or SCCP modules.

Constants are defined in the devices .h file.

setup ccpl (CCP_CAPTURE_ FE) ;
setup ccpl (CCP_COMPARE TOGGLE) ;
setup ccpl (CCP_PWM) ;

ex_pwm.c, ex_ccpmp.c, ex_ccpls.c

set_pwmX_duty(), set_ccpX_compare_time(), set_timer_period _ccpX(),
set_timer ccpX(), get_timer ccpX(), get capture ccpX(),

401

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink3.click()

PCD 07202016.doc

get captures32 ccpX()

setup_clcl() setup_clc2()
setup_clc3() setup_clc4()
Syntax: setup_clcl(mode);

setup_clc2(mode);
setup_clc3(mode);
setup_clc4(mode);

Parameters:

Returns:

Function:

Availability:
Returns:
Examples:
Example

Files:
Also See:

mode — The mode to setup the Configurable Logic Cell (CLC) module
into. See the device's .h file for all options. Some typical options
include:

CLC_ENABLED

CLC_OUTPUT

CLC_MODE_AND_OR

CLC_MODE_OR_XOR

Undefined.

Sets up the CLC module to performed the specified logic. Please refer
to the device datasheet to determine what each input to the CLC module
does for the select logic function

On devices with a CLC module.

Undefined.

setup_clcl (CLC_ENABLED | CLC_MODE AND OR);

None

clex_setup_gate(), clex_setup_input()

402

Built-in Functions

setup_comparator()

Syntax: setup_comparator (mode)

Parameters: mode is a bit-field comprised of the following constants:
NC_NC_NC_NC
A4_A5_NC_NC
A4_VR_NC_NC
A5_VR_NC_NC
NC_NC_A2_A3
NC_NC_A2_VR
NC_NC_A3 VR
A4 _A5 A2_A3
A4 VR_A2_VR
A5 VR_A3 VR
C1_INVERT
C2_INVERT
C1_OUTPUT
C2_OUTPUT

Returns: void

Function: Configures the voltage comparator.
The voltage comparator allows you to compare two voltages and find the
greater of them. The configuration constants for this function specify the
sources for the comparator in the order C1- C1+, C2-, C2+.The
constants may be or’ed together if the NC’s do not overlap;
A4 _A5 NC_NC | NC_NC_A3 VR is valid, however, A4 A5 NC_NC |
A4 _VR_NC_NC may produce unexpected results. The results of the
comparator module are stored in CLOUT and C20UT, respectively.
Cx_INVERT will invert the results of the comparator and Cx_OUTPUT
will output the results to the comparator output pin.

Availability: Some devices, consult your target datasheet.

Requires Constants are defined in the devices .h file.

Examples: setup comparator (A4 A5 NC NC);//use Cl, not C2

Example

Files:

403

PCD 07202016.doc

setup_compare()

Syntax: setup_compare(x, mode)

Parameters: mode is defined by the constants in the devices .h file
X is 1-16 and specifies which OC pin to use.

Returns: None

Function: This function specifies how the output compare module is going to
function based on the value of mode. The device specific options are
listed in the device .h file.

Availability: Only available on devices with output compare modules.

Requires: None

Examples: // Pin OCl will be set when timer 2 is equal to 0xF000
setup timer2 (TMR INTERNAL | TIMER DIV BY 16);
set compare time (1, O0xF000);
setup compare (1, COMPARE SET ON MATCH | COMPARE TIMER2) ;

Example None

Files:

Also See: set_compare_time(), set_pwm_duty(), setup_capture(), Output Compare

/ PWM Overview

setup_crc(mode)

Syntax: setup_crc(polynomial terms)

Parameters: polynomial - This will setup the actual polynomial in the CRC engine.
The power of each term is passed separated by a comma. 0 is allowed,
but ignored. The following define is added to the device's header file (32-
bit CRC Moduel Only), to enable little-endian shift direction:
- CRC_LITTLE_ENDIAN

Returns: undefined

Function: Configures the CRC engine register with the polynomial

404

Built-in Functions

Availability: Only the devices with built in CRC module
Requires: Nothing

Examples: setup crc (12, 5);
// CRC Polynomial is X + X° + 1

setup crc(le, 15, 3, 1);
// CRC Polynomial is X'® + X*° + X’ + x'+ 1

Example ex.c
Files:
Also See: crc_init(); crc_calc(); crc_calc8()

setup_cog()

Syntax: setup_cog(mode, [shutdown]);
setup_cog(mode, [shutdown], [sterring]);

Parameters: mode- the setup of the COG module. See the device's .h file for all
options.
Some typical options include:

COG_ENABLED
COG_DISABLED
COG_CLOCK_HFINTOSC
COG_CLOCK_FOSC

shutdown- the setup for the auto-shutdown feature of COG module.
See the device's .h file for all the options. Some typical options include:

COG_AUTO_RESTART
COG_SHUTDOWN_ON_C10UT
. COG_SHUTDOWN_ON_C20UT

steering- optional parameter for steering the PWM signal to COG output
pins and/or selecting
the COG pins static level. Used when COG is set for steered PWM or

405

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

synchronous steered

PWM modes. Not available on all devices, see the device's .h file if
available and for all options.

Some typical options include:

3 COG_PULSE_STEERING_A
3 COG_PULSE_STEERING_B
3 COG_PULSE_STEERING_C
o COG_PULSE_STEERING_D
Returns: undefined
Function: Sets up the Complementary Output Generator (COG) module, the auto-

shutdown feature of
the module and if available steers the signal to the different output pins.

Availability: All devices with a COG module.

Examples; setup_cog (COG_ENABLED | COG_PWM | COG_FALLING SOURCE PWM3 |
COG RISING SOURCE PWM3, COG NO AUTO SHUTDOWN,
COG_PULSE STEERING A | COG PULSE STEERING B);

Example None
Files:
Also See: set cog dead band(), set cog phase(), set_cog_blanking(),

cog_status(), cog_restart()

setup_crc()

Syntax: setup_crc(polynomial terms)

Parameters: polynomial- This will setup the actual polynomial in the CRC engine.
The power of each
term is passed separated by a comma. O is allowed, but ignored. The
following define
is added to the device's header file to enable little-endian shift direction:
CRC_LITTLE_ENDIAN

Returns: Nothing

Function: Configures the CRC engine register with the polynomial.

Availability: ~ Only devices with a built-in CRC module.

Examples: setup crc(l2, 5); // CRC Polynomial is x'*+x°+1

406

Built-in Functions

Example
Files:
Also See:

setup crc(1l6, 15, 3, 1); // CRC Polynomial is
P x P rxi+1

None

crc_init(), crc_calc(), crc_calc8()

setup_cwg()

Syntax:

setup_cwg(mode,shutdown,dead_time_rising,dead_time_falling)

Parameters:

Returns:

Function:

mode- the setup of the CWG module. See the device's .h file for all
options.
Some typical options include:

CWG_ENABLED
CWG_DISABLED
CWG_OUTPUT_B
CWG_OUTPUT_A

shutdown- the setup for the auto-shutdown feature of CWG module.
See the device's .h file for all the options. Some typical options include:

CWG_AUTO_RESTART
CWG_SHUTDOWN_ON)COMP1
CWG_SHUTDOWN_ON_FLT
CWG_SHUTDOWN_ON_CLC2

dead_time_rising- value specifying the dead time between A and B on
the
rising edge. (0-63)

dead_time_rising- value specifying the dead time between A and B on
the
falling edge. (0-63)

undefined
Sets up the CWG module, the auto-shutdown feature of module and the

rising
and falling dead times of the module.

407

PCD 07202016.doc

Availability:
Examples:
Example

Files:
Also See:

All devices with a CWG module.

setup cwg (CWG ENABLED|CWG OUTPUT A|CWG OUTPUT B|
CWG_INPUT PWM1,CWG SHUTDOWN ON FLT, 60,30) ;

None

cwg_status(), cwg_restart()

setup_dac()

Syntax: setup_dac(mode);
setup_dac(mode, divisor);
Parameters: mode- The valid options vary depending on the device. See the devices
.h file for all options. Some typical options include:
- DAC_OUTPUT
divisor- Divides the provided clock
Returns: undefined
Function: Configures the DAC including reference voltage. Configures the DAC
including channel output and clock speed.
Availability: ~ Only the devices with built in digital to analog converter.
Requires: Constants are defined in the devices .h file.
Exan”ﬂesj setup_dac (DAC VDD | DAC OUTPUT) ;
dac_write(value);
setup_dac (DAC_RIGHT ON, 5);
Example None
Files:
Also See: dac_write()), DAC Overview, See header file for device selected

408

Built-in Functions

setup_dci()

Syntax: setup_dci(configuration, data size, rx config, tx config, sample rate);

Parameters: configuration - Specifies the configuration the Data Converter Interface
should be initialized into, including the mode of transmission and bus
properties. The following constants may be combined (OR’d) for this
parameter:

. CODEC_MULTICHANNEL
. CODEC_I2S- CODEC_AC16

. CODEC_AC20- JUSTIFY_DATA. DCI_MASTER

. DCI_SLAVE- TRISTATE_BUS: MULTI_DEVICE_BUS
. SAMPLE_FALLING_EDGE- SAMPLE_RISING_EDGE
- DCI_CLOCK_INPUT- DCI_CLOCK_OUTPUT

data size — Specifies the size of frames and words in the transmission:

- DCI_xBIT_WORD: x may be 4 through 16
- DCI_XWORD_FRAME: x may be 1 through 16
- DCI_XWORD_INTERRUPT: x may be 1 through 4

rx config- Specifies which words of a given frame the DCI module will
receive (commonly used for a multi-channel, shared bus situation)

- RECEIVE_SLOTXx: x May be 0 through 15
- RECEIVE_ALL- RECEIVE_NONE

tx config- Specifies which words of a given frame the DCI module will
transmit on.

- TRANSMIT_SLOTx: x May be 0 through 15
- TRANSMIT _ALL
- TRANSMIT _NONE

sample rate-The desired number of frames per second that the DCI

module should produce. Use a numeric value for this parameter. Keep in

mind that not all rates are achievable with a given clock. Consult the

device datasheet for more information on selecting an adequate clock.
Returns: undefined

Function: Configures the DCI module

409

PCD 07202016.doc

Availability: ~ Only on devices with the DCI peripheral
Requires: Constants are defined in the devices .h file.

Examples: dci_initialize((I2S MODE | DCI_MASTER | DCI_CLOCK OUTPUT |
SAMPLE RISING EDGE | UNDERFLOW LAST |
MULTI DEVICE BUS),
DCI_1WORD FRAME | DCI 16BIT WORD |
DCI_2WORD INTERRUPT,
RECEIVE SLOTO | RECEIVE SLOTI,
TRANSMIT SLOTO | TRANSMIT SLOTL,

44100) ;
Example None
Files:
Also See: DCI Overview, dci start(), dci write(), dci read(), dci transmit ready(), dci
data received()
setup_dedicated _adc()
Syntax: setup_dedicated_adc(core, mode);

Parameters: core - the dedicated ADC core to setup

mode - the mode to setup the dedicated ADC core in. See the device's .h
file all options. Some typical options include:

° ADC_DEDICATED_CLOCK_DIV_2
. ADC_DEDICATED_CLOCK_DIV_6
. ADC_DEDICATED_TAD_MUL_2
° ADC_DEDICATED_TAD_MUL_3
Returns: Undefined
Function: Configures one of the dedicated ADC core's clock speed and sample

time.
Function should be called after the setup_adc() function.

Availability: ~ On the dsPIC33EPxxGSxxx family of devices.
Requires: Nothing.

Examples: setup_dedicated_adc(0,ADC_DEDICATED_CLOCK_DIV_2 |
ADC_DEDICATED_TAD_MUL_1025);

410

Built-in Functions

Example None
Files:
Also See: setup_adc(), setup _adc_ports(), set_adc_channel(), read adc(),

adc_done(), set_dedicated adc channel(), ADC Overview

setup_dma()

Syntax: setup_dma(channel, peripheral,mode);

Parameters: Channel- The channel used in the DMA transfer
peripheral - The peripheral that the DMA wishes to talk to.
mode- This will specify the mode used in the DMA transfer

Returns: void

Function: Configures the DMA module to copy data from the specified peripheral
to RAM allocated for the DMA channel.

Availability: Devices that have the DMA module.
Requires Nothing

Examples: setup_dma (2, DMA IN SPI1, DMA BYTE);
// This will setup the DMA channel 1 to talk to
// SPI1 input buffer.

Example None
Files:
Also See dma_start(), dma_status()

setup_high_speed _adc()

Syntax: setup_high_speed_adc (mode);

Parameters: mode — Analog to digital mode. The valid options vary depending on the
device. See the devices .h file for all options. Some typical options
include:

- ADC_OFF
- ADC_CLOCK_DIV_1

411

PCD 07202016.doc

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

+ ADC_HALT_IDLE — The ADC will not run when PIC is idle.
Undefined

Configures the High-Speed ADC clock speed and other High-Speed ADC
options including, when the ADC interrupts occurs, the output result
format, the conversion order, whether the ADC pair is sampled
sequentially or simultaneously, and whether the dedicated sample and
hold is continuously sampled or samples when a trigger event occurs.

Only on dsPIC33FJxxGSxxx devices.

Constants are define in the device .h file.
setup_high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc (ADC_CLOCK DIV 4);

read high speed adc (0, START AND READ, result);

setup high speed adc (ADC _OFF);

None

setup_high _speed adc pair(), read high speed adc(),
high_speed adc_done()

setup_high_speed_adc_pair()

Syntax:

setup_high_speed_adc_pair(pair, mode);

Parameters:

pair — The High-Speed ADC pair number to setup, valid values are 0 to
total number of ADC pairs. 0 sets up ADC pair ANO and AN1, 1 sets up
ADC pair AN2 and AN3, etc.

mode — ADC pair mode. The valid options vary depending on the
device. See the devices .h file for all options. Some typical options
include:

+ INDIVIDUAL_SOFTWARE_TRIGGER
+ GLOBAL_SOFTWARE_TRIGGER

* PWM_PRIMARY_SE_TRIGGER

- PWM_GEN1_PRIMARY_TRIGGER

412

Built-in Functions

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

- PWM_GEN2_PRIMARY_TRIGGER
Undefined

Sets up the analog pins and trigger source for the specified ADC pair.
Also sets up whether ADC conversion for the specified pair triggers the
common ADC interrupt.

If zero is passed for the second parameter the corresponding analog pins
will be set to digital pins.

Only on dsPIC33FJIxxGSxxx devices.
Constants are define in the device .h file.

setup _high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc pair(l, GLOBAL SOFTWARE TRIGGER);

setup high speed adc pair(2, 0) - sets AN4 and AN5 as
digital pins.

None

setup_high_speed_adc(), read_high_speed_adc(),
high speed _adc done()

setup_hspwm_blanking()

Syntax:

setup_hspwm_blanking(unit, settings, delay);

413

PCD 07202016.doc

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

unit - The High Speed PWM unit to set.

settings - Settings to setup the High Speed PWM Leading-Edge

Blanking. The valid options vary depending on the device. See the

device's header file for all options. Some typical options include:

. HSPWM_RE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_FE_PWMH_TRIGGERS_LE_BLANKING
HSPWM_RE_PWML_TRIGGERS_LE_BLANKING
HSPWM_FE_PWML_TRIGGERS_LE_BLANKING
HSPWM_LE_BLANKING_APPLIED TO_FAULT_INPUT

HSPWM_LE_BLANKING_APPLIED_TO_CURRENT_LIMIT_INPUT

delay - 16-bit constant or variable to specify the leading-edge blanking
time.

undefined

Sets up the Leading-Edge Blanking and leading-edge blanking time of
the High Speed PWM.

Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dSPIC33EPXxXMCxxXx,
and dsPIC33EVxxxGMxxx devices)

None

setup hspwm blanking (HSPWM RE PWMH TRIGGERS LE BLANKING,
10) ;

None

setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),
set_hspwm_event(),

setup_hspwm_blanking(), set_hspwm_override(),
get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm_unit_chop_clock()

setup_hspwm(), setup_hspwm_secondary()

414

Built-in Functions

setup_hspwm_chop_clock()

Syntax: setup_hspwm_chop_clock(settings);
Parameters: settings - a value from 1 to 1024 to set the chop clock divider. Also one
of the following can be or'd with the value:
HSPWM_CHOP_CLK_GENERATOR_ENABLED
HSPWM_CHOP_CLK_GENERATOR_DISABLED
Returns: Undefined
Function: Setup and High Speed PWM Chop Clock Generator and divisor.
Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXXXMCxxX,
and dsPIC33EVxxxGMxxx devices)
Requires: None
Examples; setup hspwm chop clock (HSPWM CHOP CLK GENERATOR ENABLED|32);
Example None
Files:
Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),

setup_hspwm_blanking(), setup _hspwm_trigger(),
set_hspwm_override(),

get_hspwm_capture(), setup_hspwm _unit_chop clock()
setup_hspwm(), setup_hspwm_secondary()

setup_hspwm_trigger()

Syntax: setup_hspwm_trigger(unit, [start_ delay], [divider], [trigger_value],
[strigger_value]);
Parameters: unit - The High Speed PWM unit to set.

start_delay - Optional value from 0 to 63 specifying then umber of PWM
cycles to wait before generating the first trigger event. For some

415

PCD 07202016.doc

Returns:

Function:

Availability:

Requires:
Examples:
Example

Files:
Also See:

devices, one of the following may be optional or'd in with the value:
HSPWM_COMBINE_PRIMARY_AND_SECONDARY_TRIGGER
HSPWM_SEPERATE_PRIMARY_AND_SECONDARY_TRIGGER

divider - optional value from 1 to 16 specifying the trigger event divisor.

trigger_value - optional 16-bit value specifying the primary trigger
compare time.

strigger_value - optional 16-bit value specifying the secondary trigger
compare time. Not available on all devices, see the device datasheet for
availability.

undefined

Sets up the High Speed PWM Trigger event.

Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dSPIC33EPXxXxMCXxX,
and dsPIC33EVxxxGMxxx devices)

None

setup hspwm trigger(l, 10, 1, 0x2000);

None

setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),
set_hspwm_event(),

setup_hspwm _trigger(), set_hspwm_override(),
get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm_unit_chop_clock()

setup_hspwm(), setup _hspwm_secondary()

setup_hspwm_unit()

Syntax: setup_hspwm_unit(unit, mode, [dead_time], [alt_dead_time]);
set_hspwm_duty(unit, primary, [secondary]);
Parameters: unit - The High Speed PWM unit to set.

416

Built-in Functions

mode - Mode to setup the High Speed PWM unit in. The valid option
vary depending on the device. See the device's header file for all
optlons Some typical options include:

HSPWM_ENABLE

HSPWM_ENABLE_H

HSPWM_ENABLE_L

HSPWM_COMPLEMENTARY

HSPWM_PUSH_PULL

dead_time - Optional 16-bit constant or variable to specify the dead time
for this PWM unit, defaults to 0 if not specified.

alt_dead_time - Optional 16-bit constant or variable to specify the
alternate dead time for this PWM unit, default to O if not specified.

Returns: undefined
Function: Sets up the specified High Speed PWM unit.
Availability: Only on devices with a built-in High Speed PWM module

(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxxMCXxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: Constants are defined in the device's .h file

Examples: setup hspwm unit (1, HSPWM ENABLE|SHPWM COMPLEMENTARY,
100,100) ;

Example None

Files:

Also See: set_hspwm_phase(), set_hspwm_duty(), set_hspwm_event(),

setup _hspwm_blanking(), setup_hspwm_trigger(),
set_hspwm_override(),

get_hspwm_capture(), setup_hspwm_chop_clock(),
setup _hspwm_unit_chop clock()

setup hspwm(), setup hspwm secondary()

417

PCD 07202016.doc

setup_hspwm() setup_hspwm_secondary()

Syntax: setup_hspwm(mode, value);
setup_hspwm_secondary(mode, value); /if available

Parameters: mode - Mode to setup the High Speed PWM module in. The valid
options vary depending on the device. See the device's .h file for all
options. Some typical options include:

HSPWM_ENABLED
HSPWM_HALT_WHEN_IDLE
HSPWM_CLOCK_DIV_1

value - 16-bit constant or variable to specify the time bases period.
Returns: undefined

Function: To enable the High Speed PWM module and set up the Primary and
Secondary Time base of the module.

Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FIxxGSxxx, dsPIC33EPxxxMUxxx, dsPIC33EPXxXMCxxX,
and dsPIC33EVxxxGMxxx devices)

Requires: Constants are defined in the device's .h file

Examples; setup hspwm (HSPWM ENABLED | HSPWM CLOCK DIV BY4, 0x8000);
Example None

Files:

Also See: setup_hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),

setup_hspwm_blanking(), setup _hspwm_trigger(),
set_hspwm_override(),

get_hspwm_capture(), setup_hspwm_chop_clock(),
setup _hspwm_unit_chop clock()
setup_hspwm_secondary()

418

Built-in Functions

setup_hspwm _unit_chop_clock()

Syntax: setup_hspwm_unit_chop_clock(unit, settings);
Parameters: unit - the High Speed PWM unit chop clock to setup.
settings - a settings to setup the High Speed PWM unit chop clock. The
valid options vary depending on the device. See the device's .h file for all
optlons Some typical options include:
HSPWM_PWMH_CHOPPING_ENABLED
HSPWM_PWML_CHOPPING_ENABLED
HSPWM_CHOPPING_DISABLED
HSPWM_CLOP_CLK_SOURCE_PWM2H
HSPWM_CLOP_CLK_SOURCE_PWM1H
HSPWM_CHOP_CLK_SOURCE_CHOP_CLK_GENERATOR
Returns: Undefined
Function: Setup and High Speed PWM unit's Chop Clock
Availability: Only on devices with a built-in High Speed PWM module
(dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dSPIC33EPXxXMCxxX,
and dsPIC33EVxxxGMxxx devices)
Requires: None
Examples: setup_hspwm unit chop clock(1l,HSPWM PWMH CHOPPING ENABLED]
HSPWM_PWML_CHOPPIJNG ENABLED|
HSPWM_CLOP_CLK_SOURCE_PWM2H) ;
Example None
Files:
Also See: setup _hspwm_unit(), set_hspwm_phase(), set_hspwm_duty(),

set_hspwm_event(),

setup _hspwm_blanking(), setup _hspwm trigger(),
set_hspwm_override(),

get_hspwm_capture(), setup_hspwm_chop_clock(),
setup_hspwm(), setup _hspwm_secondary()

419

PCD 07202016.doc

setup_low_volt_detect()

Syntax: setup_low_volt_detect(mode)

Parameters: mode may be one of the constants defined in the devices .h file.
LVD_LVDIN, LVD_45, LVD_42, LVD_40, LVD_38, LVD_36, LVD_35,
LVD_33, LVD_30, LVD_28, LVD 27, LVD_25, LVD_23, LVD_21, LVD_19
One of the following may be or'ed(via |) with the above if high voltage
detect is also available in the device
LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE

Returns: undefined

Function: This function controls the high/low voltage detect module in the device.
The mode constants specifies the voltage trip point and a direction of
change from that point (available only if high voltage detect module is
included in the device). If the device experiences a change past the trip
point in the specified direction the interrupt flag is set and if the interrupt is
enabled the execution branches to the interrupt service routine.

Availability: This function is only available with devices that have the high/low voltage
detect module.

Requires Constants are defined in the devices.h file.

Examples: setup low volt detect(LVD TRIGGER BELOW | LVD 36);

This would trigger the interrupt when the voltage is below 3.6 volts

setup_motor_pwm()

Syntax: setup_motor_pwm(pwm,options, timebase);
setup_motor_pwm(pwm,options,prescale,postscale,timebase)

Parameters: Pwm- Defines the pwm module used.

Options- The mode of the power PWM module. See the devices .h file
for all options

timebase- This parameter sets up the PWM time base pre-scale and

420

Built-in Functions

post-scale.
prescale- This will select the PWM timebase prescale setting
postscale- This will select the PWM timebase postscale setting
Returns: void
Function: Configures the motor control PWM module

Availability: Devices that have the motor control PWM unit.

Requires: None

Examples; setup motor pwm(l,MPWM FREE RUN | MPWM SYNC OVERRIDES,
timebase) ;

Example None

Files:

Also See: get motor pwm count(), set motor pwm event(), set motor unit(), set

motor pwm duty();

setup_oscillator()

Syntax: setup_oscillator(mode, target [,source] [,divide])

Parameters: Mode is one of:
* OSC_INTERNAL
* OSC_CRYSTAL
* OSC_CLOCK
+ OSC_RC
* OSC_SECONDARY

Target is the target frequency to run the device it.

Source is optional. It specifies the external crystal/oscillator frequency. If
omitted the value from the last #USE DELAY is used. If mode is
OSC_INTERNAL, source is an optional tune value for the internal
oscillator for PICs that support it. If omitted a tune value of zero will be
used.

421

PCD 07202016.doc

Returns:

Function:

Availability:

Requires:
Examples:
Example

Files:
Also See:

Divide in optional. For PICs that support it, it specifies the divide ration for
the Display Module Interface Clock. A number from 0 to 64 divides the
clock from 1 to 17 increasing in increments of 0.25, a number from 64 to
96 divides the clock from 17 to 33 increasing in increments of 0.5, and a
number from 96 to 127 divides the clock from 33 to 64 increasing in
increments of 1. If omitted zero will be used for divide by 1.

None

Configures the oscillator with preset internal and external source
configurations. If the device fuses are set and #use delay() is specified,
the compiler will configure the oscillator. Use this function for explicit
configuration or programming dynamic clock switches. Please consult

your target data sheets for valid configurations, especially when using the
PLL multiplier, as many frequency range restrictions are specified.

This function is available on all devices.

The configuration constants are defined in the device’s header file.

setup oscillator(OSC_CRYSTAL, 4000000, 16000000);
setup oscillator(OSC_INTERNAL, 29480000);

None

setup_wdt(), Internal Oscillator Overview

setup_pga()

Syntax: setup_pga(module,settings)

Parameters: module - constant specifying the Programmable Gain Amplifier (PGA) to
setup.

Returns: Undefined

Function: This function allows for setting up one of the Programmable Gain
Amplifier modules.

Availability: Devices with a Programmable Gain Amplifier module.

422

Built-in Functions

Requires:
Examples:
Example

Files:
Also See:

Nothing.

setup_pga(PGA_ENABLED | PGA_POS_INPUT_PGAXxP1 |
PGA_GAIN_8X);

None

setup_pid()

Syntax:

setup_pid([mode,[K1],[K2],[K3]);

Parameters:

Returns:

mode- the setup of the PID module. The options for setting up the

module are defined in the device's header file as:

. PID_MODE_PID
PID_MODE_SIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_SIGNED_ADD_MULTIPLY
PID_MODE_UNSIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_UNSIGNED_ADD_MULTIPLY
PID_OUTPUT_LEFT_JUSTIFIED
PID_OUTPUT_RIGHT_JUSTIFIED

K1 - optional parameter specifying the K1 coefficient, defaults to zero if
not specified. The K1 coefficient is used in the PID and ADD_MULTIPLY
modes. When in PID mode the K1 coefficient can be calculated with the
following formula:

K1=Kp +Ki*T+ Kd/T
When in one of the ADD_MULTIPLY modes K1 is the multiple value.

K2 - optional parameter specifying the K2 coefficient, defaults to zero if
not specified. The K2 coefficient is used in the PID mode only and is
calculated with the following formula:

K2 = -(Kp + 2Kd/T)

K3 - optional parameter specifying the K3 coefficient, defaults to zero if
not specified. The K3 coefficient is used in the PID mode, only and is
calculated with the following formula:

K3 = Kd/T
T is the sampling period in the above formulas.

Nothing

423

PCD 07202016.doc

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

To setup the Proportional Integral Derivative (PID) module, and to set the
input coefficients (K1, K2 and K3).

All devices with a PID module.

Constants are defined in the device's .h file.

setup_pid(PID MODE PID, 10, -3, 50);

None

pid_get result(), pid_read(), pid_write(), pid_busy()

setup_pmp(option,address_mask)

Syntax: setup_pmp(options,address_mask);
Parameters: options- The mode of the Parallel Master Port that allows to set the
Master Port mode, read-write strobe options and other functionality of the
PMPort module. See the device's .h file for all options. Some typical
options include:
PAR_PSP_AUTO_INC
PAR_CONTINUE_IN_IDLE
PAR_INTR_ON_RW /lInterrupt on read write
PAR_INC_ADDR /lincrement address by 1
every
[Iread/write cycle
PAR_MASTER_MODE_1 /Master Mode 1
PAR_WAITE4 //4 Tcy Wait for data hold
after
/I strobe
address_mask- this allows the user to setup the address enable register
with a 16-bit value. This value determines which address lines are active
from the available 16 address lines PMAO:PMA15.
Returns: Undefined.
Function: Configures various options in the PMP module. The options are present in

424

Built-in Functions

Availability:
Requires:

Examples:

Example
Files:
Also See:

the device's .h file and they are used to setup the module. The PMP
module is highly configurable and this function allows users to setup
configurations like the Slave module, Interrupt options, address
increment/decrement options, Address enable bits, and various strobe
and delay options.

Only the devices with a built-in Parallel Master Port module.

Constants are defined in the device's .h file.

setup_ psp (PAR_ENABLE | //Sets up Master mode with
address
PAR_MASTER MODE_1|PAR //lines PMAOQ:PMA7

STOP_IN IDLE, 0x00FF) ;
None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output full(), pmp_input_full(), pmp_overflow()

See header file for device selected

setup_psmc()

Syntax: setup_psmc(unit, mode, period, period_time, rising_edge, rise_time,
falling_edge, fall_time);
Parameters: unit is the PSMC unit number 1-4

mode is one of:

. PSMC_SINGLE
PSMC_PUSH_PULL
PSMC_BRIDGE_PUSH_PULL
PSMC_PULSE_SKIPPING
PSMC_ECCP_BRIDGE_REVERSE
PSMC_ECCP_BRIDGE_FORWARD
PSMC_VARIABLE_FREQ
PSMC_3_PHASE

For complementary outputs use a or bar (|) and
PSMC_COMPLEMENTARY

425

PCD 07202016.doc

Normally the module is not started until the psmc_pins() call is made. To
enable immediately orin PSMC_ENABLE_NOW.

period has three parts or'ed together. The clock source, the clock divisor
and the events that can cause the period to start.

Sources:

. PSMC_SOURCE_FOSC

. PSMC_SOURCE_64MHZ

. PSMC_SOURCE_CLK_PIN
Divisors:

. PSMC_DIV_1

o PSMC_DIV_2

o PSMC_DIV_4

. PSMC_DIV_8
Events:

] Use any of the events listed below.

period_time is the duration the period lasts in ticks. A tick is the above
clock source divided by the divisor.

rising_edge is any of the following events to trigger when the signal goes
active.

rise_time is the time in ticks that the signal goes active (after the start of
the period) if the event is PSMC_EVENT_TIME, otherwise unused.

falling_edge is any of the following events to trigger when the signal goes
inactive.

fall_time is the time in ticks that the signal goes inactive (after the start of
the period) if the event is PSMC_EVENT_TIME, otherwise unused.

Events:

PSMC_EVENT_TIME
PSMC_EVENT_C10UT
PSMC_EVENT_C20UT
PSMC_EVENT_C30UT
PSMC_EVENT_C40UT
PSMC_EVENT PIN_PIN

426

Built-in Functions

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

undefined

Initializes a PSMC unit with the primary characteristics such as the type of
PWM, the period, duty and various advanced triggers. Normally this call
does not start the PSMC. It is expected all the setup functions be called
and the psmc_pins() be called last to start the PSMC module. These two
calls are all that are required for a simple PWM. The other functions may
be used for advanced settings and to dynamically change the signal.

All devices equipped with PSMC module.
None

// Simple PWM, 10khz out on pin CO assuming a 20mhz crystal
// Duty is initially set to 25%
setup psmc(l, PSMC SINGLE,
PSMC_EVENT TIME | PSMC_SOURCE_FOSC, us(100),
PSMC_EVENT TIME, O,
PSMC EVENT TIME, us(25));
psmc_pins (1, PSMC A);

None

psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_modulation(),
psmc_shutdown(), psmc_duty(), psmc_freq adjust(), psmc_pins()

setup_power_pwm_pins()

Syntax: setup_power_pwm_pins(module0,module1l,module2,module3)
Parameters: For each module (two pins) specify:
PWM_PINS_DISABLED, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY
Returns: undefined
Function: Configures the pins of the Pulse Width Modulation (PWM) device.
Availability: All devices equipped with a power control PWM.
Requires: None

427

PCD 07202016.doc

Examples:

Example
Files:
Also See:

setup_power pwm pins (PWM PINS DISABLED, PWM PINS DISABLED,
PWM_PINS_ DISABLED,

PWM_PINS DISABLED) ;
setup power pwm pins (PWM COMPLEMENTARY,

PWM_COMPLEMENTARY, PWM_PINS DISABLED, PWM PINS DISABLED) ;

None

setup_power_pwm(),
set_power_pwm_override(),set_power_pwmX_duty()

setup_psp(option,address_mask)

Syntax: setup_psp (options,address_mask);
setup_psp(options);

Parameters: Option- The mode of the Parallel slave port. This allows to set the slave
port mode, read-write strobe options and other functionality of the
PMP/EPMP module. See the devices .h file for all options. Some typical
options include:
- PAR_PSP_AUTO_INC
- PAR_CONTINUE_IN_IDLE
- PAR_INTR_ON_RW /lInterrupt on read write
- PAR_INC_ADDR /lincrement address by 1
every

/Iread/write cycle
- PAR_WAITE4 /l4 Tcy Wait for data hold
after
/Istrobe

address_mask- This allows the user to setup the address enable register
with a 16 bit or 32 bit (EPMP) value. This value determines which address
lines are active from the available 16 address lines PMAO: PMA15 or 32
address lines PMAO:PMA31 (EPMP only).

Returns: Undefined.

Function: Configures various options in the PMP/EPMP module. The options are

present in the device.h file and they are used to setup the module. The

428

Built-in Functions

PMP/EPMP module is highly configurable and this function allows users
to setup configurations like the Slave mode, Interrupt options, address
increment/decrement options, Address enable bits and various strobe and
delay options.

Availability: ~ Only the devices with a built in Parallel Port module or Enhanced Parallel
Master Port module.

Requires: Constants are defined in the devices .h file.
Examples: setup psp (PAR PSP _AUTO INC| //Sets up legacy slave
//mode with
PAR STOP IN IDLE, 0x00FF); //read and write buffers

//auto increment.

Example None
Files:
Also See: setup_pmp() , pmp_address() , pmp_read() , psp_read() , psp_write() ,

pmp_write() , psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full() , pmp_input_full() , pmp_overflow()
See header file for device selected.

setup_pwml1() setup_pwm?2()
setup_pwm3() setup_pwmd()

Syntax: setup_pwml(settings);
setup_pwm?2(settings);
setup_pwma3(settings);
setup_pwm4(settings);

Parameters: settings- setup of the PWM module. See the device's .h file for all
options.
Some typical options include:

PWM_ENABLED
PWM_OUTPUT
PWM_ACTIVE_LOW

Returns: Undefined

429

PCD 07202016.doc

Function: Sets up the PWM module.
Availability: ~ On devices with a PWM module.
Examp|es; setup pwml (PWM ENABLED|PWM OUTPUT) ;
Example None
Files:
Also See: set_ pwm_duty()
setup_qei()
Syntax: setup_qei([unit,]Joptions, filter, maxcount);
Parameters: Options- The mode of the QEI module. See the devices .h file for all
options
Some common options are:
- QEI_MODE_X2
- QEI_TIMER_GATED
- QEI_TIMER_DIV_BY_1
filter - This parameter is optional and the user can specify the digital filter
clock divisor.
maxcount - This will specify the value at which to reset the position
counter.
unit - Optional unit number, defaults to 1.
Returns: void
Function: Configures the Quadrature Encoder Interface. Various settings
like modes, direction can be setup.
Availability: Devices that have the QEI module.
Requires: Nothing.
Examples: setup_gei (QEI MODE X2|QEI TIMER INTERNAL,QEI FILTER DIV 2,

QEI FORWARD) ;

430

Built-in Functions

Example
Files:
Also See:

None

gei_set count() , gei_get count(), gei status()

setup_rtc()

Syntax: setup_rtc() (options, calibration);
Parameters: Options- The mode of the RTCC module. See the devices .h file for all
options
Calibration- This parameter is optional and the user can specify an 8 bit
value that will get written to the calibration configuration register.
Returns: void
Function: Configures the Real Time Clock and Calendar module. The module
requires an external 32.768 kHz clock crystal for operation.
Availability: Devices that have the RTCC module.
Requires: Nothing.
Examp|es; setup_rtc (RTC_ENABLE | RTC_OUTPUT SECONDS, 0x00);
// Enable RTCC module with seconds clock and no calibration
Example None
Files:
Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),

rtc_write(, setup_rtc()

setup_rtc_alarm()

Syntax:

setup_rtc_alarm(options, mask, repeat);

Parameters:

options- The mode of the RTCC module. See the devices .h file for all
options

mask- specifies the alarm mask bits for the alarm configuration.

431

PCD 07202016.doc

repeat- Specifies the number of times the alarm will repeat. It can have a
max value of 255.

Returns: void
Function: Configures the alarm of the RTCC module.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examp|eS; setup rtc alarm(RTC_ ALARM ENABLE, RTC ALARM HOUR, 3);
Example None

Files:

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),

rtc_write(), setup_rtc()

setup_sd_adc()

Syntax: setup_sd_adc(settings1, settings 2, settings3);

Parameters: settingsl- settings for the SD1CONL1 register of the SD ADC module.
See the device's .h file for all options. Some options include:

SDADC_ENABLED

SDADC_NO_HALT

SDADC_GAIN 1

SDADC_NO_DITHER

SDADC_SVDD_SVSS

SDADC_BW_NORMAL

OO WN R

settings2- settings for the SD1CON2 register of the SD ADC module.
See the device's .h file for all options. Some options include:

7 SDADC_CHOPPING_ENABLED

8 SDADC_INT_EVERY_SAMPLE

9 SDADC_RES_UPDATED_EVERY_INT

10 SDADC_NO_ROUNDING

settings3- settings for the SD1CONS register of the SD ADC module.
See the device's .h file for all options. Some options include:
11 SDADC_CLOCK DIV_1

432

Built-in Functions

Returns:
Function:
Availability:

Examples:

Example
Files:
Also See:

12 SDADC_OSR_1024
13 SDADC_CLK_SYSTEM

Nothing

To setup the Sigma-Delta Analog to Digital Converter (SD ADC) module.

Only devices with a SD ADC module.

setup_sd_adc(SDADC_ENABLED |
SDADC_DITHER_LOW,

SDADC_CHOPPING_ENABLED |
SDADC_INT_EVERY_5TH_SAMPLE |

SDADC_RES_UPDATED_EVERY_INT,
SDADC_CLK_SYSTEM |

SDADC_CLOCK_DIV_4);

None

set sd adc channel(), read sd adc(), set sd adc calibration()

setup_smtx()

Syntax:

setup_smtl1(mode,[period]);
setup_smt2(mode,[period]);

Parameters:

Returns:

mode - The setup of the SMT module. See the device's .h file for all
aoptions. Some
typical options include:
SMT_ENABLED
SMT_MODE_TIMER
SMT_MODE_GATED_TIMER
SMT_MODE_PERIOD_DUTY_CYCLE_ACQ

period - Optional parameter for specifying the overflow value of the SMT
timer, defaults
to maximum value if not specified.

Nothing

433

PCD 07202016.doc

Function:

Availability:
Examples:

Example
Files:
Also See:

Configures the Signal Measurement Timer (SMT) module.

Only devices with a built-in SMT module.
setup smtl (SMI ENABLED | SMT MODE PERIOD DUTY CYCLE ACQ]|
SMT REPEAT DATA ACQ MODE | SMT CLK FOSC) ;

None
smtx_status(), stmx start(), smtx_stop(), smtx update(),

smtx_reset timer(),
smtx_read(), smtx write()

setup_spi() setup_spi2()

Syntax:

setup_spi (mode)
setup_spi2 (mode)

Parameters:

Returns:

Function:

Availability:

Requires:

mode may be:

o SPI_MASTER, SPI_SLAVE, SPI_SS _DISABLED
SPI_L_TO_H, SPI_H_TO L
SPI_CLK_DIV_4, SPI_CLK_DIV_186,
SPI_CLK_DIV_64, SPI_CLK_T2
SPI_SAMPLE_AT END, SPI_XMIT L TO H
SPI_MODE_16B, SPI_XMIT L _TO H
Constants from each group may be or'ed together with

undefined

Configures the hardware SPI™ module.

* SPI_MASTER will configure the module as the bus master

» SPI_SLAVE will configure the module as a slave on the SPI™ bus

* SPI_SS_DISABLED will turn off the slave select pin so the slave module
receives any transmission on the bus.

* SPI_x_to_y will specify the clock edge on which to sample and transmit
data

» SPI_CLK_DIV_x will specify the divisor used to create the SCK clock
from system clock.

This function is only available on devices with SPI hardware.

Constants are defined in the devices .h file.

434

Built-in Functions

Examples:

Example
Files:
Also See:

setup spi (SPI_MASTER | SPI L TO H | SPI DIV BY 16);
ex_spi.c

spi_write(), spi_read(), spi_data is in(), SPI Overview

setup_timerx()

Syntax: setup_timerX(mode)
setup_timerX(mode,period)
Parameters: Mode is a bit-field comprised of the following configuration constants:

* TMR_DISABLED: Disables the timer operation.

* TMR_INTERNAL: Enables the timer operation using the system clock.
Without divisions, the timer will increment on every instruction cycle. On
PCD, this is half the oscillator frequency.

* TMR_EXTERNAL: Uses a clock source that is connected to the
SOSCI/SOSCO pins

* TMR_EXTERNAL_SYNC: Uses a clock source that is connected to the
SOSCI/SOSCO pins. The timer will increment on the rising edge of the
external clock which is synchronized to the internal clock phases. This
mode is available only for Timer1.

* TMR_EXTERNAL_RTC: Uses a low power clock source connected to
the SOSCI/SOSCO pins; suitable for use as a real time clock. If this mode
is used, the low power oscillator will be enabled by the setup_timer
function. This mode is available only for Timerl.

* TMR_DIV_BY_X: X is the number of input clock cycles to pass before
the timer is incremented. X may be 1, 8, 64 or 256.

* TMR_32_BIT: This configuration concatenates the timers into 32 bit
mode. This constant should be used with timers 2, 4, 6 and 8 only.

* Period is an optional 16 bit integer parameter that specifies the timer

435

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

period. The default value is OXFFFF.
void

Sets up the timer specified by X (May be 1 —9). X must be a valid timer
on the target device.

This function is available on all devices that have a valid timer X. Use
getenv or refer to the target datasheet to determine which timers are valid.

Configuration constants are defined in the device's header file.

/* setup a timer that increments every 64th instruction cycle
with an overflow period of 0xA010 */
setup_timer2 (TMR_INTERNAL | TMR DIV BY 64, 0xA010);

/* Setup another timer as a 32-bit hybrid with a period of
OxFFFFFFFF and a interrupt that will be fired when that timer
overflows*/

setup timer4 (TMR 32 BIT); //use get timer45() to get the
timer value

enable interrupts(int_ timer5);//use the odd number timer for
the interrupt

None

Timer Overview, setup_timerX(), get_timerXY(), set_timerX(),

set_timerXY

setup_timer_A()

Syntax: setup_timer_A (mode);
Parameters: mode values may be:
- TA_OFF, TA_INTERNAL, TA EXT H TO L, TA EXT L TO H
-TA_DIV_1, TA_DIV_2, TA DIV_4, TA DIV_8, TA DIV_16,
TA_DIV_32,
TA_DIV_64, TA DIV_128, TA_DIV_256
- constants from different groups may be or'ed together with |.
Returns: undefined
Function: sets up Timer A.

436

Built-in Functions

Availability:

Requires:

Examples:

Example
Files:
Also See:

This function is only available on devices with Timer A hardware.

Constants are defined in the device's .h file.

setup_timer A(TA OFF);

setup timer A(TA INTERNAL | TA DIV 256);
setup timer A(TA EXT L TO H | TA DIV 1);

none

get_timerA(), set_timerA(), TimerA Overview

setup_timer_B()

Syntax: setup_timer_B (mode);
Parameters: mode values may be:
- TB_OFF, TB_INTERNAL, TB_EXT H_TO_L, T EXT_L_TO_H
- TB_DIV_1, TB_DIV_2, TB_DIV_4, TB_DIV_8, TB_DIV_16,
TB_DIV_32,
TB_DIV_64, TB_DIV_128, TB_DIV_256
- constants from different groups may be or'ed together with |.
Returns: undefined
Function: sets up Timer B
Availability: This function is only available on devices with Timer B hardware.
Requires: Constants are defined in device's .h file.
Examples: setup timer B(TB_OFF);
setup timer B(TB INTERNAL | TB DIV 256);
setup timer B(TA EXT L TO H | TB DIV 1);
Example none
Files:
Also See: get_timerB(), set_timerB(), TimerB Overview

437

PCD 07202016.doc

setup_timer_0()

Syntax: setup_timer_0 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h
file. RTCC_INTERNAL, RTCC_EXT L _TO_H or RTCC_EXT _H_TO_L
RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16,
RTCC_DIV_32, RTCC_DIV_64, RTCC_DIV_128, RTCC_DIV_256
PIC18XXX only: RTCC_OFF, RTCC_8_BIT
One constant may be used from each group or'ed together with the |
operator.

Returns: undefined

Function: Sets up the timer 0 (aka RTCC).

Warning: On older PIC16 devices, set-up of the prescaler may undo the WDT
prescaler.

Availability: All devices.

Requires: Constants are defined in the devices .h file.

Examples: setup timer 0 (RTCC_ DIV 2|RTCC_EXT L TO H);

Example

Files:

Also See: get timerQ(), set_timer0(), setup counters()

setup_timer_1()

Syntax:

setup_timer_1 (mode)

Parameters:

mode values may be:
. T1_DISABLED, T1 _INTERNAL, T1 EXTERNAL,

438

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

T1_EXTERNAL_SYNC

o T1_CLK_OUT
o T1_DIV_BY_1, T1 DIV_BY_2, T1_DIV_BY_4,
T1_DIV_BY_8
o constants from different groups may be or'ed together
with |.

undefined

Initializes timer 1. The timer value may be read and written to using
SET_TIMERL() and GET_TIMER1()Timer 1 is a 16 bit timer.

With an internal clock at 20mhz and with the T1_DIV_BY_8 mode, the
timer will increment every 1.6us. It will overflow every 104.8576ms.

This function is only available on devices with timer 1 hardware.
Constants are defined in the devices .h file.

setup timer 1 (T1 DISABLED);
setup timer 1 (T1 INTERNAL | T1 DIV BY 4)
setup_timer 1 (T1 INTERNAL | Tl DIV BY 8)

’
’

get_timeril(), Timerl Overview

setup_timer_2()

Syntax:

setup_timer_2 (mode, period, postscale)

Parameters:

Returns:

mode may be one of:

. T2_DISABLED

. T2 _DIV_BY_1, T2 DIV_BY 4, T2 DIV_BY_16
Period is a int 0-255 that determines when the clock value is reset
Postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, an so on)

undefined

439

PCD 07202016.doc

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

Initializes timer 2. The mode specifies the clock divisor (from the oscillator
clock).

The timer value may be read and written to using GET_TIMER2() and
SET_TIMER2().

2 is a 8-bit counter/timer.

This function is only available on devices with timer 2 hardware.

Constants are defined in the devices .h file.

setup timer 2 (T2 DIV BY 4, 0xcO, 2) //at 20mhz, the timer
will

//increment every
800ns

//will overflow every
154.4us,

//and will interrupt
every 308.us

get_timer2(), set_timer2() Timer2 Overview

setup_timer_3()

Syntax: setup_timer_3 (mode)
Parameters: Mode may be one of the following constants from each group or'ed (via |)
together:

o T3_DISABLED, T3_INTERNAL, T3_EXTERNAL,
T3_EXTERNAL_SYNC
o T3_DIV_BY_1, T3 _DIV_BY_2, T3_DIV_BY_4,
T3_DIV_BY_8

Returns: undefined

Function: Initializes timer 3 or 4.The mode specifies the clock divisor (from the

oscillator clock). The timer value may be read and written to using
GET_TIMER3() and SET_TIMERS3(). Timer 3 is a 16 bit counter/timer.

440

Built-in Functions

Availability:

Requires:
Examples:
Example

Files:
Also See:

This function is only available on devices with timer 3 hardware.
Constants are defined in the devices .h file.

setup_timer 3 (T3 INTERNAL | T3 DIV BY 2);

None

get _timer3(), set_timer3()

setup_timer_4()

Syntax: setup_timer_4 (mode, period, postscale)
Parameters: mode may be one of:
. T4_DISABLED, T4 _DIV_BY_1, T4_DIV_BY_4,
T4_DIV_BY_16
period is a int 0-255 that determines when the clock value is reset,
postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, and so on).
Returns: undefined
Function: Initializes timer 4. The mode specifies the clock divisor (from the
oscillator clock).
The timer value may be read and written to using GET_TIMER4() and
SET_TIMERA4().
Timer 4 is a 8 bit counter/timer.
Availability: This function is only available on devices with timer 4 hardware.
Requires: Constants are defined in the devices .h file
Exan“ﬂes; setup_timer 4 (T4 DIV _BY 4, 0xc0, 2);

// At 20mhz, the timer will increment every 800ns,
// will overflow every 153.6us,
// and will interrupt every 307.2us.

441

PCD 07202016.doc

Example
Files:
Also See:

get_timer4(), set_timer4()

setup_timer_5()

Syntax: setup_timer_5 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h file.
T5_DISABLED, T5_INTERNAL, T5_EXTERNAL, or
T5_EXTERNAL_SYNC
T5_DIV_BY_1, T5_DIV_BY_2, T5 DIV_BY_4, T5 DIV_BY_8
T5_ONE_SHOT, T5_DISABLE_SE_RESET, or
T5_ENABLE_DURING_SLEEP

Returns: undefined

Function: Initializes timer 5. The mode specifies the clock divisor (from the
oscillator clock). The timer value may be read and written to using
GET_TIMER5() and SET_TIMERS5(). Timer 5 is a 16 bit counter/timer.

Availability: This function is only available on devices with timer 5 hardware.

Requires: Constants are defined in the devices .h file.

Examples; setup_timer 5 (T5_INTERNAL | T5 DIV BY 2);

Example None

Files:

Also See: get_timer5(), set timer5(), Timer5 Overview

442

Built-in Functions

setup_uart()

Syntax: setup_uart(baud, stream)
setup_uart(baud)
setup_uart(baud, stream, clock)

Parameters: baud is a constant representing the number of bits per second. A one or
zero may also be passed to control the on/off status.
Stream is an optional stream identifier.
Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data
Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for Ox55 character and sets the UART baud
rate to match.
UART_AUTODETECT_NOWAIT Same as above function, except returns
before 0x55 is received. KBHIT() will be true when the match is made. A
call to GETC() will clear the character.
UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes
from high to low
clock - If specified this is the clock rate this function should assume. The
default comes from the #USE DELAY.

Returns: undefined

Function: Very similar to SET_UART_SPEED. If 1 is passed as a parameter, the
UART is turned on, and if O is passed, UART is turned off. If a BAUD rate
is passed to it, the UART is also turned on, if not already on.

Availability: This function is only available on devices with a built in UART.

Requires: #USE RS232

Examples: setup uart (9600) ;
setup uart (9600, rsOut);

Example None

Files:

Also See: #USE RS232, putc(), getc(), RS232 1/0O Overview

443

PCD 07202016.doc

setup_vref()

Syntax: setup_vref (mode)

Parameters: mode is a bit-field comprised of the following constants:
* VREF_DISABLED
* VREF_LOW (Vdd * value / 24)
* VREF_HIGH (Vdd * value / 32 + VVdd/4)
* VREF_ANALOG

Returns: undefined

Function: Configures the voltage reference circuit used by the voltage comparator.
The voltage reference circuit allows you to specify a reference voltage
that the comparator module may use. You may use the Vdd and Vss
voltages as your reference or you may specify VREF_ANALOG to use
supplied Vdd and Vss. Voltages may also be tuned to specific values in
steps, 0 through 15. That value must be or'ed to the configuration
constants.

Availability: Some devices, consult your target datasheet.

Requires: Constants are defined in the devices .h file.

Examples: /* Use the 15th step on the course setting */
setup vref (VREF_LOW | 14);

Example None

Files:

setup_wdt()

Syntax:

setup_wdt (mode)

Parameters:

Mode is a bit-field comprised of the following constants:
* WDT_ON
* WDT_OFF
Specific Time Options vary between chips, some examples are:
WDT_2ms

444

Built-in Functions

Function:

Availability:

Examples:

Example
Files:
Also See:

WDT_64MS
WDT_1S
WDT_16S

Configures the watchdog timer.

The watchdog timer is used to monitor the software. If the software does
not reset the watchdog timer before it overflows, the device is reset,
preventing the device from hanging until a manual reset is initiated. The
watchdog timer is derived from the slow internal timer.

setup wdt (WDT_ ON) ;
ex_wdt.c

Internal Oscillator Overview

setup_zdc()

Syntax: setup_zdc(mode);
Parameters: mode- the setup of the ZDC module. The options for setting up the
module include:
. ZCD_ENABLED
. ZCD_DISABLED
. ZCD_INVERTED
. ZCD_INT_L_TO_H
. ZCD_INT_H_TO_L
Returns: Nothing
Function: To set-up the Zero_Cross Detection (ZCD) module.
Availability: All devices with a ZCD module.
Examples: setup zcd (ZCD ENABLE |ZCD INT H TO L);
Example None
Files:
Also See: zcd_status()

445

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

PCD 07202016.doc

shift_left()

Syntax: shift_left (address, bytes, value)

Parameters: address is a pointer to memory.
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

Function: Shifts a bit into an array or structure. The address may be an array
identifier or an address to a structure (such as &data). Bit O of the lowest
byte in RAM is treated as the LSB.

Availability: All devices
Requires: Nothing

Examples: byte buffer([3];
for (i=0; i<=24; ++1i){
// Wait for clock high
while (!input (PIN_A2));
shift left (buffer, 3, input (PIN_A3));
// Wait for clock low
while (input (PIN_A2));
}
// reads 24 bits from pin A3,each bit is read
// on a low to high on pin A2

Example ex_extee.c, 9356.c
Files:
Also See: shift_right(), rotate_right(), rotate_left(),

shift_right()

Syntax: shift_right (address, bytes, value)

Parameters: address is a pointer to memory
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

446

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

0 or 1 for the bit shifted out

Shifts a bit into an array or structure. The address may be an array
identifier or an address to a structure (such as &data). Bit O of the lowest
byte in RAM is treated as the LSB.

All devices

Nothing

// reads 16 bits from pin Al, each bit is read
// on a low to high on pin A2
struct {

byte time;

byte command : 4;

byte source : 4;} msg;

for (i=0; i<=16; ++1) {
while (!input (PIN A2));
shift right (&msg, 3, input (PIN Al));
while (input (PIN_A2)) ;}

// This shifts 8 bits out PIN A0, LSB first.

for (i=0;1i<8;++1)
output bit (PIN_AO0,shift right(&data,1,0));

ex_extee.c, 9356.c

shift_left(), rotate right(), rotate left(),

sleep()

Syntax:

sleep(mode)

Parameters:

mode configures what sleep mode to enter, mode is optional. If mode is
SLEEP_IDLE, the PIC will stop executing code but the peripherals will still
be operational. If mode is SLEEP_FULL, the PIC will stop executing code
and the peripherals will stop being clocked, peripherals that do not need a
clock or are using an external clock will still be operational. SLEEP_FULL
will reduce power consumption the most. If no parameter is specified,
SLEEP_FULL will be used.

447

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink2.click()

PCD 07202016.doc

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

Undefined

Issues a SLEEP instruction. Details are device dependent. However, in
general the part will enter low power mode and halt program execution
until woken by specific external events. Depending on the cause of the
wake up execution may continue after the sleep instruction. The compiler
inserts a sleep() after the last statement in main().

All devices

Nothing

disable interrupts (INT GLOBAL);

enable interrupt (INT EXT);

clear interrupt();

sleep (SLEEP FULL) ; //sleep until an INT_ EXT interrupt
//after INT EXT wake-up, will resume operation from this
point

ex_wakup.c
reset cpu()

sleep_ulpwu()

sleep_ulpwu(time)

Syntax:

Parameters: time specifies how long, in us, to charge the capacitor on the ultra-low
power wakeup pin (by outputting a high on PIN_BO).

Returns: undefined

Function: Charges the ultra-low power wake-up capacitor on PIN_BO for time
microseconds, and then puts the PIC to sleep. The PIC will then wake-up
on an 'Interrupt-on-Change' after the charge on the cap is lost.

Availability: Ultra Low Power Wake-Up support on the PIC (example,
PIC124F32KA302)

Requires: #USE DELAY

448

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Examples:

Example
Files:
Also See:

while (TRUE)

{
if (input (PIN Al))
//do something

else
sleep ulpwu(10); //cap will be charged for 10us,
//then goto sleep
}
None
#USE DELAY

smtx_read()

Syntax: value_smtl_read(which);
value_smt2_read(which);
Parameters: which - Specifies which SMT registers to read. The following defines
have been made
in the device's header file to select which registers are read:
SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG
SMT_TMR_REG
SMT_PERIOD_REG
Returns: 32-bit value
Function: To read the Capture Period Registers, Capture Pulse Width Registers,
Timer Registers or Period Registers of the Signal Measurement Timer
module.
Availability: Only devices with a built-in SMT module.
Examples: unsigned int32 Period;
Period = smtl read(SMT CAPTURED PERIOD REG) ;
Example None
Files:
Also See: smtx_status(), stmx_start(), smtx_stop(), smtx update(),

smtx_reset timer(),
setup SMTx(), smtx_write()

449

PCD 07202016.doc

smtx_reset_timer()

Syntax: smtl_reset_timer();
smt2_reset_timer();

Parameter None

s:

Returns: Nothing

Function: To manually reset the Timer Register of the Signal Measurement Timer
module.

Availability ~ Only devices with a built-in SMT module.

Examples; smtl reset timer();

Example None

Files:

Also See: setup_smix(), stmx_start(), smtx_stop(), smtx_update(),

smtx_status(),

smtx_read(), smtx_write()

smtx_start()

Syntax: smtl_start();
smt2_start();

Parameter None

S:

Returns: Nothing

Function: To have the Signal Measurement Timer (SMT) module start acquiring
data.

Availability ~ Only devices with a built-in SMT module.

Examples: smtl start();

Example None

Files:

Also See: smtx_status(), setup smtx(), smtx stop(), smtx_update(),

smtx_reset timer(),

450

Built-in Functions

smtx_read(), smtx_write()

smtx_status()

Syntax: value = smtl_status();
value = smt2_status();

Parameter None

s:
Returns: The status of the SMT module.
Function: To return the status of the Signal Measurement Timer (SMT) module.

Availability ~ Only devices with a built-in SMT module.

Examples: status = smtl status();

Example None

Files:

Also See: setup_smtx(), stmx_start(), smtx stop(), smtx update(),

smtx_reset_timer(),
smix_read(), smtx_write()

smtx_stop()

Syntax: smtl_stop();
smt2_stop();

Parameters: None
Returns: Nothing
Function: Configures the Signal Measurement Timer (SMT) module.

Availability: Only devices with a built-in SMT module.

Examples: smtl stop ()
Example None
Files:

451

PCD 07202016.doc

Also See:

smitx_status(), stmx_start(), setup smtx(), smtx_update(),

smtx_reset_timer(),
smtx_read(), smtx write()

smtx_write()

Syntax: smtl_write(which,value);
smt2_write(which,value);
Parameters: which - Specifies which SMT registers to write. The following defines
have been made
in the device's header file to select which registers are written:
SMT_TMR_REG
SMT_PERIOD_REG
value - The 24-bit value to set the specified registers.
Returns: Nothing
Function: To write the Timer Registers or Period Registers of the Signal
Measurement
Timer (SMT) module
Availability: Only devices with a built-in SMT module.
Examp|es; smtl write (SMT_ PERIOD REG, 0x100000000) ;
Example None
Files:
Also See: smtx_status(), stmx_start(), setup smtx(), smtx_update(),

smtx_reset_timer(),
smtx_read(), setup smtx()

452

Built-in Functions

smtx_update()

Syntax: smtl_update(which);
smt2_update(which);

Parameters: which - Specifies which capture registers to manually update. The
following defines have been made in the device's header file to select
which registers are updated:

SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG

Returns: Nothing

Function: To manually update the Capture Period Registers or the Capture Pulse
Width
Registers of the Signal Measurement Timer module.

Availability: Only devices with a built-in SMT module.

Examples: smtl update (SMT CAPTURED PERIOD REG);

Example None

Files:

Also See: setup_smtx(), stmx_start(), smtx_stop(), smtx_status(),

smtx_reset_timer(),
smtx read(), smtx write()

spi_data is_in()

spi_data is_in2()

Syntax: result = spi_data_is_in()

result = spi_data_is_in2()
Parameters: None
Returns: 0 (FALSE) or 1 (TRUE)
Function: Returns TRUE if data has been received over the SPI.
Availability: This function is only available on devices with SPI hardware.
Requires: Nothing

453

PCD 07202016.doc

Examples:

Example
Files:
Also See:

(!spi data is in() && input(PIN B2));
if(spi_data _is in())
data = spi read();

None

spi_read(), spi_write(), SPI Overview

spi_init()

Syntax: spi_init(baud);
spi_init(stream,baud);
Parameters: stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
band- the band rate to initialize the SPI module to. If FALSE it will
disable the SPI module, if TRUE it will enable the SPI module to the
band rate specified in #use SPI.
Returns: Nothing.
Function: Initializes the SPI module to the settings specified in #USE SPI.
Availability: This function is only available on devices with SPI hardware.
Requires: #USE SPI
Examples: #use spi (MATER, SPI1, baud=1000000, mode=0,
stream=SPI1 MODEO)
spi_init (SPI1 MODEO, TRUE); //initialize and enable SPI1 to
setting in #USE SPI
spi_init (FALSE); //disable SPI1
spi_init (250000);//initialize and enable SPI1 to a baud rate
of 250K
Example None
Files:
Also See: #USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_speed()

454

Built-in Functions

spi_prewrite(data);

Syntax: spi_prewrite(data);
spi_prewrite(stream, data);

Parameters: stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
data- the variable or constant to transfer via SPI

Returns: Nothing.

Function: Writes data into the SPI buffer without waiting for transfer to be
completed. Can be used in conjunction with spi_xfer() with no
parameters to transfer more then 8 bits for PCM and PCH device, or
more then 8 bits or 16 bits (XFER16 option) for PCD. Function is useful
when using the SSP or SSP2 interrupt service routines for PCM and
PCH device, or the SPIx interrupt service routines for PCD device.

Availability: This function is only available on devices with SPI hardware.

Requires: #USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a
SPI slave device

Examples: Spi_prewrite(data_out);

Example ex_spi_slave.c

Files:

Also See: #USE SPI, spi_xfer(), spi_xfer_in(), spi_init(), spi_speed()

spi_read() spi_read?2()
spi_read3() spi_read4()

Syntax: value = spi_read ([data])
value = spi_read?2 ([data])
value = spi_read3([data])
value = spi_read4 ([data])
Parameters: data — optional parameter and if included is an 8 bit int.
Returns: An 8 bit int
Function: Return a value read by the SPI. If a value is passed to the spi_read()

455

PCD 07202016.doc

Availability:
Requires:
Examples:
Example

Files:
Also See:

the data will be clocked out and the data received will be returned. If no
data is ready, spi_read() will wait for the data is a SLAVE or return the
last DATA clocked in from spi_write().

If this device is the MASTER then either do a spi_write(data) followed by
a spi_read() or do a spi_read(data). These both do the same thing and
will generate a clock. If there is no data to send just do a spi_read(0) to
get the clock.

If this device is a SLAVE then either call spi_read() to wait for the clock
and data or use_spi_data_is_in() to determine if data is ready.

This function is only available on devices with SPI hardware.

Nothing

data in = spi read(out data);

ex_spi.c

spi_write(), spi_write_16(), spi_read_16(), spi_data_is_in(), SPI
Overview

spi_read _16() spi_read2 16()
spi_read3 16() spi_read4 16()

Syntax: value = spi_read_16([data]);
value = spi_read2_16([data]);
value = spi_read3_16([data]);
value = spi_read4_16([data]);
Parameters: data — optional parameter and if included is a 16 bit int
Returns: A 16 bit int
Function: Return a value read by the SPI. If a value is passed to the spi_read_16()

the data will be clocked out and the data received will be returned. If no
data is ready, spi_read_16() will wait for the data is a SLAVE or return
the last DATA clocked in from spi_write_16().

If this device is the MASTER then either do a spi_write_16(data) followed

456

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

by a spi_read_16() or do a spi_read_16(data). These both do the same
thing and will generate a clock. If there is no data to send just do a
spi_read_16(0) to get the clock.

If this device is a slave then either call spi_read_16() to wait for the clock
and data or use_spi_data_is_in() to determine if data is ready.

Availability: This function is only available on devices with SPI hardware.
Requires: NThat the option SPI_MODE_16B be used in setup_spi() function, or that
the option XFER16 be used in #use SPI(
Examples; data in = spi read 16 (out data);
Example None
Files:
Also See: spi_read(), spi_write(), spi_write_16(), spi_data_is_in(), SPI Overview
spi_speed
Syntax: spi_speed(baud);
spi_speed(stream,baud);
spi_speed(stream,baud,clock);
Parameters: stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
band- the band rate to set the SPI module to
clock- the current clock rate to calculate the band rate with.
If not specified it uses the value specified in #use delay ().
Returns: Nothing.
Function: Sets the SPI module's baud rate to the specified value.
Availability: This function is only available on devices with SPI hardware.
Requires: #USE SPI
Examples: spi_speed(250000);
spi_speed(SPI1_MODEO, 250000);
spi_speed(SPI1_MODEO, 125000, 8000000);
Example None
Files:
Also See: #USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_init()

457

PCD 07202016.doc

spi_write() spi_write2()
spi_write3() spi_write4()

Syntax: spi_write([wait],value);
spi_write2([wait],value);
spi_write3([wait],value);
spi_write4([wait],value);

Parameters: value is an 8 bit int
wait- an optional parameter specifying whether the function will wait for
the SPI transfer to complete before exiting. Default is TRUE if not
specified.

Returns: Nothing

Function: Sends a byte out the SPI interface. This will cause 8 clocks to be
generated. This function will write the value out to the SPI. At the same
time data is clocked out data is clocked in and stored in a receive buffer.
spi_read() may be used to read the buffer.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples: spi_write(data out);
data_in = spi_read();

Example ex_spi.c

Files:

Also See: spi_read(), spi_data is_in(), SPI Overview, spi_write_16(), spi_read 16()

spi_xfer()

Syntax:

spi_xfer(data)

spi_xfer(stream, data)
spi_xfer(stream, data, bits)

result = spi_xfer(data)

result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)

458

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Parameters:

Returns:

Function:
Availability:
Requires:

Examples:

Example
Files:
Also See:

data is the variable or constant to transfer via SPI. The pin used to
transfer data is defined in the DO=pin option in #use spi.

stream is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.

bits is how many bits of data will be transferred.

The data read in from the SPI. The pin used to transfer result is defined
in the DI=pin option in #USE SPI.

Transfers data to and reads data from an SPI device.
All devices with SPI support.

#USE SPI

int i = 34;

spi xfer(i);

// transfers the number 34 via SPI

int trans = 34, res;

res = spi_xfer (trans);

// transfers the number 34 via SPI

// also reads the number coming in from SPI
None

#USE SPI

SPI_XFER_IN()

Syntax: value = spi_xfer_in();
value = spi_xfer_in(bits);
value = spi_xfer_in(stream,bits);
Parameters: stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
bits — is how many bits of data to be received.
Returns: The data read in from the SPI
Function: Reads data from the SPI, without writing data into the transmit buffer

459

PCD 07202016.doc

first.

Availability: This function is only available on devices with SPI hardware.

Requires: #USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a
SPI slave device.

Examples: data in = spi_xfer in();

Example ex_spi_slave.c

Files:

Also See: #USE SPI, spi_xfer(), spi_prewrite(), spi_init(), spi_speed()

sprintf()

Syntax: sprintf(string, cstring, values...);

bytes=sprintf(string, cstring, values...)

Parameters: string is an array of characters.
cstring is a constant string or an array of characters null terminated.
Values are a list of variables separated by commas. Note that format
specifies do not work in ram band strings.

Returns: Bytes is the number of bytes written to string.

Function: This function operates like printf() except that the output is placed into the
specified string. The output string will be terminated with a null. No
checking is done to ensure the string is large enough for the data. See
printf() for details on formatting.

Availability: All devices.
Requires: Nothing

Examples: char mystring[20];
long mylong;

mylong=1234;

sprintf (mystring, "<%1lu>",mylong) ;
// mystring now has:

// <1234>\0

Example None

460

Built-in Functions

Files:
Also See:

printf()

sqrt()

Syntax: result = sqrt (value)

Parameters: value is any float type

Returns: Returns a floating point value with a precision equal to value

Function: Computes the non-negative square root of the float value x. If the
argument is negative, the behavior is undefined.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error has
occurred and print the error using the perror function.
Domain error occurs in the following cases:
sqrt: when the argument is negative

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: distance = sqrt(pow((xl-x2),2)+pow((yl-y2),2));

Example None

Files:

Also See: None

srand()

Syntax: srand(n)

Parameters: n is the seed for a new sequence of pseudo-random numbers to be

returned by subsequent calls to rand.

461

PCD 07202016.doc

Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

No value.

The srand() function uses the argument as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand. If
srand() is then called with same seed value, the sequence of random
numbers shall be repeated. If rand is called before any call to srand()

have been made, the same sequence shall be generated as when
srand() is first called with a seed value of 1.

All devices.
#INCLUDE <STDLIB.H>

srand (10) ;
I=rand();

None

rand()

STANDARD STRING FUNCTIONS()
memchr() memcmp() strcat()

strchr() strcmp() strcoll()

strcspn() strerror() stricmp()

strlen() striwr() strncat()
strncmp() strncpy() strpbrk()
strrchr() strspn() strstr()
strxfrm()

Syntax: ptr=strcat (s1, s2) Concatenate s2 onto s1
ptr=strchr (s1, c) Find c in s1 and return &s1[i]
ptr=strrchr (sl1, c) Same but search in reverse
cresult=strcmp (s1, s2) Compare sl to s2

462

Built-in Functions

iresult=strncmp (s1,s2,n) Compare sl to s2 (n bytes)

iresult=stricmp (s1, s2) Compare and ignore case
ptr=strncpy (s1, s2, n) Copy up to n characters s2->s1
iresult=strcspn (sl, s2) Count of initial chars in s1 not in s2
iresult=strspn (s1, s2) Count of initial chars in s1 also in s2
iresult=strlen (s1) Number of characters in s1
ptr=strlwr (s1) Convert string to lower case
ptr=strpbrk (s1, s2) Search sl for first char also in s2
ptr=strstr (sl, s2) Search for s2 in s1
ptr=strncat(s1,s2, n) Concatenates up to n bytes of s2 onto
sl
iresult=strcoll(s1,s2) Compares sl to s2, both interpreted as
appropriate to the current locale.
res=strxfrm(s1,s2,n) Transforms maximum of n characters

of s2 and places them in s1, such that

stremp(s1,s2) will give the same result

as strcoll(s1,s2)
iresult=memcmp(m1,m2,n) Compare mlto m2 (n bytes)

ptr=memchr(m1,c,n) Find c in first n characters of m1 and
return &m1[i]
ptr=strerror(errnum) Maps the error number in errnum to an

error message string. The parameters
‘errnum' is an unsigned 8 bit int.
Returns a pointer to the string.

Parameters:

Returns:

Function:

Availability:

Requires:

s1 and s2 are pointers to an array of characters (or the name of an
array). Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi").

n is a count of the maximum number of character to operate on.
C is a 8 bit character

m1 and m2 are pointers to memory.

ptr is a copy of the s1 pointer

iresult is an 8 bit int

resultis -1 (less than), 0 (equal) or 1 (greater than)

res is an integer.

Functions are identified above.

All devices.

#include <string.h>

463

PCD 07202016.doc

Examples:

Example
Files:
Also See:

char stringl[10], string2[10];
strcpy (stringl,"hi ");
strcpy(string2, "there");
strcat (stringl,string2);

printf ("Length is %ul\r\n", strlen(stringl));
// Will print 8

ex_str.c

strepy(), strtok()

strcpy()

strcopy()

Syntax: strcpy (dest, src)
strcopy (dest, src)

Parameters: dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or it may be a
constant string.

Returns: undefined

Function: Copies a constant or RAM string to a RAM string. Strings are
terminated with a 0.

Availability: All devices.

Requires: Nothing

Exan”ﬂes; char string[10], string2[10];
étrcpy (string, "Hi There");
strcpy(string2,string);

Example ex_str.c

Files:

Also See: strxxxx()

464

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()
file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

strtod() strtof() strtof48()

Syntax: result=strtod(nptr,& endptr)
result=strtof(nptr,& endptr)
result=strtof48(nptr,& endptr)

Parameters: nptr and endptr are strings

Returns: strtod returns a double precision floating point number.
strtof returns a single precision floating point number.
strtof48 returns a extended precision floating point number.
returns the converted value in result, if any. If no conversion could be
performed, zero is returned.

Function: The strtod function converts the initial portion of the string pointed to by
nptr to a float representation. The part of the string after conversion is
stored in the object pointed to endptr, provided that endptr is not a null
pointer. If nptr is empty or does not have the expected form, no
conversion is performed and the value of nptr is stored in the object
pointed to by endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Examples: double result;
char str[12]="123.45hello";
char *ptr;
result=strtod(str, &ptr) ;

//result is 123.45 and ptr is "hello"

Example None

Files:

Also See: strtol(), strtoul()

strtok()

Syntax:

ptr = strtok(s1, s2)

Parameters:

s1 and s2 are pointers to an array of characters (or the name of an
array). Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi"). s1

465

PCD 07202016.doc

may be 0 to indicate a continue operation.
Returns: ptr points to a character in sl oris 0

Function: Finds next token in s1 delimited by a character from separator string s2
(which can be different from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT
contained in s2 and returns null if there is none are found.

If none are found, it is the start of first token (return value). Function
then searches from there for a character contained in s2.

If none are found, current token extends to the end of s1, and
subsequent searches for a token will return null.

If one is found, it is overwritten by "\0', which terminates current
token. Function saves pointer to following character from which next
search will start.

Each subsequent call, with 0 as first argument, starts searching from
the saved pointer.

Availability: All devices.
Requires: #INCLUDE <string.h>
Exan“ﬂes; char string[30], term[3], *ptr;

strcpy(string, "one, two, three;");
strcpy (term,",;");

ptr = strtok(string, term);
while (ptr!=0) {

puts (ptr);

ptr = strtok (0, term);

}

// Prints:
one
two
three
Example ex_str.c
Files:
Also See: strxxxx(), strepy()

466

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

strtol()

Syntax: result=strtol(nptr,& endptr, base)

Parameters: nptr and endptr are strings and base is an integer

Returns: result is a signed long int.
returns the converted value in result , if any. If no conversion could be
performed, zero is returned.

Function: The strtol function converts the initial portion of the string pointed to by
nptr to a signed long int representation in some radix determined by the
value of base. The part of the string after conversion is stored in the
object pointed to endptr, provided that endptr is not a null pointer. If nptr
is empty or does not have the expected form, no conversion is
performed and the value of nptr is stored in the object pointed to by
endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Examples: signed long result;
char str[9]="123hello";
char *ptr;
result=strtol (str, &ptr, 10);

//result is 123 and ptr is "hello"

Example None

Files:

Also See: strtod(), strtoul()

strtoul()

Syntax: result=strtoul(nptr,endptr, base)

Parameters: nptr and endptr are strings pointers and base is an integer 2-36.

467

PCD 07202016.doc

Returns: result is an unsigned long int.
returns the converted value in result , if any. If no conversion could be
performed, zero is returned.

Function: The strtoul function converts the initial portion of the string pointed to by
nptr to a long int representation in some radix determined by the value
of base. The part of the string after conversion is stored in the object
pointed to endptr, provided that endptr is not a null pointer. If nptr is
empty or does not have the expected form, no conversion is performed
and the value of nptr is stored in the object pointed to by endptr,
provided endptr is not a null pointer.

Availability: All devices.

Requires: STDLIB.H must be included

Examples: long result;
char str[9]="123hello";
char *ptr;
result=strtoul (str, &ptr,10);

//result is 123 and ptr is "hello"

Example None

Files:

Also See: strtol(), strtod()

swap()

Syntax: swap (lvalue)
result = swap(lvalue)

Parameters: Ivalue is a byte variable

Returns: A byte

Function: Swaps the upper nibble with the lower nibble of the specified byte. This

is the same as:
byte = (byte << 4) | (byte >> 4);

468

Built-in Functions

Availability: All devices.

Requires: Nothing

Examples: x=0x45;
swap (x) ;

//%x now is 0x54

int x = 0x42;

int result;

result = swap(x);
// result is 0x24;

Example None

Files:

Also See: rotate_right(), rotate left()
tolower() toupper()
Syntax: result = tolower (cvalue)

result = toupper (cvalue)

Parameters: cvalue is a character
Returns: An 8 bit character
Function: These functions change the case of letters in the alphabet.

TOLOWER(X) will return 'a"..'’z' for X in 'A'.."Z" and all other characters
are unchanged. TOUPPER(X) will return 'A'..'Z' for X in 'a’..'z' and all
other characters are unchanged.

Availability: All devices.

Requires: Nothing

Examples: switch(toupper (getc())) {
case 'R' : read cmd(); break;
case 'W' : write cmd(); break;
case 'Q' : done=TRUE; break;

469

PCD 07202016.doc

Example
Files:
Also See:

ex_str.c

None

touchpad_getc()

Syntax: input = TOUCHPAD_GETC();
Parameters: None
Returns: char (returns corresponding ASCIl number is “input” declared as int)
Function: Actively waits for firmware to signal that a pre-declared Capacitive
Sensing Module (CSM) or charge time measurement unit (CTMU) pin is
active, then stores the pre-declared character value of that pin in
“input”.
Note: Until a CSM or CTMU pin is read by firmware as active, this
instruction will cause the microcontroller to stall.
Availability: All PIC's with a CSM or CTMU Module
Requires: #USE TOUCHPAD (options)
Examples: //When the pad connected to PIN B0 is activated, store the
letter 'A'
#USE TOUCHPAD (PINiBO: 'A')
void main (void) {
char c;
enable interrupts (GLOBAL) ;
c = TOUCHPAD_GETC() ;
//will wait until one of declared pins is detected
//if PIN BO is pressed, c will get value 'A'
}
Example None
Files:

470

file:///C:/HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Also See:

#USE TOUCHPAD, touchpad_state()

touchpad_hit()

Syntax: value = TOUCHPAD_HIT()
Parameters: None
Returns: TRUE or FALSE
Function: Returns TRUE if a Capacitive Sensing Module (CSM) or Charge Time
Measurement Unit (CTMU) key has been pressed. If TRUE, then a call
to touchpad_getc() will not cause the program to wait for a key press.
Availability: All PIC's with a CSM or CTMU Module
Requires: #USE TOUCHPAD (options)
Examples: // When the pad connected to PIN BO is activated, store the
letter 'A'
#USE TOUCHPAD (PINiBO:'A')
void main (void) {
char c;
enable interrupts (GLOBAL) ;
while (TRUE) ({
if | TOUCHPAD HIT))
//wait until key on PIN B0 is pressed
c = TOUCHPAD GETC(); //get key that was pressed
} //c will get value 'A'
}
Example None
Files:
Also See: #USE TOUCHPAD (), touchpad_state(), touchpad_getc()

touchpad_state()

Syntax:

TOUCHPAD_STATE (state);

Parameters:

state is a literal 0, 1, or 2.

471

PCD 07202016.doc

Returns: None

Function: Sets the current state of the touchpad connected to the Capacitive
Sensing Module (CSM). The state can be one of the following three
values:

0 : Normal state

1 : Calibrates, then enters normal state

2 : Test mode, data from each key is collected in the int1l6 array
TOUCHDATA

Note: If the state is set to 1 while a key is being pressed, the touchpad
will not calibrate properly.

Availability: All PIC's with a CSM Module
Requires: #USE TOUCHPAD (options)
Examples: #USE TOUCHPAD (THRESHOLD=5, PIN D5='5', PIN B0='C')
void main (void) {
char c;
TOUCHPAD STATE (1) ; //calibrates, then enters

normal state
enable interrupts (GLOBAL) ;
while (1) {
c = TOUCHPADiGETC() ;
//will wait until one of declared pins is

detected
}
//if PIN BO is pressed, c will get value
YCY
} //if PIN D5 is pressed, c will get value
l5l
Example None
Files:
Also See: #USE TOUCHPAD, touchpad_getc(), touchpad_hit()

472

Built-in Functions

tx_buffer_available()

Syntax: value = tx_buffer_available([stream]);
Parameters: stream — optional parameter specifying the stream
defined in #USE RS232.
Returns: Number of bytes that can still be put into transmit buffer
Function: Function to determine the number of bytes that can still be put into
transmit buffer before it overflows. Transmit buffer is implemented has
a circular buffer, so be sure to check to make sure there is room for at
least one more then what is actually needed.
Availability: All devices
Requires: #USE RS232
Examples: #USE_RS232 (UART1,BAUD=9600, TRANSMIT BUFFER=
50)
void main (void) {
unsigned int8 Count = 0;
while (TRUE) {
if (tx buffer available()>13)
printf ("/r/nCount=%3u", Count++) ;
}
}
Example None
Files:
Also See: USE_RS232(), rev(), TX_BUFFER _FULL(), RCV_BUFFER BYTES(

), GET(), PUTC() ,PRINTF(), SETUP_UART(), PUTC SEND()

tx_buffer_bytes()

Syntax:

value = tx_buffer_bytes([stream]);

Parameters:

stream — optional parameter specifying the stream
defined in #USE RS232.

473

PCD 07202016.doc

Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:
Also See:

Number of bytes in transmit buffer that still need to be sent.

Function to determine the number of bytes in transmit buffer that still
need to be sent.

All devices
#USE RS232

#USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER
=50)
void main(void) {

char string[] = “Hello”;

if(tx_buffer_bytes() <= 45)

printf(“%s”,string);

None

USE RS232(), RCV_BUFFER FULL(), TX BUFFER FULL(),
RCV_BUFFER BYTES(), GET(), PUTC() ,PRINTFE(),
SETUP_UART(), PUTC _SEND()

tx_buffer_full()

Syntax: value = tx_buffer_full([stream])

Parameters: stream — optional parameter specifying the stream defined
in #USE RS232

Returns: TRUE if transmit buffer is full, FALSE otherwise.

Function: Function to determine if there is room in transmit buffer for another
character.

Availability: All devices

Requires: #USE RS232

474

Built-in Functions

Examples: #USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=
50)
void main(void) {
char c;

if('tx_buffer_full())

putc(c);
Example None
Files:
Also See: USE_RS232(), RCV_BUFFER FULL(), TX BUFFER FULL().,
RCV_BUFFER BYTES(), GETC(), PUTC(), PRINTF(),
SETUP _UART()., PUTC SEND()
va_arg()
Syntax: va_arg(argptr, type)
Parameters: argptr is a special argument pointer of type va_list
type — This is data type like int or char.
Returns: The first call to va_arg after va_start return the value of the
parameters after that specified by the last parameter.
Successive invocations return the values of the remaining
arguments in succession.
Function: The function will return the next argument every time it is
called.
Availability: All devices.
Requires: #INCLUDE <stdarg.h>
Examples: int foo(int num, ...)
{
int sum = 0;
int i;

va_ list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr
for (i=0; i<num; i++)

sum = sum + va arg(argptr, int);

475

PCD 07202016.doc

va_end(argptr); // end variable processing
return sum;

}

Example Files: None

Also See: nargs(), va_end(), va_start()

va_end()

Syntax: va_end(argptr)

Parameters: argptr is a special argument pointer of type va_list.
Returns: None

Function: A call to the macro will end variable processing. This will

facillitate a normal return from the function whose variable
argument list was referred to by the expansion of va_start().

Availability: All devices.
Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)
{
int sum = 0;
int i;
va_ list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr
for (i=0; i<num; i++)
sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

}
Example Files: None

Also See: nargs(), va_start(), va_arg()

476

Built-in Functions

va_start

Syntax: va_start(argptr, variable)

Parameters: argptr is a special argument pointer of type va_list
variable — The second parameter to va_start() is the name of
the last parameter before the variable-argument list.

Returns: None

Function: The function will initialize the argptr using a call to the macro
va_start().

Availability: All devices.

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)

Example Files:

Also See:

{

int sum = 0;

int i;
va_list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr

for (i=0; i<num; i++)

sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;
}
None

nargs(), va_start(), va_arg()

write_configuration_memory()

Syntax:

write_configuration_memory ([offset], dataptr,count)

Parameters:

dataptr: pointer to one or more bytes

count: a 8 hit integer

offset is an optional parameter specifying the offset into
configuration memory to start writing to, offset defaults to zero if
not used.

477

PCD 07202016.doc

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

undefined

Erases all fuses and writes count bytes from the dataptr to the
configuration memory.

All PIC24 Flash devices
Nothing

int dataf(e];
write configuration memory(data, 6)

None

write_program_memory(), Configuration Memory Overview

write_eeprom()

Syntax: write_eeprom (address, value)
write_eeprom (address , pointer , N)

Parameters: address is the 0 based starting location of the EEPROM write
N specifies the number of EEPROM bytes to write
value is a constant or variable to write to EEPROM
pointer is a pointer to location to data to be written to
EEPROM

Returns: undefined

Function: This function will write the specified value to the given address

of EEPROM. If pointers are used than the function will write n
bytes of data from the pointer to EEPROM starting at the value
of address.

In order to allow interrupts to occur while using the write
operation, use the #DEVICE option WRITE_EEPROM =
NOINT. This will allow interrupts to occur while the
write_eeprom() operations is polling the done bit to check if
the write operations has completed. Can be used as long as
no EEPROM operations are performed during an ISR.

478

Built-in Functions

Availability:

Requires:

Examples:

Example Files:

Also See:

This function is only available on devices with supporting
hardware on chip.

Nothing
#define LAST VOLUME 10 // Location in EEPROM

volume++;
write eeprom(LAST VOLUME,volume) ;

None

read eeprom(), write_program_eeprom(),
read_program_eeprom(), data Eeprom Overview

write_extended ram()

Syntax: write_extended_ram (page,address,data,count);
Parameters: page — the page in extended RAM to write to
address — the address on the selected page to start writing to
data — pointer to the data to be written
count — the number of bytes to write (0-32768)
Returns: undefined
Function: To write data to the extended RAM of the PIC.
Availability: On devices with more then 30K of RAM.
Requires: Nothing
Examples: unsigned int8 datal[8] =

Example Files:

Also See:

{0x01,0x02,0x03, 0x04, 0x05, 0x06, 0x07, 0x08} ;

write extended ram(1l,0x0000,data,8);
None

read extended ram(), Extended RAM Overview

479

PCD 07202016.doc

write_program_memory/()

Syntax: write_program_memory(address, dataptr, count);

Parameters: address is 32 bits .
dataptr is a pointer to one or more bytes
count is a 16 bit integer on PIC16 and 16-bit for PIC18

Returns: undefined

Function: Writes count bytes to program memory from dataptr to address.
This function is most effective when count is a multiple of
FLASH_WRITE_SIZE, but count needs to be a multiple of four.
Whenever this function is about to write to a location that is a
multiple of FLASH_ERASE_SIZE then an erase is performed on
the whole block. Due to the 24 bit instruction length on PCD parts,
every fourth byte of data is ignored. Fill the ignored bytes with
0x00.
See Program EEPROM Overview for more information on
program memory access

Availability: Only devices that allow writes to program memory.

Requires: Nothing

Exan”ﬂesj for (i=0x1000; i<=0x1fff;i++) {

Example Files:

value=read adc();
write program memory (i, value, 2);
delay ms (1000) ;

}

int8 write data[4] = {0x10,0x20,0x30,0x00};
write program memory (0x2000, write data, 4);
None

zdc_status()

Syntax: value=zcd_status()
Parameters: None
Returns: value - the status of the ZCD module. The following defines are

480

Built-in Functions

Function:

Availability:

Examples:

Example Files:

Also See:

made in the device's
header file and are as follows:

. ZCD_IS_SINKING

. ZCD_IS_SOURCING
To determine if the Zero-Cross Detection (ZCD) module is
currently sinking or sourcing current.
If the ZCD module is setup to have the output polarity inverted,
the value return will be reversed.

All devices with a ZCD module.

value=zcd status():
None

setup zcd()

481

STANDARD C INCLUDE FILES

errno.h

errno.h

EDOM Domain error value

ERANGE Range error value

errno error value

float.h

float.h

FLT_RADIX: Radix of the exponent representation

FLT_MANT_DIG: Number of base digits in the floating point significant

FLT_DIG: Number of decimal digits, g, such that any floating point number with
g decimal digits can be rounded into a floating point number with p
radix b digits and back again without change to the q decimal digits.

FLT_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that power

FLT_MIN_10_EXP:

FLT_MAX_EXP:

FLT_MAX_10_EXP:

FLT _MAX:
FLT_EPSILON:

FLT_MIN:
DBL_MANT_DIG:
DBL_DIG:

DBL_MIN_EXP:

minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that power
minus 1 is a representable finite floating-point number.

Maximum negative integer such that 10 raised to that power is in the
range representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive floating point number

Number of base digits in the double significant

Number of decimal digits, g, such that any double number with q
decimal digits can be rounded into a double number with p radix b
digits and back again without change to the g decimal digits.
Minimum negative integer such that FLT_RADIX raised to that power

483

PCD 07202016.doc

DBL_MIN_10_EXP:
DBL_MAX_EXP:
DBL_MAX_10_EXP:

DBL_MAX:
DBL_EPSILON:

DBL_MIN:
LDBL_MANT _DIG:
LDBL_DIG:
LDBL_MIN_EXP:

LDBL_MIN_10_EXP:

LDBL_MAX_EXP:

LDBL_MAX_10_EXP:

LDBL_MAX:
LDBL_EPSILON:

minus 1 is a normalized double number.

Minimum negative integer such that 10 raised to that power is in the
range of normalized double numbers.

Maximum negative integer such that FLT_RADIX raised to that power
minus 1 is a representable finite double number.

Maximum negative integer such that 10 raised to that power is in the
range of representable finite double numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive double number.

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number with
g decimal digits can be rounded into a floating point number with p
radix b digits and back again without change to the g decimal digits.
Minimum negative integer such that FLT_RADIX raised to that power
minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that power
minus 1 is a representable finite floating-point number.

Maximum negative integer such that 10 raised to that power is in the
range of representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

LDBL_MIN: Minimum normalized positive floating point number.
limits.h

limits.h

CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int

484

Standard C Include Files

INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int
ULONG_MAX: Maximum value for an object of type unsigned long int
locale.h
locale.h
locale.h (Localization not supported)
Iconv localization structure
SETLOCALE() returns null
LOCALCONV() returns clocale
setimp.h

setjmp.h

jmp_buf: An array used by the following functions

setjmp: Marks a return point for the next longjmp

longjmp: Jumps to the last marked point

stddef.h

stddef.h
ptrdiff_t:
size_t:
wchar_t
NULL

The basic type of a pointer

The type of the sizeof operator (int)

The type of the largest character set supported (char) (8 bits)
A null pointer (0)

485

PCD 07202016.doc

stdio.h

stdio.h

stderr The standard error s stream (USE RS232 specified as stream or the
first USE RS232)

stdout The standard output stream (USE RS232 specified as stream last
USE RS232)

stdin The standard input s stream (USE RS232 specified as stream last
USE RS232)

stdlib.h

stdlib.h

div_t structure type that contains two signed integers (quot and rem).

Idiv_t structure type that contains two signed longs (quot and rem

EXIT_FAILURE returns 1

EXIT_SUCCESS returns 0

RAND_MAX-

MBCUR_MAX- 1

SYSTEM() Returns 0(not supported)

Multibyte character and string Multibyte characters not supported

functions:

MBLEN() Returns the length of the string.

MBTOWC() Returns 1.

WCTOMB() Returns 1.

MBSTOWCS() Returns length of string.

[WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

486

SOFTWARE LICENSE
AGREEMENT

Carefully read this Agreement prior to opening this package. By
opening this package, you agree to abide by the following
provisions.

If you choose not to accept these provisions, promptly return the
unopened package for a refund.

All materials supplied herein are owned by Custom Computer Services,
Inc. (“CCS”) and is protected by copyright law and international copyright
treaty. Software shall include, but not limited to, associated media,
printed materials, and electronic documentation.

These license terms are an agreement between You (“Licensee”) and
CCS for use of the Software (“Software”). By installation, copy,
download, or otherwise use of the Software, you agree to be bound by all
the provisions of this License Agreement.

1. LICENSE - CCS grants Licensee a license to use in one of the two
following options:
1) Software may be used solely by single-user on multiple computer
systems;
2) Software may be installed on single-computer system for use by
multiple users. Use of Software by additional users or on a network
requires payment of additional fees.

Licensee may transfer the Software and license to a third party; and
such third party will be held to the terms of this Agreement. All copies
of Software must be transferred to the third party or destroyed.
Written notification must be sent to CCS for the transfer to be valid.

487

PCD 07202016.doc

2.

488

APPLICATIONS SOFTWARE - Use of this Software and derivative
programs created by Licensee shall be identified as Applications
Software, are not subject to this Agreement. Royalties are not be
associated with derivative programs.

WARRANTY - CCS warrants the media to be free from defects in
material and workmanship, and that the Software will substantially
conform to the related documentation for a period of thirty (30) days
after the date of purchase. CCS does not warrant that the Software
will be free from error or will meet your specific requirements. If a
breach in warranty has occurred, CCS will refund the purchase price
or substitution of Software without the defect.

LIMITATION OF LIABILITY AND DISCLAIMER OF WARRANTIES -
CCS and its suppliers disclaim any expressed warranties (other than
the warranty contained in Section 3 herein), all implied warranties,
including, but not limited to, the implied warranties of merchantability,
of satisfactory quality, and of fitness for a particular purpose,
regarding the Software.

Neither CCS, nor its suppliers, will be liable for personal injury, or any
incidental, special, indirect or consequential damages whatsoever,
including, without limitation, damages for loss of profits, loss of data,
business interruption, or any other commercial damages or losses,
arising out of or related to your use or inability to use the Software.

Licensee is responsible for determining whether Software is suitable
for Applications.

©1994-2016 Custom Computer Services, Inc.
ALL RIGHTS RESERVED WORLDWIDE
PO BOX 2452
BROOKFIELD, WI 53008 U.S.A.

Software License Agreement

489

