

TE0725 TRM

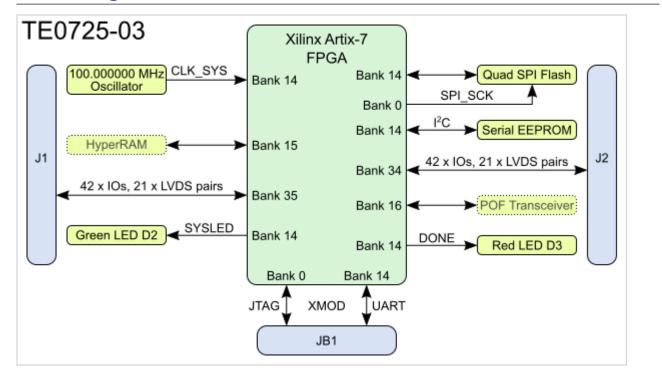
 Revision:
 V.60

 Date:
 18-Aug-2017 08:23

Table of Contents

Overview	3
Key Features	3
Block Diagram	3
Main Components	4
Signals, Interfaces and Pins	5
I/O Banks	5
JTAG Interface	5
POF Transceiver	6
On-board LED's	6
Connectors	6
Power and Power-On Sequence	7
Power Supply	7
Power Consumption	7
Power-On Sequence	7
Variants Currently In Production	8
Technical Specifications	9
Absolute Maximum Ratings	9
Recommended Operating Conditions	9
Physical Dimensions	10
Operating Temperature Ranges	11
Weight	11
Revision History	12
Hardware Revision History	12
Document Change History	12
Disclaimer	13
Document Warranty	13
Limitation of Liability	13
Copyright Notice	13
Technology Licenses	13
Environmental Protection	13
REACH, RoHS and WEEE	14

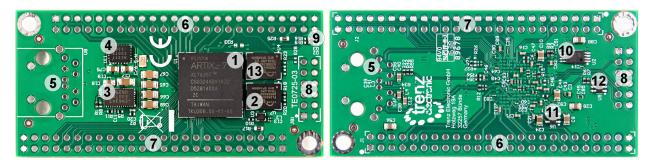
Overview


Refer to https://wiki.trenz-electronic.de/display/PD/TE0725+TRM for online version of this manual and the rest of available documentation of the product.

The Trenz Electronic TE0725 is a low cost small-sized FPGA module integrating a Xilinx Artix-7 (15-100T) and 32 MByte Flash memory for configuration and operation.

Key Features

- Xilinx Artix-7 XC7A35T (A15 to A100T)
- Commercial Temperature Grade (Industrial on Request)
- 32 MByte Flash Memory
- 2 x 50 Pin Headers with 2,54mm Pitch, Ideal for Breadboard Use
- 87 IOs (42 + 42 + 3)
- 100 MHz System Clock
- I2C EEPROM
- 3.3V Single Power Supply with On-Board Voltage Regulators
- Size 73 x 35 mm
- JTAG/UART Connector
- 2 LED's
- Optional HyperRAM (8 to 32 MByte)
- Optional POF Fiber Optical Adapter (125/250 Mbps)


Block Diagram

Main Components

Note on the images below, that there is no POF transceiver, no 50-pin headers and no JTAG/UART header installed.

- 1. Xilinx Artix-7 FPGA, U1
- 2. 32-MByte Flash memory, U7
- 3. Enpirion EN6347 4A PowerSoC DC-DC step down converter, U10
- 4. Enpirion EN5311 1A PowerSoC synchronous buck regulator with integrated inductor, U11
- 5. POF transceiver placeholder, U8
- 6. 50-pin placeholder for breadboard connector, J1
- 7. 50-pin placeholder for breadboard connector, J2
- 8. JTAG/UART connector, JB1
- 9. Green LED D2(SYSLED) and red LED D3(DONE)
- 10. 16K x 8 (128-Kbit) serial EEPROM, U2
- 11. Low-noise, high PSRR, RF, 200-mA low-dropout linear regulator, U9
- 12. Ultra-low supply-current voltage monitor with optional watchdog, U6
- 13. Cypress S27KS0641 64-Mbit (8-MByte) HyperRAM™ self-refresh DRAM, U4

Signals, Interfaces and Pins

I/O Banks

Bank	VCCIO	B2B I/O	Notes
0	3.3V	0	JTAG
14	3.3V	0 (3)	3 I/O in XMOD-JTAG - for use as UART
15	1.8V	0	used for optional hyper RAM
16	2.5V	0	used for optional optical fiber transceiver
34	User select	42	0R resistor option to select 3.3V
35	User select	42	0R resistor option to select 3.3V

JTAG Interface

JTAG access to the Xilinx Artix-7 device is provided through connector JB1.

Signal	Pin Number
тск	JB1-4
TDO	JB1-8
TDI	JB1-10
TMS	JB1-12

Connector JB1 (2 x 6 pin header) is compatible with XMOD JTAG adapter TE0790. This adapter can be inserted from top onto the TE0725, if JB1 is fitted with male pin header. Optionally JB1 can be fitted with pin header from bottom, in that case the JTAG cable connector must be on the base board.

When using XMOD-JTAG in JB1 then additionally USB UART is usable, and the push-button on XMOD works as configuration reset.

When using XMOD-JTAG please check the switch settings on XMOD to be sure the power and I/O reference are supplied correctly. TE0790 can be in some cases used to power up TE0725, however this is not recommended. TE0790-01 can not supply enough power for TE0725 (LED may blink but the module is not operating properly, especially in case of larger and more sophisticated designs).

POF Transceiver

On-board LED's

LED	Color	FPGA	Notes
D2	Green	M16	
D3	Red	DONE	Active low

Connectors

All connectors are are for 100mil headers, all connector locations are in 100 mil grid.

LED	Color	FPGA	Notes
D2	Green	M16	
D3	Red	DONE	Active low

Power and Power-On Sequence

To power-up a module, power supply with minimum current capability of 1A is recommended.

Power Supply

TE0725 needs one single power supply with nominal of 3.3V.

Power Consumption

FPGA	Design	Typical Power, 25C ambient
A35T	Not configured	TBD*
A35T	LED blinking	170mW (typical)
A100T	Not configured	TBD*

*TBD - To Be Determined.

Actual power consumption depends on the FPGA design and ambient temperature.

Power-On Sequence

There is no specific or special power-on sequence, single power source is needed as VIN, rest of the sequence is automatic.

Variants Currently In Production

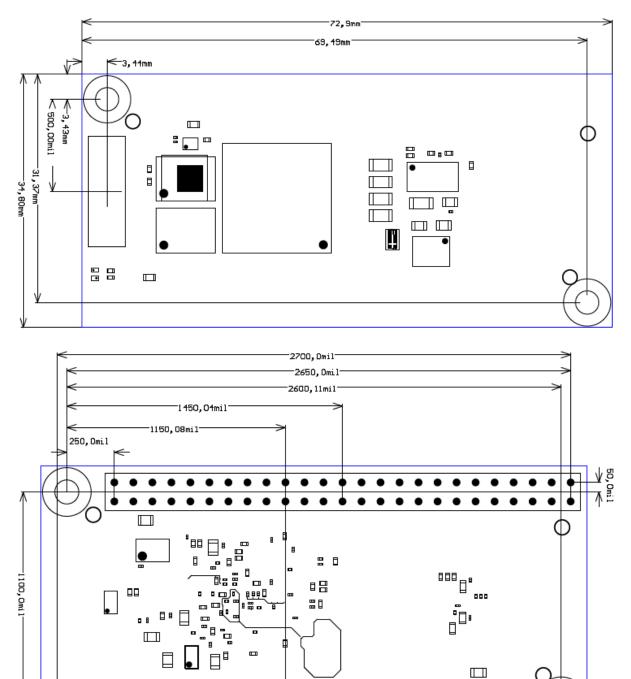
Module Variant	FPGA Chip Model	PL Clock [MHz]	VIN Supply Voltage [V]	SPI Flash	HyperRAM
TE0725-03-15-1C	XC7A15T-1CSG324C	100	3.3V	S25FL256S	8 MByte
TE0725-03-35-2C	XC7A35T-2CSG324C	100	3.3V	S25FL256S	8 MByte
TE0725-03-100-2C	XC7A100T-2CSG324C	100	3.3V	S25FL256S	8 MByte
TE0725-03-100-219	XC7A100T-2CSG324I	100	3.3V	S25FL256S	8 MByte

Technical Specifications

Absolute Maximum Ratings

Parameter	Min	Мах	Units	Reference document
3.3V supply voltage	-0.1	3.6	V	
HR I/O banks supply voltage (VCCO)	-0.5	3.6	V	Xilinx datasheet DS181
HR I/O banks input voltage	-0.4	VCCO + 0.55	V	Xilinx datasheet DS181
Storage Temperature	-40	+85	°C	

Recommended Operating Conditions


Parameter	Min	Мах	Units	Reference document
VIN supply voltage	3.135	3.45	V	
HR I/O banks supply voltage (VCCO)	1.14	3.465	V	Xilinx datasheet DS181
HR I/O banks input voltage	-0.20	VCCO + 0.20	V	Xilinx datasheet DS181
Operating Temperature	0	+85	°C	

A Please check Xilinx datasheet DS181 for complete list of absolute maximum and recommended operating ratings for the Artix-7 device.

Physical Dimensions

Please note that two different units are used on the figures below, SI system millimeters (mm) and imperial system thousandths of an inch(mil). This is because of the 100mil pin headers used, see also explanation below. To convert mils to millimeters and vice versa use formula 100mil's = 2,54mm.

All 100 mil pin headers are in 100 mil grid, the M3 mounting holes are in 50 mil grid aligned to the centers of the 100mil headers. The module is symmetrical, turning it 180 degrees will keep all I/O and Power pins in both 50 pin headers in compatible places.

. .

. .

-

•

•

.

250,Omil->

. . .

50, Omi

Operating Temperature Ranges

Commercial grade modules

All parts conform to at least commercial temperature range of 0°C to +70°C.

Industrial grade modules

All parts are at least industrial temperature range of -40°C to +85°C.

The module operating temperature range depends on customer design and cooling solution. Please contact us for options.

Weight

8.5 g Plain module.

Revision History

Hardware Revision History

Date	Revision	Notes	PCN	Documentation Link
2016-12-09	03	Second production release	Click to see PCN	TE0725-03
-	02	First production release		TE0725-02
-	01	Prototypes		

Hardware revision number is printed on the PCB board together with the module model number separated by the dash.

Document Change History

Date	Revision	Contributors	Description
2017-06-07	V.60	Jan Kumann	Minor formatting.
2017-01-27	V.57	Jan Kumann	New block diagram.
2017-01-12	V46	Jan Kumann	Revision 03 product images added.
2016-12-15		Thorsten Trenz	Hardware revision 03 specific information added.
2016-12-09	V40	Jan Kumann	Hardware revision 02 block diagram added.
2016-12-02	V1	Antti Lukats	Initial version.

Disclaimer

Document Warranty

The material contained in this document is provided "as is" and is subject to being changed at any time without notice. Trenz Electronic does not warrant the accuracy and completeness of the materials in this document. Further, to the maximum extent permitted by applicable law, Trenz Electronic disclaims all warranties, either express or implied, with regard to this document and any information contained herein, including but not limited to the implied warranties of merchantability, fitness for a particular purpose or non infringement of intellectual property. Trenz Electronic shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein.

Limitation of Liability

In no event will Trenz Electronic, its suppliers, or other third parties mentioned in this document be liable for any damages whatsoever (including, without limitation, those resulting from lost profits, lost data or business interruption) arising out of the use, inability to use, or the results of use of this document, any documents linked to this document, or the materials or information contained at any or all such documents. If your use of the materials or information from this document results in the need for servicing, repair or correction of equipment or data, you assume all costs thereof.

Copyright Notice

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Trenz Electronic.

Technology Licenses

The hardware / firmware / software described in this document are furnished under a license and may be used /modified / copied only in accordance with the terms of such license.

Environmental Protection

To confront directly with the responsibility toward the environment, the global community and eventually also oneself. Such a resolution should be integral part not only of everybody's life. Also enterprises shall be conscious of their social responsibility and contribute to the preservation of our common living space. That is why Trenz Electronic invests in the protection of our Environment.

REACH, RoHS and WEEE

REACH

Trenz Electronic is a manufacturer and a distributor of electronic products. It is therefore a so called downstream user in the sense of REACH. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, Trenz Electronic is obliged to neither register nor to provide safety data sheet. According to present knowledge and to best of our knowledge, no SVHC (Substances of Very High Concern) on the Candidate List are contained in our products. Furthermore, we will immediately and unsolicited inform our customers in compliance with REACH - Article 33 if any substance present in our goods (above a concentration of 0,1 % weight by weight) will be classified as SVHC by the European Chemicals Agency (ECHA).

RoHS

Trenz Electronic GmbH herewith declares that all its products are developed, manufactured and distributed RoHS compliant.

WEEE

Information for users within the European Union in accordance with Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE).

Users of electrical and electronic equipment in private households are required not to dispose of waste electrical and electronic equipment as unsorted municipal waste and to collect such waste electrical and electronic equipment separately. By the 13 August 2005, Member States shall have ensured that systems are set up allowing final holders and distributors to return waste electrical and electronic equipment at least free of charge. Member States shall ensure the availability and accessibility of the necessary collection facilities. Separate collection is the precondition to ensure specific treatment and recycling of waste electrical and electronic equipment and is necessary to achieve the chosen level of protection of human health and the environment in the European Union. Consumers have to actively contribute to the success of such collection and the return of waste electrical and electronic equipment. Presence of hazardous substances in electrical and electronic equipment results in potential effects on the environment and human health. The symbol consisting of the crossed-out wheeled bin indicates separate collection for waste electrical and electronic equipment.

Trenz Electronic is registered under WEEE-Reg.-Nr. DE97922676.