
Adafruit Gemma M0
Created by lady ada

Last updated on 2017-12-31 09:47:23 PM UTC

2
6
9

11
11
11
11
12
12

12
14
15
17
17
19

22
22

23
23
26
26
28
28

28
29
29

29
29
30
30
30

31
31
32
32
33
34
37
40
42
42
43
44

Guide Contents

Guide Contents
Overview
Guided Tour
Pinouts
JST Battery Input
Power Pads
Input/Output Pads

Common to all pads
Unique pad capabilities

Secret SWD and Reset Pads
Windows Driver Installation
Manual Driver Installation
CircuitPython

Set up CircuitPython Quick Start!
Gemma Default Zip Install

Installing Mu Editor
Installing Mu for Windows or Mac OS X

Installing Mu for Linux
Using Mu
Creating and Editing Code

Creating Code
Editing Code

Your code changes are run as soon as the file is done saving.

1. Use an editor that writes out the file completely when you save it.
2. Eject or Sync the Drive After Writing
Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

Back to Editing Code...
Exploring Your First CircuitPython Program

Imports & Libraries
Setting Up The LED
Loop-de-loops

More Changes
Naming Your Program File
Connecting to the Serial Console
Are you using Mu?
Using Something Else?
Interacting with the Serial Console
The REPL
Returning to the serial console
CircuitPython Libraries

Installing the CircuitPython Library Bundle
Express Boards
Non-Express Boards

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 2 of 122

44
45
45

46
46
46
46
46
46

47
47
48
48

49
49
49
49
49
50
50

52
52
53
54
55

56
57
57
57
57
58
58
58
58
58
58
58

58
60
61
61
61
61

63
63
63
63

Example: ImportError Due to Missing Library
Library Install on Non-Express Boards
Updating CircuitPython Libraries

Troubleshooting
CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present

You may have a different board.
MakeCode
Windows 10
Windows 7

CircuitPython RGB Status Light
CIRCUITPY Drive Issues

For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
For Non-Express Boards (Gemma M0, Trinket M0, Feather M0 Basic Proto, and Feather Adalogger):

Running Out of File Space on Non-Express Boards
Delete something!
Use tabs
Mac OSX loves to add extra files.
Prevent & Remove Mac OSX Hidden Files
Copy Files on Mac OSX Without Creating Hidden Files
Other Mac OSX Space-Saving Tips

Welcome to the Community!
Adafruit Discord
Adafruit Forums
Adafruit Github
ReadTheDocs

CircuitPython Playground
CircuitPython Expectations
Small Disk Space
No PWM & PulseIO
No Audio or NVM
CircuitPython Built-Ins
Things that are Built In and Work

flow control
math
tuples, lists, arrays, and dictionaries
classes/objects and functions
lambdas

Things to watch out for!
CircuitPython Digital In & Out
CircuitPython Analog In

Creating analog inputs
GetVoltage Helper
Main Loop

CircuitPython Analog Out
Creating an analog output
Setting the analog output
Main Loop

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 3 of 122

65
65
65
66
68
68
70
71
71
72
72
73

74
76
79
81
82
82

84
87
90
93
93
95
96
98
98
98
99

100

102
102
102
103
105
106
106
107
107
108
108
108
108

CircuitPython PWM
Timer mapping
PWM Output with Fixed Frequency
PWM Output with Variable Frequency
CircuitPython Servo
Wiring
CircuitPython Cap Touch

Creating an capacitive touch input
Main Loop

Copper Foil Tape with Conductive Adhesive - 6mm x 15 meter roll
Copper Foil Tape with Conductive Adhesive - 25mm x 15 meter roll
Small Alligator Clip Test Lead (set of 12)

CircuitPython Internal DotStar
CircuitPython UART Serial
CircuitPython I2C Scan
CircuitPython I2C Sensor

Adafruit Si7021 Temperature & Humidity Sensor Breakout Board
Small Alligator Clip to Male Jumper Wire Bundle - 12 Pieces

CircuitPython NeoPixel
CircuitPython DotStar
CircuitPython HID Keyboard
CircuitPython DHT Sensor
Wiring
CircuitPython CPU Temp
CircuitPython Storage
Handy Tips
Check Heap Memory Usage
Random Numbers
Arduino IDE Setup

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

Using with Arduino IDE
Install SAMD Support
Install Adafruit SAMD
Install Drivers (Windows 7 Only)
Blink
Sucessful Upload
Compilation Issues
Manually bootloading
Ubuntu & Linux Issue Fix
Adapting Sketches to M0
Analog References
Pin Outputs & Pullups
Serial vs SerialUSB

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 4 of 122

109
110
110
110
110
111
111
111
112
112
114
115
115
116
117

118
119
120
121
121
121

AnalogWrite / PWM on Feather/Metro M0
analogWrite() PWM range
Missing header files
Bootloader Launching
Aligned Memory Access
Floating Point Conversion
How Much RAM Available?
Storing data in FLASH
UF2 Bootloader Details
Entering Bootloader Mode
Using the Mass Storage Bootloader
Using the BOSSA Bootloader

Windows 7 Drivers
Verifying Serial Port in Device Manager
Running bossac on the command line

Updating the bootloader
Getting Rid of Windows Pop-ups
Making your own UF2
Downloads
Files:
Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 5 of 122

Overview

The Gemma M0 is a super small microcontroller board, with just enough to build many simple projects. It may look
small and cute: round, about the size of a quarter, with friendly alligator-clip sew pads. But do not be fooled! The
Gemma M0 is incredibly powerful! We've taken the same form factor we used for the original ATtiny85-based Gemma
and gave it a power up. The Gemma M0 has swapped out the lightweight ATtiny85 for a ATSAMD21E18 powerhouse.

It will super-charge your wearables! It's just as small, and it's easier to use, so you can do more.

The most exciting part of the Gemma M0 is that while you can use it with the Arduino IDE, we are shipping it with
CircuitPython on board. When you plug it in, it will show up as a very small disk drive with main.py on it. Edit main.py
with your favorite text editor to build your project using Python, the most popular programming language. No installs,
IDE or compiler needed, so you can use it on any computer, even ChromeBooks or computers you can't install
software on. When you're done, unplug the Gemma M0 and your code will go with you.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 6 of 122

https://www.adafruit.com/product/1222

Here are some of the updates you can look forward to when using Gemma M0:

Same size, form-factor, and pinout as classic Gemma
Updating ATtiny85 8-bit AVR for ATSAMD21E18 32-bit Cortex M0+
256KB Flash - 8x as much as 8 KB on ATtiny85
32 KB RAM - 64x as much as 512 bytes on ATtiny85
48 MHz 32 bit processor - 6x as fast as ATtiny85 (not even taking into account 32-bit speedups)
Native USB supported by every OS - can be used in Arduino or CircuitPython as USB serial console,
Keyboard/Mouse HID, even a little disk drive for storing Python scripts. (ATtiny85 does not have native USB)
Can be used with Arduino IDE or CircuitPython
Built in RGB DotStar LED
Three big-hole sew-pads can be used for conductive thread or alligator-clips for fast prototyping

Each I/O pad can be used for 12-bit analog input, or digital input/output with internally connected pullups
or pulldowns
We gave the M0 pads the exact same names as the original Gemma so all your existing Arduino code will
work exactly the same as-is without changes
True analog output on one I/O pad - can be used to play 10-bit quality audio clips
Two high speed PWM outputs on other two I/O Pads - for servos, LEDs, etc
All three pads can also be used as hardware capacitive touch sensors with no additional components
required
Can drive NeoPixels or DotStars on any pins, with enough memory to drive 8000+ pixels. DMA-NeoPixel
support on one pin so you can drive pixels without having to spend any processor time on it.
Native hardware I2C or Serial available on two pads so you can connect to any I2C or Serial device with
true hardware support (no annoying bit-banging)

Same Reset switch for starting your project code over
On/Off switch built in
JST battery connector for plugging in AAA's or LiPoly battery (no built-in LiPoly charging so it is safe to use with

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 7 of 122

file:///dma-driven-neopixels

NiMH/Alkalines)

Each order comes with one fully assembled and tested Gemma M0 with CircuitPython & example code programmed in.

So what are you waiting for? Pick up a Gemma M0 today and be amazed at how easy and fast it is to get started with
Gemma and CircuitPython!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 8 of 122

Guided Tour

Let me take you on a tour of your Gemma M0! Each Gemma M0 is assembled here at Adafruit and comes chock-full of
good design to make it a joy to use.

Micro B USB connector - We went with the tried and true micro-B USB connector for power and/or USB
communication (bootloader, serial, HID, etc). Use with any computer with a standard data/sync cable.
RGB DotStar LED - Instead of an always-on green LED we provide a full RGB LED. You can set it to any color in
the rainbow. It will also help you know when the bootloader is running (it will turn green) or if it failed to initialize
USB when connected to a computer (it will turn red). By default after you boot up the Gemma M0 it will turn a
lovely violet color.
Red #13 LED - this LED does double duty. Its connected with a series resistor to the digital #13 GPIO pin. It pulses
nicely when the Gemma is in bootloader mode, and its also handy for when you want an indicator LED.
JST Battery Input - take your Gemma anywhere and power it from an external battery. This pin can take up 6V
DC input, and has reverse-polarity, over-current and thermal protections. The circuitry inside will use either the
battery or USB power, safely switching from one to the other. If both are connected, it will use whichever has the
higher voltage. Works great with a Lithium Polymer battery or our 3xAAA battery packs with a JST connector on
the end. There is no built in battery charging (so that you can use Alkaline or Lithium batteries safely)
Vout (Voltage Output) - This pin will give you either the battery power or USB power, whichever has a higher
voltage. Its great when you want to power something like NeoPixels, that might use more than the 500mA
available from the onboard regulator
3V Regulator - The on-board voltage regulator can supply up to 500mA at a steady 3.3V from up to 6VDC
Sewing and Alligator clip friendly pads - You can easily sew to these pads, and they're gold plated so they wont
corrode (oxidize). You can also use alligator clips or solder directly to them.
3 General Purpose I/O (GPIO) Pads! - 3 GPIO pins, at 3V logic, check the next section for a detailed pinout guide
Reset Button - an onboard reset button will launch the bootloader when pressed and the Gemma is plugged into
a computer. If it is not connected to a computer, it's smart enough to go straight to the program.
On/Off switch - Lets you turn on/off your project, it will control both the Gemma and the Vout pad. This switch

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 9 of 122

can switch up to about 500mA of current, so if you are driving a huge number of servos or NeoPixels, connect
power to those power-greedy parts externally.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 10 of 122

Pinouts

JST Battery Input

There is no battery INPUT pin on the Gemma. You can connect a battery via the JST jack. We have found that Lipoly
batteries, coin-cells, and AAA's work great. You can also make your own battery input pack using a plain JST cable.
And use a JST extension cable if necessary.

You can plug anything from around 4 VDC up to 6 VDC. That means any single-cell LiPoly, or 3-4 AAA or AA batteries.
This input is polarity protected. Gemma and DotStar LED light up, you're good to go. You can turn off the battery with
the on/off switch, which will completely disconnect power on the Gemma M0.

Power Pads

Half of the pads on the Gemma M0 are related to power in and out: 3Vo , Vout and GND

Vout - This is a voltage OUTPUT pin, it will be connected to either the USB power or the battery input, whichever
has the higher voltage. This output does not connect to the regulator so you can draw as much current as your
USB port / Battery can provide (in general, thats about 500mA)
3Vo - This is the 3.3V OUTPUT pad from the voltage regulator. It can provide up to 500mA at a steady 3.3V.
Good for sensors or small LEDs or other 3V devices.
GND is the common ground pin, used for logic and power. It is connected to the USB ground and the power
regulator, etc. This is the pin you'll want to use for any and all ground connections

Input/Output Pads

Next we will cover the 3 GPIO (General Purpose Input Ouput) pins! For reference you may want to also check out the
datasheet-reference in the downloads section for the core ATSAMD21E18 pin. We picked pins that have a lot of
capabilities.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 11 of 122

http://www.adafruit.com/category/44_138
http://www.adafruit.com/products/783
http://www.adafruit.com/products/727
http://www.adafruit.com/products/261
http://www.adafruit.com/products/1131

Common to all pads

All the GPIO pads can be used as digital inputs, digital outputs, for LEDs, buttons and switches. In additon, all can be
used as analog inputs (12-bit ADC) or hardware capacitive touch. All pads can also be used as hardware interrupts
inputs.

Each pad can provide up to ~20mA of current. Don't connect a motor or other high-power component directly to the
pins! Instead, use a transistor to power the DC motor on/off

On a Gemma M0, the GPIO are 3.3V output level, and should not be used with 5V inputs. In general, most 5V devices
are OK with 3.3V output though.

The three pads are completely 'free' pins, they are not used by the USB connection, LEDs, DotStar, etc so you never
have to worry about the USB interface interfering with them when programming

Unique pad capabilities

Pad #0 / A2 - this is connected to PA04 on the ATSAMD21. This pin can be used as a digital I/O with selectable
pullup or pulldown, capacitive touch, analog input (use 'A2'), PWM output, and is also used for I2C data (SDA),
and hardware Serial RX.
Pad #1 / A0 - this is connected to PA02 on the ATSAMD21. This pin can be used as a digital I/O with selectable
pullup or pulldown, capacitive touch, analog input (use 'A0'), and true analog (10-bit DAC) output. It cannot be
used as PWM output.
Pad #2 / A1 - this is connected to PA05 on the ATSAMD21. This pin can be used as a digital I/O with selectable
pullup or pulldown, capacitive touch, analog input (use 'A1'), PWM output, and is also used for I2C clock (SCL),
and hardware Serial TX.

Secret SWD and Reset Pads

On the bottom of the Gemma M0 you will see three small pads. These are used for our programming/test but you can
use them too.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 12 of 122

http://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors

Starting from the pad closest to the edge there is:

SWDIO
SWCLK
Reset

On the off chance you want to reprogram your Gemma M0 or debug it using a Cortex M0 debug/programmer, you will
need to solder/connect to these pads. We use them for testing and you will likely never need it but they are there if
you do!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 13 of 122

Windows Driver Installation

Before you plug in your board, you'll need to possibly install a driver!

Click below to download our Driver Installer.

Download Latest Adafruit Windows Driver

Installer

https://adafru.it/A0N

Download and run the installer.

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to click through the license

Select which drivers you want to install, we suggest selecting all of them so you don't have to do this again!

Mac and Linux do not require drivers, only Windows folks need to do this step

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 14 of 122

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

On Windows 7, by default, we install a single driver for most of Adafruit's boards, including the Feather 32u4, the
Feather M0, Feather M0, Express, Circuit Playground, Circuit Playground Express, Gemma M0, Trinket M0, Metro M0
Express. On Windows 10 that driver is not necessary (it's built in to Windows) and it will not be listed.

The Trinket / Pro Trinket / Gemma / USBtinyISP drivers are also installed by default.

You can also, optionally, install the Arduino Gemma (different than the Adafruit Gemma!), Huzzah and Metro 328
drivers.

Click Install to do the installin'.

Manual Driver Installation

If windows needs the driver files (inf/cat) for some reason you can get all the drivers in a zip by clicking below:

Adafruit Windows Drivers source (v2.0.0.0)

https://adafru.it/zel

Note that on Windows 10, support for many boards is built in. If you end up not checking any boxes, you don't
need to run the installer at all!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 15 of 122

https://github.com/adafruit/Adafruit_Windows_Drivers/archive/2.0.0.0.zip

And point windows to the Drivers folder when it asks for the driver location

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 16 of 122

CircuitPython
CircuitPython is a derivative of MicroPython designed to simplify experimentation and education on low-cost
microcontrollers. It makes it easier than ever to get prototyping by requiring no upfront desktop software downloads.
The Gemma M0 is the first board that comes pre-loaded with CircuitPython. Simply copy and edit files on the
CIRCUITPY drive to iterate.

If you've already plugged your board into your computer, you should see a drive called CIRCUITPY. The drive will
contain a few files. If you want to make a 'backup' of the current firmware on the device, drag-off and save the
CURRENT.UF2 file. Other that that you can ignore the index.htm and info_uf2.txt files. They cannot be deleted and are
only for informational purposes.

If you have already plugged in your board, start by ejecting or "safely remove" the CIRCUITPY drive. This is a good
practice to get into. Always eject before unplugging or resetting your board!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest Gemma CircuitPython UF2

https://adafru.it/Aog

Click the link above to download the latest UF2 file.

Download and save it to your desktop (or wherever is

handy).

Your Gemma M0 already comes with CircuitPython but maybe there's a new version, or you overwrote your
Gemma M0 with Arduino code! In that case, see the below for how to reinstall or update CircuitPython.
Otherwise you can skip this and go straight to the next page

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 17 of 122

https://github.com/adafruit/circuitpython
https://micropython.org
https://github.com/adafruit/circuitpython/releases/latest/adafruit-circuitpython-gemma_m0-2.*.uf2
https://learn.adafruit.com/assets/49737

Plug your Gemma into your computer using a known-

good USB cable.

A lot of people end up using charge-only USB cables

and it is very frustrating! So make sure you have a USB

cable you know is good for data sync.

Double-click the small Reset button opposite the On/Off

switch on your board. You will see the Dotstar RGB LED

turn green. If it turns red, check the USB cable, try

another USB port, etc. Note: The little LED next to the

On/Off switch will be red - this is ok!

If double-clicking doesn't work the first time, try again.

Sometimes it can take a few tries to get the rhythm right!

You will see a new disk drive appear called

GEMMABOOT.

Drag the adafruit_circuitpython_etc.uf2 file to

GEMMABOOT.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 18 of 122

https://learn.adafruit.com/assets/49738
https://learn.adafruit.com/assets/49739
https://learn.adafruit.com/assets/49740

The red LED will flash. Then, the GEMMABOOT drive

will disappear and a new disk drive called CIRCUITPY

will appear.

That's it, you're done! :)

Gemma Default Zip Install

Gemma M0 is limited on space. As you begin working on projects, you may run out of space. Operating systems can
create hidden files that take up space. To prevent these files from being added to your Gemma, we suggest installing
the Gemma Default Zip.

Download the Gemma Default Zip

https://adafru.it/Aoj

Click the link above to download the default zip.

Download and save it to your desktop, or wherever is

handy!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 19 of 122

https://learn.adafruit.com/assets/49741
https://cdn-learn.adafruit.com/assets/assets/000/046/590/original/gemma_m0_2.0.0.zip
https://learn.adafruit.com/assets/49742

If you haven't already, plug your Gemma into your

computer using a known-good USB cable.

Make sure your CIRCUITPY drive appears.

Once downloaded, double-click the file to extract the

contents.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 20 of 122

https://learn.adafruit.com/assets/49743
https://learn.adafruit.com/assets/49744

Double click newly extracted folder to open it.

To load the files that will keep the system from adding

hidden files to your drive, highlight these three files:

.fseventsd

.metadata_never_index

.Trashes

Drag them to your CIRCUITPY drive. If it asks to replace

any, say yes!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 21 of 122

https://learn.adafruit.com/assets/49746
https://learn.adafruit.com/assets/49747

If you'd like to reset your Gemma to the same files it

shipped with, you can do that with these files. If you

changed main.py, and you want to keep your changes,

back up main.py first.

Highlight all the files in this folder. Drag them all to your

CIRCUITPY drive.

If it asks to replace anything, say yes.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 22 of 122

https://learn.adafruit.com/assets/49748

Installing Mu Editor
Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's written in Python and works on
Windows, MacOS, Linux and Raspberry Pi. The serial console is built right in so you get immediate feedback from your
board's serial output!

Installing Mu for Windows or Mac OS X

To install Mu for Windows, follow these steps:

Download the latest Mu for Windows

https://adafru.it/Amb

Download the latest Mu for Mac OS X

https://adafru.it/Amc

Mu is our recommended editor - please use it (unless you are an experienced coder with a favorite editor
already!)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 23 of 122

https://github.com/adafruit/mu/releases/latest/mu.exe
https://github.com/adafruit/mu/releases/latest/macosx_mu.zip

Click the link above to download the latest version of

Mu. If you are using Windows, you must be running

Windows 7 or higher. For Mac OS X you must be running

10.12 (Sierra) or higher (Mac users with lower versions

can try the Linux instructions below, but YMMV)

Download and save the file to your desktop or wherever

is handy.

Double-click the file to open Mu. You're ready to go!

Installing Mu for Linux

Each Linux distro is a little different, so use this as a guideline! These instructions will also work for Mac OS X, but you'll
want to use brew instead of apt-get

1. Mu require python version 3. If you haven't installed python yet, do so via your command line using something
like sudo apt-get install python3

2. You'll also need pip3 (or pip if you only have python3 installed) - try running pip3 --version . If that didn't work, you
ran sudo apt-get install python3-pip

3. Finally, run pip3 install mu_editor

4. You can now run mu directly from the command line

Using Mu

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 24 of 122

https://learn.adafruit.com/assets/49617
https://learn.adafruit.com/assets/49638
https://brew.sh/

Once you start Mu, you will be prompted to select your

'mode' - you can always change your mind later. For

now please select Adafruit!

Mu attempts to auto-detect your board, so please plug

in your CircuitPython device and make sure it shows up

as a CIRCUITPY drive before starting Mu

Now you're ready to code! Lets keep going....

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 25 of 122

https://learn.adafruit.com/assets/49641
https://learn.adafruit.com/assets/49642

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 26 of 122

Creating and Editing Code
One of the best things about CircuitPython is how simple it is to get code up and running. In this section, we're going to
cover how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. We strongly recommend using Mu! It's
designed for CircuitPython, and it's really simple and easy to use, with a built in serial console!

If you don't or can't use Mu, there are basic text editors built into every operating system such as Notepad on Windows,
TextEdit on Mac, and gedit on Linux. There are also excellent options available for download that are designed for
editing code. Atom is a code editor that works on all three operating systems. There are many options for all operating
systems.

Code editors have features that are specific to editing code, but any text editor will be fine.

Creating Code

Open your editor, and create a new file. If you are using

Mu, click the New button in the top left

Copy and paste the following code into your editor:

 import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 27 of 122

https://atom.io/
https://learn.adafruit.com/assets/49645

It will look like this - note that under the while True: line,

the next four lines have spaces to indent them, but

they're indented exactly the same amount. All other

lines have no spaces before the text.

Save this file as code.py on your CIRCUITPY drive.

On each board you'll find a tiny red LED. It should now be blinking. Once per second

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 28 of 122

https://learn.adafruit.com/assets/49646
https://learn.adafruit.com/assets/49649
https://learn.adafruit.com/assets/49650

Congratulations, you've just run your first CircuitPython program!

Editing Code

To edit code, open the code.py file on your CIRCUITPY

drive into your editor.

Make the desired changes to your code. Save the file.

That's it!

Your code changes are run as soon as the file is done saving.

There's just one warning we have to give you before we continue...

The CircuitPython code on your board detects when the files are changed or written and will automatically re-start your
code. This makes coding very fast because you save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or resetting your board! On Windows
using some editors this can sometimes take up to 90 seconds, on Linux it can take 30 seconds to complete because
the text editor does not save the file completely. Mac OS does not seem to have this delay, which is nice!

This is really important to be aware of. If you unplug or reset the board before your computer finishes writing the file to
your board, you can corrupt the drive. If this happens, you may lose the code you've written, so it's important to backup
your code to your computer regularly.

There are a few ways to avoid this:

1. Use an editor that writes out the file completely when you save it.

Recommended editors:

mu is an editor that safely writes all changes (it's also our recommended editor!)
emacs is also an editor that will fulIy write files on save
vim / vi safely writes all changes
Sublime Text safely writes all changes
The PyCharm IDE is safe if "Safe Write" is turned on in Settings->System Settings->Synchronization (true by
default).
If you are using Atom, install this package so that it will always write out all changes to files on CIRCUITPY .

Don't Click Reset or Unplug!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 29 of 122

https://learn.adafruit.com/assets/49651
https://codewith.mu/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
http://www.vim.org/
https://www.sublimetext.com/
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/packages/circuitpython-force-to-drive

Visual Studio Code appears to safely write all changes
gedit on Linux appears to safely write all changes

We don't recommend these editors:

notepad (the default windows editor) and Notepad++ can be slow to write, so we recommend the editors above! If
you are using notepad, be sure to eject the drive (see below)
IDLE does not force-write out the file
Anything else - we haven't tested other editors so please use a recommended one!

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually eject, but it will force the operating
system to save your file to disk. On Linux, use the sync command in a terminal to force the write to disk.

Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this happens, follow the steps found
on the Troubleshooting page of every board guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file into your editor. We'll make a
simple change. Change the first 0.5 to 0.1 . The code should look like this:

Leave the rest of the code as-is. Save your file. See what happens to the LED on your board? Something changed! Do
you know why? Let's find out!

Exploring Your First CircuitPython Program

First, we'll take a look at the code we're editing.

Here is the original code again:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 30 of 122

https://code.visualstudio.com/
file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/troubleshooting#circuitpy-drive-issues

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib.

The import statements tells the board that you're going to use a particular library in your code. In this example, we
imported three libraries: board , digitalio , and time . All three of these libraries are built into CircuitPython, so no
separate files are needed. That's one of the things that makes this an excellent first example. You don't need any thing
extra to make it work! board gives you access to the hardware on your board, digitalio lets you access that hardware
as inputs/outputs and time let's you pass time by 'sleeping'

Setting Up The LED

The next two lines setup the code to use the LED.

Your board knows the red LED as D13 . So, we initialise that pin, and we set it to output. We set led to equal the rest
of that information so we don't have to type it all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means, "forever do the following:". while True:

creates a loop. Code will loop "while" the condition is "true" (vs. false), and as True is never False, the code will loop
forever. All code that is indented under while True: is "inside" the loop.

Inside our loop, we have four items:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 31 of 122

First, we have led.value = True . This line tells the LED to turn on. On the next line, we have time.sleep(0.5) . This line is
telling CircuitPython to pause running code for 0.5 seconds. Since this is between turning the led on and off, the led
will be on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and time.sleep(0.5) tells CircuitPython to pause
for another 0.5 seconds. This occurs between turning the led off and back on so the LED will be off for 0.5 seconds
too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that the code leaves the LED on. So it
blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

More Changes

We don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it looks like this:

Now it blinks really fast! You decreased the both time that the code leaves the LED on and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly because you've increased the amount
of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them to see what happens! These
were simple changes, but major changes are done using the same process. Make your desired change, save it, and
get the results. That's really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.txt, code.py, main.txt and main.py.
CircuitPython looks for those files, in that order, and then runs the first one it finds. While we suggest using code.py as
your code file, it is important to know that the other options exist. If your program doesn't seem to be updating as you
work, make sure you haven't created another code file that's being read instead of the one you're working on.

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 32 of 122

Connecting to the Serial Console
One of the staples of CircuitPython (and programming in general!) is something called a "print statement". This is a line
you include in your code that causes your code to output text. A print statement in CircuitPython looks like this:

print("Hello, world!")

This line would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial console comes in!

The serial console receives output from your CircuitPython board sent over USB and displays it so you can see it. This
is necessary when you've included a print statement in your code and you'd like to see what you printed. It is also
helpful for troubleshooting errors, because your board will send errors and the serial console will print those too.

The serial console requires a terminal program. A terminal is a program that gives you a text-based interface to perform
various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board making using the REPL really really
easy.

Please note that Mu does yet not work with nRF52 or ESP8266-based CircuitPython boards, skip down to the next
section for details on using a terminal program.

First, make sure your CircuitPython board is plugged in.

If you are using Windows 7, make sure you installed the

drivers (https://adafru.it/Amd).

Once in Mu, look for the REPL button in the menu and click it

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 33 of 122

https://learn.adafruit.com/assets/49652
file:///welcome-to-circuitpython/installing-circuitpython#windows-7-drivers

The editor window will split in half.

The bottom half is your serial output/input. You can see

text from the CircuitPython board as well as send text to
the board.

Using Something Else?

If you're not using Mu to edit, are using ESP8266 or nRF52 CircuitPython, or if for some reason you are not a fan of the
built in serial console, you can run the serial console as a separate program.

Windows requires you to download a terminal program, check out this page for more details

Mac and Linux both have one built in, though other options are available for download, check this page for more
details

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 34 of 122

https://learn.adafruit.com/assets/49655
file:///welcome-to-circuitpython/advanced-serial-console-on-windows
file:///welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Interacting with the Serial Console
Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, we're going to edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print anything you like! Just include
your phrase between the quotation marks inside the parentheses. For example:

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed text to something else.

Keep your serial console window where you can see it. Save your file. You'll see what the serial console displays when

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello, CircuitPython!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 35 of 122

the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board was doing before you saved your file. This is
normal behavior and will happen every time the board resets. This is really handy for troubleshooting. Let's introduce
an error so we can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says led.value = Tru

Save your file. You will notice that your red LED will stop blinking, and you may have a colored status LED blinking at
you. This is because the code is no longer correct and can no longer run properly. We need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose. You may have 200 lines of code,
and have no idea where your error could be hiding. This is where the serial console can help. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 36 of 122

The Traceback (most recent call last): is telling you that the last thing it was able to run was line 10 in your code. The next
line is your error: NameError: name 'Tru' is not defined . This error might not mean a lot to you, but combined with knowing
the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the problem is already. But if you didn't,
you'd want to look at line 10 and see if you could figure it out. If you're still unsure, try googling the error to get some
help. In this case, you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking again.

The serial console will display any output generated by your code. Some sensors, such as a humidity sensor or a
thermistor, receive data and you can use print statements to display that information. You can also use print statements
for troubleshooting. If your code isn't working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and programming!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 37 of 122

The REPL
The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL. The REPL allows you to enter
individual lines of code and have them run immediately. It's really handy if you're running into trouble with a particular
program and can't figure out why. It's interactive so it's great for testing new ideas.

To use the REPL, you first need to be connected to the serial console. Once that connection has been established,
you'll want to press Ctrl + C.

If there is code running, it will stop and you'll see Press any key to enter the REPL. Use CTRL-D to reload. Follow those
instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board was doing before you pressed Ctrl + C and
interrupted it. The KeyboardInterrupt is you pressing Ctrl + C. This information can be handy when troubleshooting, but
for now, don't worry about it. Just note that it is expected behavior.

If there is no code running, you will enter the REPL immediately after pressing Ctrl + C. There is no information about
what your board was doing before you interrupted it because there is no code running.

Either way, once you press a key you'll see a >>> prompt welcoming you to the REPL!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 38 of 122

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released. Next, it gives you the type of
board you're using and the type of microcontroller the board uses. Each part of this may be different for your board
depending on the versions you're working with.

This is followed by the CircuitPython prompt.

From this prompt you can run all sorts of commands and code. The first thing we'll do is run help() . This will tell us
where to start exploring the REPL. To run code in the REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're using. Second, a URL for the
CircuitPython related project guides. Then... wait. What's this? To list built-in modules, please do `help("modules")`.

Remember the libraries you learned about while going through creating code? That's exactly what this is talking about!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 39 of 122

This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core libraries built into CircuitPython. We discussed how board contains all of the pins on the
board that you can use in your code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might look like nothing happened, but
that's not the case! If you recall, the import statement simply tells the code to expect to do something with that module.
In this case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 40 of 122

This is a list of all of the pins on your board that are available for you to use in your code. Each board's list will differ
slightly depending on the number of pins available. Do you see D13 ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the REPL isn't saved anywhere. If
you're testing something new that you'd like to keep, make sure you have it saved somewhere on your computer as
well!

Every programmer in every programming language starts with a piece of code that says, "Hello, World." We're going to
say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire programs into the REPL to test them.
As we said though, remember that nothing typed into the REPL is saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to see if a few new lines of code will
work. It's fantastic for troubleshooting code by entering it one line at a time and finding out where it fails. It lets you see
what libraries are available and explore those libraries.

Try typing more into the REPL to see what happens!

Returning to the serial console

When you're ready to leave the REPL and return to the serial console, simply press Ctrl + D. This will reload your board
and reenter the serial console. You will restart the program you had running before entering the REPL. In the console
window, you'll see any output from the program you had running. And if your program was affecting anything visual on
the board, you'll see that start up again as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 41 of 122

You can return to the REPL at any time!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 42 of 122

CircuitPython Libraries
Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib .
Part of what makes CircuitPython so awesome is its ability to store code separately from the firmware itself. Storing
code separately from the firmware makes it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, its in the base directory of the drive. If not, simply create the folder
yourself.

CircuitPython libraries work in the same was as regular Python modules so the Python docs are a great reference for
how it all should work. In Python terms, we can place our library files in the lib directory because its part of the Python
path by default.

One downside of this approach of separate libraries is that they are not built in. To use them, one needs to copy them
to the CIRCUITPY drive before they can be used. Fortunately, we provide a bundle full of our libraries.

Our bundle and releases also feature optimized versions of the libraries with the .mpy file extension. These files take
less space on the drive and have a smaller memory footprint as they are loaded.

Installing the CircuitPython Library Bundle

We're constantly updating and improving our libraries, so we don't (at this time) ship our CircuitPython boards with the
full library bundle. Instead, you can find example code in the guides for your board that depends on external libraries.
Some of these libraries may be available from us at Adafruit, some may be written by community members!

Either way, as you start to explore CircuitPython, you'll want to know how to get libraries on board.

You can grab the latest Adafruit CircuitPython 2.x Bundle release by clicking this button:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 43 of 122

https://docs.python.org/3/tutorial/modules.html

Click for the Latest Adafruit CircuitPython Library

Bundle Release

https://adafru.it/AgR

If you need another version, you can also visit the bundle release page which will let you select exactly what version
you're looking for, as well as information about changes.

Either way, download the version that matches your CircuitPython run-time. For example, if you're running v2.2
download the v2 bundle. If you're running 3.0, download the v3 bundle. There's also a py bundle which contains the
uncompressed python files, you probably don't want that!

After downloading the zip, extract its contents. This is usually done by double clicking on the zip. On Mac OSX, it
places the file in the same directory as the zip.

When you open the folder, you'll see a large number of mpy files and folders

Express Boards

If you are using a Feather M0 Express, Metro M0 Express or Circuit Playground Express (or any other "Express" board)
your CircuitPython board comes with at least 2 MB of Flash storage. This is plenty of space for all of our library files so
we recommend you just install them all! (If you have a Gemma M0 or Trinket M0 or other non-Express board, skip
down to the next section)

On Express boards, the lib directory can be copied directly to the CIRCUITPY drive.

Just drag the entire lib folder into the CIRCUITPY drive, and 'replace' any old files if your operating system prompts
you

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 44 of 122

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/adafruit-circuitpython-bundle-2.*zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/

Non-Express Boards

If you are using Trinket M0 or Gemma M0, you will need to load the libraries individually, due to file space
restrictions. If you are using a non-express board, or you would rather load libraries as you use them, you'll first want to
create a lib folder on your CIRCUITPY drive. Open the drive, right click, choose the option to create a new folder, and
call it lib . Then, open the lib folder you extracted from the downloaded zip. Inside you'll find a number of folders and
.mpy files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, you may write up code that tries to use a library you haven't yet
loaded. We're going to demonstrate what happens when you try to utilise a library that you don't have loaded on your
board, and cover the steps required to resolve the issue. This demonstration will only return an error if you do not
have the required library loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the blinky example.

Save this file. Nothing happens to your board. Let's check the serial console to see what's going on.

We have an ImportError . It says there is no module named 'simpleio' . That's the one we just included in our code!

Click the link above to download the correct bundle. Extract the lib folder from the downloaded bundle file. Scroll
down to find simpleio.mpy . This is the library file we're looking for! Follow the steps above to load an individual library
file.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.D13)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 45 of 122

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose the library that matches the one
you're missing.

Library Install on Non-Express Boards

If you have a Trinket M0 or Gemma M0, you'll want to follow the same steps in the example above to install libraries as
you need them. You don't always need to wait for an ImportError as you probably know what library you added to your
code. Simply open the lib folder you downloaded, find the library you need, and drag it to the lib folder on your
CIRCUITPY drive.

For these boards, your internal storage is from the chip itself. So, these boards don't have enough space for all of the
libraries. If you try to copy over the entire lib folder you won't have enough space on your CIRCUITPY drive.

You may end up running out of space on your Trinket M0 or Gemma M0 even if you only load libraries as you need
them. There are a number of steps you can use to try to resolve this issue. You'll find them in the Troubleshooting page
in the Learn guides for your board.

Updating CircuitPython Libraries

Libraries are updated from time to time, and it's important to update the files you have on your CIRCUITPY drive.

To update a single library, follow the same steps above. When you drag the library file to your lib folder, it will ask if you
want to replace it. Say yes. That's it!

If you'd like to update the entire bundle at once, drag the lib folder to your CIRUCITPY drive. Different operating
systems will have a different dialog pop up. You want to tell it to replace the current folder. Then you're updated and
ready to go!

A new library bundle is released every time there's an update to a library. Updates include things like bug fixes and
new features. It's important to check in every so often to see if the libraries you're using have been updated.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 46 of 122

Troubleshooting
From time to time, you will run into issues when working with CircuitPython. Here are a few things you may encounter
and how to resolve them.

CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the Trinket M0 and Gemma M0 boards ship with the UF2 bootloader installed.
Feather M0 Basic, Feather M0 Adalogger, and similar boards use a regular Arduino-compatible bootloader, which
does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode program on Circuit Playground Express, press the reset button just once to get the
CPLAYBOOT drive to show up. Pressing it twice will not work.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake? You don't need to install this package on Windows
10 for most Adafruit boards. The old version (v1.5) can interfere with recognizing your device. Go to Settings -> Apps
and uninstall all the "Adafruit" driver programs.

Windows 7

The latest version of the Adafruit Windows Drivers (version 2.0.0.0 or later) will fix the missing boardnameBOOT drive
problem on Windows 7. To resolve this, first uninstall the old versions of the drivers:

Unplug any boards. In Uninstall or Change a Program (Control Panel->Programs->Uninstall a program), uninstall
everything named "Windows Driver Package - Adafruit Industries LLC ...".

Now install the new 2.0.0.0 (or higher) Adafruit Windows Drivers Package:

Install Latest Windows Drivers

https://adafru.it/A0N

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 47 of 122

file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

When running the installer, you'll be shown a list of drivers to choose from. You can check and uncheck the
boxes to choose which drivers to install.

You should now be done! Test by unplugging and replugging the board. You should see the CIRCUITPY drive, and
when you double-click the reset button (single click on Circuit Playground Express running MakeCode), you should see
the appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums or on the Adafruit Discord if this does not work for you!

CircuitPython RGB Status Light

The Feather M0 Express, Metro M0 Express, Gemma M0, and Trinket M0 all have a single NeoPixel or DotStar RGB
LED on the board that indicates the status of CircuitPython. Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt , main.py , or main.txt) is running
pulsing GREEN: code.py (etc.) has finished or does not exist
YELLOW: Circuit Python is in safe mode: it crashed and restarted
WHITE: REPL is running
BLUE: Circuit Python is starting up

Colors with multiple flashes following indicate a Python exception and then indicate the line number of the error. The
color of the first flash indicates the type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError
ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHITE flashes are thousands' place,
BLUE are hundreds' place, YELLOW are tens' place, and CYAN are one's place. So for example, an error on line 32
would flash YELLOW three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

CIRCUITPY Drive Issues

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 48 of 122

https://forums.adafruit.com
https://adafrui.it/discord

You may find that you can no longer save files to your CIRCUITPY drive. You may find that your CIRCUITPY stops
showing up in your file explorer, or shows up as NO_NAME . These are indicators that your filesystem has become
corrupted.

This happens most often when the CIRCUITPY disk is not safely ejected before being reset by the button or being
disconnected from USB. It can happen on Windows, Mac or Linux.

In this situation, the board must be completely erased and CircuitPython must be reloaded onto the board.

For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:

 1. Download the correct erase file:

Circuit Playground Express

https://adafru.it/AdI

Feather M0 Express

https://adafru.it/AdJ

Metro M0 Express

https://adafru.it/AdK

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The onboard NeoPixel will turn blue, indicating the erase has started.
 5. After approximately 15 seconds, the NeoPixel will start flashing green.
 6. Double-click the reset button on the board to bring up the boardnameBOOT drive.
 7. Drag the appropriate latest release of CircuitPython .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation page.
You'll also need to install your libraries and code!

For Non-Express Boards (Gemma M0, Trinket M0, Feather M0 Basic Proto, and Feather
Adalogger):

 1. Download the erase file:

Gemma M0, Trinket M0, Feather M0 Basic,

Feather Adalogger

You WILL lose everything on the board when you complete the following steps. If possible, make a copy of
your code before continuing.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 49 of 122

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2?1512152239

https://adafru.it/AdL

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The boot LED will start flashing again, and the boardnameBOOT drive will reappear.
 5. Drag the appropriate latest release CircuitPython .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the installation page
You'll also need to install your libraries and code!

Running Out of File Space on Non-Express Boards

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its likely you'll run out of space but
don't panic! There are a couple ways to free up space.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you don't need it or have already
installed it. Its ~12KiB or so.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there are libraries in the lib folder that
you aren't using anymore or test code that isn't in use.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the recommendation is to indent code
with four spaces for every indent. In general, we recommend that too. However, one trick to storing more human-
readable code is to use a single tab character for indentation. This approach uses 1/4 of the space for indentation and
can be significant when we're counting bytes.

Mac OSX loves to add extra files.

Luckily you can disable some of the extra hidden files that Mac OSX adds by running a few commands to disable
search indexing and create zero byte placeholders. Follow the steps below to maximize the amount of space available
on OSX:

Prevent & Remove Mac OSX Hidden Files

First find the volume name for your board. With the board plugged in run this command in a terminal to list all the
volumes:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 50 of 122

file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full path to the volume is
the /Volumes/CIRCUITPY path.

Now follow the steps from this question to run these terminal commands that stop hidden files from being created on
the board:

Replace /Volumes/CIRCUITPY in the commands above with the full path to your board's volume if it's different. At this
point all the hidden files should be cleared from the board and some hidden files will be prevented from being created.

However there are still some cases where hidden files will be created by Mac OSX. In particular if you copy a file that
was downloaded from the internet it will have special metadata that Mac OSX stores as a hidden file. Luckily you can
run a copy command from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on Mac OSX Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on Mac OSX you need to be careful to
copy files to the board with a special command that prevents future hidden files from being created. Unfortunately
you cannot use drag and drop copy in Finder because it will still create these hidden extended attribute files in some
cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For example to copy a foo.mpy file to the
board use a command like:

Or to copy a folder and all of its child files/folders use a command like:

Other Mac OSX Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden files here's how to do so. First
list the amount of space used on the CIRCUITPY drive with the df command:

ls -l /Volumes

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

 cp -X foo.mpy /Volumes/CIRCUITPY

cp -rX folder_to_copy /Volumes/CIRCUITPY

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 51 of 122

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

Lets remove the ._ files first.

Whoa! We have 13Ki more than before! This space can now be used for libraries and code!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 52 of 122

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and great for learning. It runs on
microcontrollers and works out of the box. You can plug it in and get started with any text editor. The best part?
CircuitPython comes with an amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for anyone to use, edit, copy and
improve upon. This also means CircuitPython becomes better because of you being a part of it. It doesn't matter
whether this is your first microcontroller board or you're a computer engineer, you have something important to offer
the Adafruit CircuitPython community. We're going to highlight some of the many ways you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community comes together to volunteer and
provide live support of all kinds. From general discussion to detailed problem solving, and everything in between,

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 53 of 122

Discord is a digital maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your needs. Each channel is shown on
Discord as "#channelname". There's the #projecthelp channel for assistance with your current project or help coming
up with ideas for your next one. There's the #showandtell channel for showing off your newest creation. Don't be afraid
to ask a question in any channel! If you're unsure, #general is a great place to start. If another channel is more likely to
provide you with a better answer, someone will guide you.

The CircuitPython channel is where to go with your CircuitPython questions. #circuitpython is there for new users and
developers alike so feel free to ask a question or post a comment! Everyone of any experience level is welcome to join
in on the conversation. We'd love to hear what you have to say!

The easiest way to contribute to the community is to assist others on Discord. Supporting others doesn't always mean
answering questions. Join in celebrating successes! Celebrate your mistakes! Sometimes just hearing that someone
else has gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your granddaughter to.

Visit https://adafru.it/discord to sign up for Discord. We're looking forward to meeting you!

Adafruit Forums

The Adafruit Forums are the perfect place for support. Adafruit has wonderful paid support folks to answer any
questions you may have. Whether your hardware is giving you issues or your code doesn't seem to be working, the
forums are always there for you to ask. You need an Adafruit account to post to the forums. You can use the same
account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums are a more reliable source of
information. If you want to be certain you're getting an Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything Adafruit. The Adafruit CircuitPython and
MicroPython category under "Supported Products & Projects" is the best place to post your CircuitPython questions.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 54 of 122

https://adafru.it/discord
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves wiring, post a picture! If your code is giving
you trouble, include your code in your post! These are great ways to make sure that there's enough information to
help you with your issue.

You might think you're just getting started, but you definitely know something that someone else doesn't. The great
thing about the forums is that you can help others too! Everyone is welcome and encouraged to provide constructive
feedback to any of the posted questions. This is an excellent way to contribute to the community and share your
knowledge!

Adafruit Github

Whether you're just beginning or are life-long programmer who would like to contribute, there are ways for everyone
to be a part of building CircuitPython. GitHub is the best source of ways to contribute to CircuitPython itself. If you need
an account, visit https://github.com/ and sign up.

If you're new to GitHub or programming in general, there are great opportunities for you. Head over to
adafruit/circuitpython on GitHub, click on "Issues", and you'll find a list that includes issues labeled "good first issue".
These are things we've identified as something that someone with any level of experience can help with. These issues
include options like updating documentation, providing feedback, and fixing simple bugs.

Already experienced and looking for a challenge? Checkout the rest of the issues list and you'll find plenty of ways to
contribute. You'll find everything from new driver requests to core module updates. There's plenty of opportunities for
everyone at any level!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 55 of 122

https://github.com/adafruit/circuitpython
https://github.com/
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/issues?page=1&q=is%3Aissue+is%3Aopen
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22

When working with CircuitPython, you may find problems. If you find a bug, that's great! We love bugs! Posting a
detailed issue to GitHub is an invaluable way to contribute to improving CircuitPython. Be sure to include the steps to
replicate the issue as well as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of CircuitPython or a library onto
your CircuitPython hardware, and use it. Let us know about any problems you find by posting a new issue to GitHub.
Software testing on both current and beta releases is a very important part of contributing CircuitPython. We can't
possibly find all the problems ourselves! We need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and much more. If you have
questions, remember that Discord and the Forums are both there for help!

ReadTheDocs

ReadTheDocs is a an excellent resource for a more in depth look at CircuitPython. This is where you'll find things like
API documentation and details about core modules. There is also a Design Guide that includes contribution guidelines
for CircuitPython.

RTD gives you access to a low level look at CircuitPython. There are details about each of the core modules. Each
module lists the available libraries. Each module library page lists the available parameters and an explanation for
each. In many cases, you'll find quick code examples to help you understand how the modules and parameters work,
however it won't have detailed explanations like the Learn Guides. If you want help understanding what's going on
behind the scenes in any CircuitPython code you're writing, ReadTheDocs is there to help!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 56 of 122

https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/en/2.x/shared-bindings/index.html

CircuitPython Playground
Here's a bunch of examples you can get started with your Gemma M0 + CircuitPython

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 57 of 122

CircuitPython Expectations
CircuitPython runs nicely on the Gemma or Trinket M0 but there are some constraints

Small Disk Space

Since we use the internal flash for disk, and that's shared with runtime code, its limited! Only about 50KB of space. Our
Express line of boards have a whopping 2 MB of external Flash, if you need more space

No PWM & PulseIO

As of CircuitPython 2.1 we have added PulseIO support to Trinket & Gemma M0. That means PWM, piezo, servo,
DHT22 and Infrared support!

No Audio or NVM

Part of giving up that FLASH for disk means we couldn't fit everything in. There is, at this time, no support for hardware
audio playpack or NVM 'eeprom'. For that support, check out the Circuit Playground Express or other Express boards

However, I2C, UART, capacitive touch, NeoPixel, PWM, analog in and out, digital IO, logging storage, and HID do work!
Check below for quick starts on all these.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 58 of 122

CircuitPython Built-Ins
CircuitPython comes 'with the kitchen sink' - a lot of the things you know and love about classic Python 3 (sometimes
called CPython) already work. There are a few things that don't but we'll try to keep this list updated as we add more
capabilities!

Things that are Built In and Work

flow control

All the usual if , elif , else , for , while ... work just as expected

math

import math will give you a range of handy mathematical functions

>>> dir(math)
['__name__', 'e', 'pi', 'sqrt', 'pow', 'exp', 'log', 'cos', 'sin', 'tan', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'copysign', 'fabs', 'floor', 'fmod', 'frexp',

'ldexp', 'modf', 'isfinite', 'isinf', 'isnan', 'trunc', 'radians', 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int's and float's whenever you expect

tuples, lists, arrays, and dictionaries

You can organize data in ()', []'s , and {}'s including strings, objects, floats, etc

classes/objects and functions

We use objects and functions extensively in our libraries so check out one of our many examples like this MCP9808
library for class examples

lambdas

Yep! You can create function-functions with lambda just the way you like em:

>>> g = lambda x: x**2
>>> g(8)
64

Things to watch out for!

The wide body of python libraries have not been ported over, so while we wish you could import numpy , numpy
isn't available. So you may have to port some code over yourself!
For the ATSAMD21 based boards (Feather M0, Metro M0, Trinket M0, Gemma M0, Circuit PlayGround Express)
there's a limited amount of RAM, we've found you can have about 250-ish lines of python (that's with various
libraries) before you hit MemoryErrors. The upcoming SAMD51 chipset will help with that a ton but its not yet
available)
Non-Express boards like Trinket M0 and Gemma M0 and non-Express Feathers do not include all of the
hardware support. For example, audioio and bitbangio are not included.
Integers can only be up to 31 bits. Integers of unlimited size are not supported.

This is not an exhaustive list! It's just some of the many featuers you can use

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 59 of 122

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808adafruit_mcp9808.py

We keep up with MicroPython stable releases, so check out the core 'differences' they document here.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 60 of 122

http://docs.micropython.org/en/latest/pyboard/genrst/index.html

CircuitPython Digital In & Out
The first part of interfacing with hardware is being able to manage digital inputs and outputs. With Circuitpython it's
super easy!

This quick-start example shows how you can turn one of the Gemma pads into a button input with pullup resistor (built
in) and then use that to control another digital output - the built in LED

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

Note that we made the code a little less 'pythonic' than necessary, the if/then could be replaced with a simple led.value

= not button.value but I wanted to make it super clear how to test the inputs. When the interpreter gets to evaluating
button.value that is when it will read the digital input.

Find the pin or pad labeled D2 (sometimes just 2) and use a wire to touch it to GND, the onboard red LED will turn on!

Note that on the M0/SAMD based CircuitPython boards, at least, you can also have internal pulldowns with Pull.DOWN
and if you want to turn off the pullup/pulldown just assign button.pull = None

CircuitPython IO demo #1 - General Purpose I/O

from digitalio import DigitalInOut, Direction, Pull
import board
import time

led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT

button = DigitalInOut(board.D2)
button.direction = Direction.INPUT
button.pull = Pull.UP

while True:
 # we could also just do "led.value = not button.value" !
 if button.value:
 led.value = False
 else:
 led.value = True

 time.sleep(0.01) # debounce delay

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 61 of 122

CircuitPython Analog In
This quick-start example shows how you can read the analog voltages on all three Gemma M0 pads.

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

Creating analog inputs

analog0in = AnalogIn(A0)
analog1in = AnalogIn(A1)
analog2in = AnalogIn(A2)

Creates three objects, one for each pad, and connects the objects to A0, A1 and A2 as analog inputs.

GetVoltage Helper

getVoltage(pin) is our little helper program. By default, analog readings will range from 0 (minimum) to 65535
(maximum). This helper will convert the 0-65535 reading from pin.value and convert it a 0-3.3V voltage reading.

Main Loop

The main loop is simple, it will just print out the three voltages as floating point values (the %f indicates to print as
floating point) by calling getVoltage on each of our analog objects.

If you connect to the serial port REPL, you'll see the voltages printed out. By default the pins are floating so the
voltages will vary. Try touching a wire from A0 to the GND or 3Vo pad to see the voltage change!

Gemma IO demo - analog inputs

from digitalio import DigitalInOut, Direction
from analogio import AnalogIn
import board
import time

led = DigitalInOut(board.L)
led.direction = Direction.OUTPUT

analog0in = AnalogIn(board.A0)
analog1in = AnalogIn(board.A1)
analog2in = AnalogIn(board.A2)

def getVoltage(pin):
 return (pin.value * 3.3) / 65536

while True:
 print("A0: %f \t\t A1: %f \t\t A2: %f" %
 (getVoltage(analog0in),
 getVoltage(analog1in),
 getVoltage(analog2in)))

 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 62 of 122

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 63 of 122

CircuitPython Analog Out
This quick-start example shows how you can set the DAC (true analog voltage output) on pad A0 (no other pins do
analog out)

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

Creating an analog output

aout = AnalogOut(A0)

Creates an object aout that is connected to the only DAC pin available - A0.

Setting the analog output

The DAC on the SAMD21 is a 10-bit output, from 0-3.3V. So in theory you will have a resolution of 0.0032 Volts per bit.
To allow CircuitPython to be general-purpose enough that it can be used with chips with anything from 8 to 16-bit
DACs, the DAC takes a 16-bit value and divides it down internally.

E.g. writing 0 will be the same as setting it to 0 - 0 Volts out

Writing 5000 is the same as setting it to 5000 / 64 = 78
And 78 / 1024 * 3.3V = 0.25V output

Writing 65535 is the same as 1023 which is the top range and you'll get 3.3V output

Main Loop

The main loop is fairly simple, it just goes through the entire range of the DAC, from 0 to 65535, but increments 64 at a
time so it ends up clicking up one bit for each of the 10-bits of range available.

CircuitPython is not terribly fast, so at the fastest update loop you'll get 4 Hz. The DAC isn't good for audio outputs as-
is.

If you have an 'Express' board like the Circuit Playground Express, Metro M0 or Feather M0, these have more code
space and can perform audio playback capabilities via the DAC. Gemma/Trinket M0 cannot!

CircuitPython IO demo - analog output

from analogio import AnalogOut
import board
import time

aout = AnalogOut(board.A0)

while True:
 # Count up from 0 to 65535, with 64 increment
 # which ends up corresponding to the DAC's 10-bit range
 for i in range (0,65535,64):
 aout.value = i

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 64 of 122

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 65 of 122

CircuitPython PWM
As of CircuitPython 2.1 we have pulseio support for Gemma, so you can PWM LEDs, control servos, beep piezos, and
manage 'pulse train' type devices like DHT22 and Infrared.

On Gemma, you get two PWMs, D0 and D2. Actually, you get a third, but that's on the L LED). D1/A0 has true analog
out but does not have PWM!

Timer mapping

There's a limited number of timers available. But timers have many outputs. You have have two PWM outputs that
share a timer but they must have the same frequency (they can vary the duty cycle just not frequency)

When you create an pulseio object, the lowest # Timer that is not already being used, will be used.

So, LED can use timer 0 or timer 4, but will default to the lowest timer. If you want to use all three, define D0's and D2's
PWM objects first! Then you can change the LED pin's frequency

PWM Output with Fixed Frequency

This sketch demonstrates how to create two PWM outputs on each pin.

The frequency for D2 and D0 must be the same (1000 hz) but you can vary the duty cycle between the two!

Don't forget you have to update your CircuitPython firmware to 2.1 to get this support!

Pin name Timers Available

D0 Timer #0

D2 Timer #0

L (LED) Timer #0 and Timer #4

Both D0 and D2 are on the same timer so if you want to use both at the same time, they MUST be the same
frequency!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 66 of 122

Create a PWM output with pulseio.PWMOut and pass in the pin to use, then you can set the initial frequency and also
initial duty_cycle !

PWM Output with Variable Frequency

Fixed frequency outputs are great for pulsing LEDs or controlling servos. But if you want to make some beeps with a
piezo, you'll need to vary the frequency.

Remember that on the Gemma, both PWM outputs are on a single timer, so you can only have one variable frequency
output - but it can be on either pin

If you have simpleio library installed we have a nice little helper that makes a tone for you on a piezo with a single
command:

import pulseio
import time
import board

pwm0 = pulseio.PWMOut(board.D0, frequency=1000, duty_cycle=0)
pwm2 = pulseio.PWMOut(board.D2, frequency=1000, duty_cycle=0)

led = pulseio.PWMOut(board.L, frequency=5000, duty_cycle=0)

while True:
 for i in range(100):
 # PWM D0 from low to high duty cycle
 pwm0.duty_cycle = int(i * 65535 / 100)
 # PWM D2 from high to low
 pwm2.duty_cycle = 65535 - pwm0.duty_cycle
 time.sleep(0.01)
 # PWM LED up and down
 if i < 50:
 led.duty_cycle = int(i * 2 * 65535 / 100) # up
 else:
 led.duty_cycle = 65535 - int((i-50) * 2 * 65535 / 100) # down

import pulseio
import time
import board

piezo = pulseio.PWMOut(board.D2, duty_cycle=0, frequency=440, variable_frequency=True)

while True:
 for f in (262, 294, 330, 349, 392, 440, 494, 523):
 piezo.frequency = f
 piezo.duty_cycle =65536//2 # on 50%
 time.sleep(0.25) # on for 1/4 second
 piezo.duty_cycle = 0 # off
 time.sleep(0.05) # pause between notes
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 67 of 122

As you can tell, its a lot prettier!

import pulseio
import time
import board
import simpleio

while True:
 for f in (262, 294, 330, 349, 392, 440, 494, 523):
 simpleio.tone(board.D2, f, 0.25) # on for 1/4 second
 time.sleep(0.05) # pause between notes
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 68 of 122

CircuitPython Servo
In order to use servos, we take advantage of pulseio . Now, in theory, you could just use the raw pulseio calls to set the
frequency to 50 Hz and then set the pulse widths. But we would rather make it a little more elegant and easy!

So, instead we will use simpleio which manages servos for you quite nicely! simpleio is a library so be sure to grab it
from the library bundle if you have not yet!

Wiring

Connect the servo's brown or black ground wire to ground on the CircuitPython board.

Connect the servo's red power wire to 5V power, USB power is good for a servo or two. For more than that, you'll need
an external battery back. Do not use 3.3V for powering a servo!

Connect the servo's yellow or white signal wire to the control/data pin, in this case D2 but you can pin any PWM-
capable pin.

Here's an example that will sweep a servo connected to pin D2 from 0 degrees to 180 degrees and back

If you are using a non-Express (Gemma, Trinket, Adalogger...) you must be running CircuitPython 2.1+ to get
PWM support

Servos will only work on PWM-capable pins! Check your board details to verify which pins have PWM/Timer
outputs

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 69 of 122

https://github.com/adafruit/Adafruit_CircuitPython_Bundle

Pretty simple!

Note that we assume that 0 degrees is 0.5ms and 180 degrees is a pulse width of 2.5ms. That's a bit wider than
the official 1-2ms pulse widths. If you have a servo that has a different range you can just initialize the Servo object with
a different min/max pulse:

servo = simpleio.Servo(board.D2, min_pulse = 0.5, max_pulse = 2.5):

You can have a servo on each pin that has a timer. Note that the timer gets set to 50 Hz so if you want a PWM with a
different frequency have it on a pin that isn't the same timer (check the CircuitPython PWM page for more details on
timers)

import time
import board
import simpleio

servo = simpleio.Servo(board.D2)

sweep back and forth!
while True:
 for angle in range (0, 180, 5): # 0-180 degrees, 5 degrees at a time
 servo.angle = angle
 time.sleep(0.05)
 for angle in range (180, 0, -5): # 180-0 degrees, 5 degrees at a time
 servo.angle = angle
 time.sleep(0.05)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 70 of 122

CircuitPython Cap Touch
This quick-start example shows how you can read the capacitive touch sensors built into on all three Gemma M0 pads.

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

You can open up the serial console to see the touches detected and printed out.

Gemma IO demo - captouch

import touchio
import board
import time

touch0 = touchio.TouchIn(board.A0)
touch1 = touchio.TouchIn(board.A1)
touch2 = touchio.TouchIn(board.A2)

while True:
 if touch0.value:
 print("A0 touched!")
 if touch1.value:
 print("A1 touched!")
 if touch2.value:
 print("A2 touched!")
 time.sleep(0.01)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 71 of 122

Creating an capacitive touch input

All three pads can be used as capacitive TouchIn devices:

touch0 = touchio.TouchIn(A0)
touch1 = touchio.TouchIn(A1)
touch2 = touchio.TouchIn(A2)

Creates three objects, one connected to each of the Gemma M0 pads.

Main Loop

The main loop checks each sensor one after the other, to determine if it has been touched. If touch0.value returns True,
that means that that pad, A0 , detected a touch. For each pad, if it has been touched, a message will print.

A small sleep delay is added at the end so the loop doesn't run too fast. You may want to change the delay from 0.1
seconds to 0 seconds to slow it down or speed it up.

Note that no extra hardware is required, you can touch the pads directly, but you may want to attach alligator clips or
foil tape to metallic or conductive objects. Try silverware, fruit or other food, liquid, aluminum foil, and items around
your desk!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 72 of 122

You may need to restart your code/board after changing the attached item because the capacitive touch code
'calibrates' based on what it sees when it first starts up. So if you get too many touch-signals or not enough, hit that
reset button!

Copper Foil Tape with Conductive Adhesive - 6mm x 15
meter roll
PRODUCT ID: 1128

https://adafru.it/eNZ $5.95
IN STOCK

Copper Foil Tape with Conductive Adhesive - 25mm x 15
meter roll
PRODUCT ID: 1127

https://adafru.it/y8F $19.95
IN STOCK

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 73 of 122

https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1127

Small Alligator Clip Test Lead (set of 12)
PRODUCT ID: 1008

https://adafru.it/dWJ $3.95
IN STOCK

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 74 of 122

https://www.adafruit.com/product/1008

CircuitPython Internal DotStar
This quick-start example builds upon the previous example, but shows how you can create interactivity using
capacitive touch. It also demonstrates the built in DotStar LED and how you can change the color on your own.

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

Each of the three pads will change the color of the built in mini DotStar LED. You can touch each pad in order to see
the LED change colors, or you can open up the serial console to see the touches detected and the pixel color printed
out.

Gemma IO demo - captouch to dotstar

import touchio
import busio
import board
import time

dotstar = busio.SPI(board.APA102_SCK, board.APA102_MOSI)
touch0 = touchio.TouchIn(board.A0)
touch1 = touchio.TouchIn(board.A1)
touch2 = touchio.TouchIn(board.A2)

r = g = b = 0

def setPixel(red, green, blue):
 if not dotstar.try_lock():
 return
 print("setting pixel to: %d %d %d" % (red, green, blue))

 data = bytearray([0x00, 0x00, 0x00, 0x00,
 0xff, blue, green, red,
 0xff, 0xff, 0xff, 0xff])
 dotstar.write(data)
 dotstar.unlock()
 time.sleep(0.01)

while True:
 if touch0.value:
 r = (r+1) % 256
 if touch1.value:
 g = (g+1) % 256
 if touch2.value:
 b = (b+1) % 256

 setPixel(r, g, b)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 75 of 122

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 76 of 122

CircuitPython UART Serial
This quick-start example shows how you can create a UART device for communicating with hardware serial devices

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

In addition to the USB-serial connection you use for the REPL, there is also a hardware UART you can use. This is
handy to talk to UART devices like GPS's, some sensors, or other microcontrollers!

You can create a new UART object with uart = busio.UART(D0, D2, baudrate=9600) You can use only D0 and D2 as the
transmitting and receiving pins on the Gemma M0. Set the baudrate to whatever you like.

Once the object is created you read data in with read(numbytes) where you can specify the max number of bytes. It will
return a bytearray type object if anything was received already. Note it will always return immediately because there is
an internal buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None , so check for that before continuing.

The data that is returned is in a byte array, if you want to convert it to a string, you can use this handy line of code
which will run chr() on each byte:

datastr = ''.join([chr(b) for b in data]) # convert bytearray to string

For more UART details, check out the module

documentation!

https://adafru.it/yCH

To run this demo, you'll need something to generate UART data. We connected up a GPS!

Gemma IO demo - USB/Serial echo

from digitalio import *
from board import *
import busio
import time

led = DigitalInOut(D13)
led.direction = Direction.OUTPUT

uart = busio.UART(D0, D2, baudrate=9600)

while True:
 data = uart.read(32) # read up to 32 bytes
 #print(data) # this is a bytearray type

 if data != None:
 led.value = True

 datastr = ''.join([chr(b) for b in data]) # convert bytearray to string
 print(datastr, end="")

 led.value = False

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 77 of 122

https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/UART.html

gemma + gps Fritzing File

https://adafru.it/yCI

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 78 of 122

https://cdn-learn.adafruit.com/assets/assets/000/045/680/original/gemmagps.fzz?1503440092

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 79 of 122

CircuitPython I2C Scan
This quick-start example shows how you can use CircuitPython to scan the I2C bus for all connected devices

Copy and paste the code block into main.py using your favorite text editor, and save the file, to run the demo

You can also use the Gemma to chat with I2C sensors and devices. Before you start, we recommend connecting it up
and doing an I2C scan so you can tell if it was detected.

You can create the I2C devices on the Gemma M0's D2 (SCL) and D0 (SDA) pins.

Then run a scan with i2c.scan() It will return an array of addresses, but since usually they are referred to in hex format,
you may want to convert the array to hexadecimals with [hex(i) for i in i2c.scan()])

Gemma/Trinket IO demo - I2C scan

import board
import busio
import time

can also use board.SDA and board.SCL for neater looking code!
i2c = busio.I2C(board.D2, board.D0)

while not i2c.try_lock():
 pass

while True:
 print("I2C addresses found:", [hex(i) for i in i2c.scan()])
 time.sleep(2)

Don't forget that the Gemma M0 does not have I2C pullup resistors built in, you must add 2.2-10K ohm

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 80 of 122

We wired up a Flora TSL2561 breakout with address 0x39 to test it!

Gemma + TSL Fritzing File

https://adafru.it/yCJ

pullups on both SDA and SCL to 3.3V (our breakouts come with them already)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 81 of 122

https://cdn-learn.adafruit.com/assets/assets/000/045/684/original/gemmatsl.fzz?1503441416

CircuitPython I2C Sensor
We have drivers for many popular I2C sensors in our driver bundle (and more being written all the time!)

I2C is a 2-wire protocol for communicating with simple sensors and devices and its really easy to use with
CircuitPython

Remember that the Gemma & Trinket M0 does not have the required i2c pull-up resistors on SDA or SCL! You must
have those on the sensor board (all of ours do) or add them yourself. 10K ohm pullups to 3.3V work well, you cannot
use the 'internal' pullups.

Lets try wiring up to a nice Si7021 temperature & humidity sensor:

We used our Alligator-to-breadboard wires to connect

up the Gemma to a Si7021 breakout

Vin connects to 3.3V

GND connects to GND

SDA connects to D0

SCL connects to D2

I2C sensor demo

import board
import busio
import adafruit_si7021
import time

i2c = busio.I2C(board.SCL, board.SDA)

lock the I2C device before we try to scan
while not i2c.try_lock():
 pass
print("I2C addresses found:", [hex(i) for i in i2c.scan()])

unlock I2C now that we're done scanning.
i2c.unlock()

Create library object on our I2C port
si7021 = adafruit_si7021.SI7021(i2c)

Use library to read the data!
while True:
 print("Temp: %0.2F *C Humidity: %0.1F %%" % (si7021.temperature, si7021.relative_humidity))
 time.sleep(1)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 82 of 122

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/tree/master/libraries/drivers
https://learn.adafruit.com/assets/46799

With a Trinket M0, a small breadboard fits both pieces,

just wire it up so

Vin connects to 3.3V

GND connects to GND

SDA connects to D0

SCL connects to D2

Then check the REPL. If you have not yet used this chip you may get an ImportError: no module named
'adafruit_si7021'

Adafruit Si7021 Temperature & Humidity Sensor Breakout
Board
PRODUCT ID: 3251

https://adafru.it/y6F $6.95
IN STOCK

Small Alligator Clip to Male Jumper Wire Bundle - 12 Pieces
PRODUCT ID: 3255

https://adafru.it/xAV $7.95
OUT OF STOCK

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 83 of 122

https://learn.adafruit.com/assets/46800
https://www.adafruit.com/product/3251
https://www.adafruit.com/product/3255

That means you need to install the Adafruit_Si7021 library that gives you the friendly interface we use above.

Check out our page on Installing Libraries to learn how to download the driver bundle and drag the driver you need to
the lib folder

You will also need the adafruit_bus_device library folder - that will give you I2C access in a nice manner!

Once you're done you'll see you have the libraries installed:

Finally if you re-run you will be able to see the temperature and humidity data from the sensor:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 84 of 122

file:///adafruit-gemma-m0/installing-libraries

CircuitPython NeoPixel
NeoPixels are a revolutionary and ultra-popular way to add lights and color to your project. These stranded RGB lights
have the controller inside the LED, so you just push the RGB data and the LEDs do all the work for you! They're a
perfect match for CircuitPython

You can drive 300 pixels with brightness control and 1000 pixels without (set brightness=1.0 in object creation). That's
because to adjust the brighness we have to dynamically re-create the datastream each write.

Here's an example with a lot of different visual effects you can check out. You'll need the neopixel.mpy library file if you
don't have it yet!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 85 of 122

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

This code will work with any NeoPixel-compatible.

NeoPixels can be driven by any pin.

For powering the pixels from the board, the 3.3V regulator output from the Trinket/Gemma M0 can handle about
500mA peak which is about 50 pixels with 'average' use. If you want really bright lights and a lot of pixels, we
recommend powering direct from the power source. On the Gemma M0 this is the Vout pad - that pad has direct
power from USB or BAT, depending on which is higher voltage. On the Trinket M0 the USB or BAT pins will give you

CircuitPython demo - NeoPixel

import board
import neopixel
import time

pixpin = board.D1
numpix = 10

strip = neopixel.NeoPixel(pixpin, numpix, brightness=0.3, auto_write=False)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if (pos < 0) or (pos > 255):
 return (0, 0, 0)
 if (pos < 85):
 return (int(pos * 3), int(255 - (pos*3)), 0)
 elif (pos < 170):
 pos -= 85
 return (int(255 - pos*3), 0, int(pos*3))
 else:
 pos -= 170
 return (0, int(pos*3), int(255 - pos*3))

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(len(strip)):
 idx = int ((i * 256 / len(strip)) + j)
 strip[i] = wheel(idx & 255)
 strip.write()
 time.sleep(wait)

while True:
 strip.fill((255, 0, 0))
 strip.write()
 time.sleep(1)

 strip.fill((0, 255, 0))
 strip.write()
 time.sleep(1)

 strip.fill((0, 0, 255))
 strip.write()
 time.sleep(1)

 rainbow_cycle(0.001) # rainbowcycle with 1ms delay per step

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 86 of 122

direct power from the USB port or battery.

The NeoPixel object's argument list requires the pin you'll use (any pin can be used) and the number of pixels. There's
two optional arguments, brightness (range from 0 off to 1.0 full brightness) and auto_write . When auto_write default is
set to True , every change is immediately written to the strip of pixels, this is easier to use but way slower. if you set
auto_write=False then you will have to call strip.show() when you want to actually write color data out.

You can easily set colors by indexing into the location strip[n] = (red, green, blue) . For example, strip[0] = (100, 0, 0) will
set the first pixel to a medium-brightness red, and strip[2] = (0, 255, 0) will set the third pixel to bright green. Then, if you
have auto_write=False don't forget to call strip.show()

Verify the wiring on your strip or device - plugging into the 'DOUT' side is a common mistake! Wire up NeoPixels only
while the Trinket or Gemma is not on, to avoid possible damage!

If the power to the NeoPixels is > 5.5V you may have some difficulty driving some strips, in which case you may need
to lower the voltage to 4.5-5V or use a level shifter

We have a ton more information on general purpose NeoPixel know-how at our NeoPixel UberGuide
https://learn.adafruit.com/adafruit-neopixel-uberguide

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 87 of 122

https://learn.adafruit.com/adafruit-neopixel-uberguide

CircuitPython DotStar
DotStars use two wires, unlike NeoPixel's one wire. They're very similar but you can write to DotStars much faster with
hardware SPI and they have a faster PWM cycle so they are better for light painting.

You can drive 300 pixels with brightness control and 1000 pixels without (set brightness=1.0 in object creation). That's
because to adjust the brighness we have to dynamically re-create the datastream each write.

Here's an example with a lot of different visual effects you can check out. You'll need the adafruit_dotstar.mpy library
file if you don't have it yet!

The DotStar object's argument list requires the two pins you'll use and the number of pixels. Any pins can be used but
if the two pins can form a hardware SPI port, the library will automatically switch over to hardware SPI. If you use
hardware SPI then you'll get 4 MHz clock rate (that would mean updating a 64 pixel strand in about 500uS - that's
0.0005 seconds). If you use non-hardware SPI pins you'll drop down to about 3KHz, 1000 times as slow!

On the Gemma M0, if you use adafruit_dotstar.DotStar(board.D2, board.D0...) you'll get hardware SPI

On the Trinket M0, you can use D2 & D0, D2 & D3, D3 & D0, or D3 & D4

There's two optional arguments, brightness (range from 0 off to 1.0 full brightness) and auto_write. When auto_write

default is set to True, where every change is immediately written to the strip of pixels, this is easier to use but way
slower. if you set auto_write=False then you will have to call strip.show() when you want to actually write color data out.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 88 of 122

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

This code will work with any DotStar-compatible.

DotStars can be driven by any two pins (just slower if they are not hardware pins)

For powering the pixels from the board, the 3.3V regulator output from the Trinket/Gemma M0 can handle about
500mA peak which is about 50 pixels with 'average' use. If you want really bright lights and a lot of pixels, we
recommend powering direct from the power source. On the Gemma M0 this is the Vout pad - that pad has direct
power from USB or BAT, depending on which is higher voltage. On the Trinket M0 the USB or BAT pins will give you
direct power from the USB port or battery.

CircuitPython demo - Dotstar

import board
import adafruit_dotstar
import time

numpix = 64
strip = adafruit_dotstar.DotStar(board.D2, board.D0, numpix, brightness=0.2)

def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if (pos < 0) or (pos > 255):
 return (0, 0, 0)
 if (pos < 85):
 return (int(pos * 3), int(255 - (pos*3)), 0)
 elif (pos < 170):
 pos -= 85
 return (int(255 - pos*3), 0, int(pos*3))
 else:
 pos -= 170
 return (0, int(pos*3), int(255 - pos*3))

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(len(strip)):
 idx = int ((i * 256 / len(strip)) + j)
 strip[i] = wheel(idx & 255)
 strip.show()
 time.sleep(wait)

while True:
 strip.fill((255, 0, 0))
 strip.show()
 time.sleep(1)

 strip.fill((0, 255, 0))
 strip.show()
 time.sleep(1)

 strip.fill((0, 0, 255))
 strip.show()
 time.sleep(1)

 rainbow_cycle(0.001) # high speed rainbow cycle w/1ms delay per sweep

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 89 of 122

The DotStar object's argument list requires the 2 pins you'll use and the number of pixels. There's two optional
arguments, brightness (range from 0 off to 1.0 full brightness) and auto_write. When auto_write default is set to True,
where every change is immediately written to the strip of pixels, this is easier to use but way slower. if you set
auto_write=False then you will have to call strip.show() when you want to actually write color data out.

You can easily set colors by indexing into the location strip[n] = (red, green, blue) . For example, strip[0] = (100, 0, 0) will
set the first pixel to a medium-brightness red, and strip[2] = (0, 255, 0) will set the third pixel to bright green. Then, if you
have auto_write=False don't forget to call strip.show()

Verify the wiring on your strip or device - plugging into the 'DOUT' side is a common mistake! Wire up DotStars only
while the Trinket/Gemma is not on, to avoid possible damage!

If the power to the pixels is > 5.5V you may have some difficulty driving some strips, in which case you may need to
lower the voltage to 4.5-5V or use a level shifter

We have a ton more information on general purpose DotStar know-how at our DotStar UberGuide
https://learn.adafruit.com/adafruit-dotstar-leds

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 90 of 122

https://learn.adafruit.com/adafruit-dotstar-leds

CircuitPython HID Keyboard
One of the things we baked into CircuitPython is 'HID' control - Keyboard and Mouse capabilities. This means a Trinket
or Gemma can act like a keyboard device and press keys, or a mouse and have it move the mouse around and press
buttons. This is really handy because even if you cannot adapt your software to work with hardware, there's almost
always a keyboard interface - so if you want to have a capacitive touch interface for a game, say, then keyboard
emulation can often get you going really fast!

You'll need to install the adafruit_hid bundle which comes with Keyboard, Keycode and Mouse support

Then try running this example code which will create 3 'buttons' on three Trinket or Gemma pins

CircuitPlayground demo - Keyboard emu

from digitalio import DigitalInOut, Direction, Pull
import touchio
import board
import time
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keycode import Keycode
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS

A simple neat keyboard demo in circuitpython

The button pins we'll use, each will have an internal pullup
buttonpins = [board.D2, board.D1, board.D0]
our array of button objects
buttons = []
The keycode sent for each button, will be paired with a control key
buttonkeys = [Keycode.A, Keycode.B, "Hello World!\n"]
controlkey = Keycode.SHIFT

the keyboard object!
kbd = Keyboard()
we're americans :)
layout = KeyboardLayoutUS(kbd)

make all pin objects, make them inputs w/pullups
for pin in buttonpins:
 button = DigitalInOut(pin)
 button.direction = Direction.INPUT
 button.pull = Pull.UP
 buttons.append(button)

led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT

print("Waiting for button presses")

while True:
 # check each button
 for button in buttons:
 if not button.value: # pressed?
 i = buttons.index(button)
 print("Button #%d Pressed" % i)

 # turn on the LED
 led.value = True

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 91 of 122

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Touch any of the digital IO pads to ground using a wire to have the keypresses sent.

The Keyboard and Layout object are created, we only have US right now (if you make other layouts please submit a
GitHub pull request!)

the keyboard object!
kbd = Keyboard()
we're americans :)
layout = KeyboardLayoutUS(kbd)

Then you can send key-down's with kbd.press(keycode, ...) You can have up to 6 keycode presses at once. Note that
these are keycodes so if you want to send a capital A, you need both SHIFT and A. Don't forget to call kbd.release_all()

soon after or you'll have a stuck key which is really annoying!

You can also send full strings, with layout.write("Hello World!\n") - it will use the layout to determine the keycodes to
press.

 led.value = True

 while not button.value:
 pass # wait for it to be released!
 # type the keycode or string
 k = buttonkeys[i] # get the corresp. keycode/str
 if type(k) is str:
 layout.write(k)
 else:
 kbd.press(controlkey, k) # press...
 kbd.release_all() # release!

 # turn off the LED
 led.value = False

 time.sleep(0.01)

For more detail check out the documentation at https://circuitpython.readthedocs.io/projects/hid/en/latest/

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 92 of 122

https://circuitpython.readthedocs.io/projects/hid/en/latest/

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 93 of 122

CircuitPython DHT Sensor
DHT sensors are low cost humidity and temperature sensors with maker/beginner-level quality. Their simplicity makes
them popular for many DIY projects. And you can use them with CircuitPython!

Wiring

DHT wiring is very simple:

The left-most pin is power. We recommend powering from 5V (sometimes 3V is not enough) - this is OK even if
you are using 3.3V logic
The second pin is data. Connect a 10K pullup resistor from this pin to 3.3V. If you are using a DHT11 it's required.
If you're using a DHT22 or AM2302 you can sometimes leave this off
Skip the third pin
The right-most pin is ground

Here's an example using a Trinket M0 - you can use any CircuitPython board, just check that the Data pin is pulseio -
capable.

You'll need the adafruit_dht library from the bundle so be sure that's installed, then you can run this code:

For the DATA pin you must pick a pin that has PWM support (pulseio) - Check the board's guide for what pins
have timers available

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 94 of 122

If you are using a DHT11, change the code to use a adafruit_dht.DHT11(board.D2) object.

Open the REPL to see the output! Breathe on the sensor to see it move temperature and humidity up (unless you are a
White Walker in which case the temperature will go down)

Don't be concerned if once in a while you get an error, these sensors are pretty basic and sometimes the data transfer
fails. The code will just try again!

import board
import time
import adafruit_dht

dht = adafruit_dht.DHT22(board.D2)

while True:
 try:
 temperature = dht.temperature
 humidity = dht.humidity
 # Print what we got to the REPL
 print("Temp: {:.1f} *C \t Humidity: {}% ".format(temperature, humidity))
 except RuntimeError as e:
 # Reading doesn't always work! Just print error and we'll try again
 print("Reading from DHT failure: ",e.args)

 time.sleep(1)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 95 of 122

CircuitPython CPU Temp
This little built in sensor comes with all ATSAMD21 chips, and its really nice to have a temperature sensor so we let you
read it via CircuitPython, its new since 2.0.0 and only available on the ATSAMD21-based boards (e.g. not ESP8266)

It's so easy, we'll just give you the two REPL commands

That's it! You'll have the temperature in Centigrade printed out. Note it is not exactly the same as ambient temperature,
and its not super precise. But it's kinda close!

>>> import microcontroller
>>> microcontroller.cpu.temperature

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 96 of 122

CircuitPython Storage
You have been using that little USB drive to put code on, but maybe you've wondered "Hey can I write data from
Python to the storage drive to act as a datalogger?" The answer is yes (as of CircuitPython 2.0.0)!

But it is a little bit tricky - you need to add some special code to boot.py not just main.py. That's because you have to
set the filesystem to be read-only when you need to edit code to the disk from your computer, and set it to be write-
able when you want the CircuitPython core to be able to write.

Here is your new boot.py:

And here is the main.py

You can only have either your computer edit the CIRCUITPY drive files, or CircuitPython. You cannot have
both write to the drive (Bad Things Will Happen so we do not allow you to do it!)

import digitalio
import board
import storage

switch = digitalio.DigitalInOut(board.D0)
switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

If the D0 is connected to ground with a wire
CircuitPython can write to the drive
storage.remount("/", switch.value)

import board
import digitalio
import microcontroller
import time

led = digitalio.DigitalInOut(board.D13)
led.switch_to_output()

try:
 with open("/temperature.txt", "a") as fp:
 while True:
 temp = microcontroller.cpu.temperature
 # do the C-to-F conversion here if you would like
 fp.write('{0:f}\n'.format(temp))
 fp.flush()
 led.value = not led.value
 time.sleep(1)
except OSError as e:
 delay = 0.5
 if e.args[0] == 28:
 delay = 0.25
 while True:
 led.value = not led.value
 time.sleep(delay)

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 97 of 122

Eject & unplug the Trinket or Gemma once you have written these files. Then connect a wire from D0 to ground. This
will enable the internal filesystem writing. Now power up the board again.

You will not be able to edit code on the CIRCUITPY drive anymore!

The red LED should blink once a second and you will see a new temperature.txt file.

This file gets updated once a second but you wont see data come in live. Instead, when you're ready to grab the data,
remove the D0 wire and re-plug-in the Trinket/Gemma (or press the reset button). Now it will be possible for you to
write to the filesystem from your computer again, but it will not be logging data.

We have a more detailed guide on this project available here https://learn.adafruit.com/cpu-temperature-logging-with-
circuit-python

boot.py only runs on first boot of the device, not if you re-start the REPL with ^D or if you save the file, so you
must EJECT the USB drive, then physically press the reset button!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 98 of 122

file:///cpu-temperature-logging-with-circuit-python

Handy Tips
Check Heap Memory Usage
import gc

gc.mem_free()

Will give you the number of bytes available for use.

Random Numbers
import random

random.random() will give a floating point number from 0 to 1.0

random.randint(min, max) will give you an integer number between min and max

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 99 of 122

Arduino IDE Setup
The first thing you will need to do is to download the latest release of the Arduino IDE. You will need to be using
version 1.8 or higher for this guide

Arduino IDE Download

https://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will need to start the IDE and navigate
to the Preferences menu. You can access it from the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 100 of 122

http://www.arduino.cc/en/Main/Software

We will be adding a URL to the new Additional Boards Manager URLs option. The list of URLs is comma separated,
and you will only have to add each URL once. New Adafruit boards and updates to existing boards will automatically be
picked up by the Board Manager each time it is opened. The URLs point to index files that the Board Manager uses to
build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party board URLs on the Arduino IDE
wiki. We will only need to add one URL to the IDE in this example, but you can add multiple URLS by separating them
with commas. Copy and paste the link below into the Additional Boards Manager URLs option in the Arduino IDE
preferences.

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 101 of 122

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

Here's a short description of each of the Adafruit supplied packages that will be available in the Board Manager when
you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4, Trinket, & Trinket Pro.
Adafruit SAMD Boards - Includes support for Feather M0, Metro M0, Circuit Playground Express, Gemma M0
and Trinket M0
Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the Flora, Feather 32u4, Micro and
Leonardo using the arcore project.

If you have multiple boards you want to support, say ESP8266 and Adafruit, have both URLs in the text box separated
by a comma (,)

Once done click OK to save the new preference settings. Next we will look at installing boards with the Board
Manager.

Now continue to the next step to actually install the board support package!

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 102 of 122

https://github.com/rkistner/arcore

Using with Arduino IDE
Since the Feather/Metro/Gemma/Trinket M0 use an ATSAMD21 chip running at 48 MHz, you can pretty easily get it
working with the Arduino IDE. Most libraries (including the popular ones like NeoPixels and display) will work with the
M0, especially devices & sensors that use i2c or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the previous page, you can open
the Boards Manager by navigating to the Tools->Board menu.

Once the Board Manager opens, click on the category drop down menu on the top left hand side of the window and
select Contributed. You will then be able to select and install the boards supplied by the URLs added to the
prefrences.

Install SAMD Support

First up, install the Arduino SAMD Boards version 1.6.15 or later

You can type Arduino SAMD in the top search bar, then when you see the entry, click Install

Install Adafruit SAMD

Next you can install the Adafruit SAMD package to add the board file definitions

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 103 of 122

You can type Adafruit SAMD in the top search bar, then when you see the entry, click Install

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly installed. You should now be able to
select and upload to the new boards listed in the Tools->Board menu.

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)
Feather M0 Express
Metro M0 Express
Circuit Playground Express
Gemma M0
Trinket M0

Install Drivers (Windows 7 Only)

When you plug in the board, you'll need to possibly install a driver

Click below to download our Driver Installer

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 104 of 122

Download Adafruit Driver Installer v2.0.0.0

https://adafru.it/zek

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to click through the license

Select which drivers you want to install, the defaults will set you up with just about every Adafruit board!

Click Install to do the installin'

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 105 of 122

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/2.0.0.0/adafruit_drivers_2.0.0.0.exe

Blink

Now you can upload your first blink sketch!

Plug in the Gemma M0, Trinket M0, Metro M0 or Feather M0 and wait for it to be recognized by the OS (just takes a
few seconds). It will create a serial/COM port, you can now select it from the dropdown, it'll even be 'indicated' as
Trinket/Gemma/Metro/Feather M0!

Now load up the Blink example

And click upload! That's it, you will be able to see the LED blink rate change as you adapt the delay() calls.

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 106 of 122

Sucessful Upload

If you have a successful upload, you'll get a bunch of red text that tells you that the device was found and it was
programmed, verified & reset

Compilation Issues

If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Arduino & Adafruit SAMD board
packages

If you are having issues, make sure you selected the matching Board in the menu that matches the hardware
you have in your hand.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 107 of 122

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that crashes and doesn't auto-reboot
into the bootloader, click the RST button twice (like a double-click)to get back into the bootloader.

The red LED will pulse, so you know that its in bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want to use the normal upload.

Ubuntu & Linux Issue Fix

Note if you're using Ubuntu 15.04 (or perhaps other more recent Linux distributions) there is an issue with the modem
manager service which causes the Bluefruit LE micro to be difficult to program. If you run into errors like "device or
resource busy", "bad file descriptor", or "port is busy" when attempting to program then you are hitting this issue.

The fix for this issue is to make sure Adafruit's custom udev rules are applied to your system. One of these rules is
made to configure modem manager not to touch the Feather board and will fix the programming difficulty issue.
 Follow the steps for installing Adafruit's udev rules on this page.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 108 of 122

https://bugs.launchpad.net/ubuntu/+source/modemmanager/+bug/1473246
file:///adafruit-arduino-ide-setup/linux-setup#udev-rules

Adapting Sketches to M0
The ATSAMD21 is a very nice little chip but its fairly new as Arduino-compatible cores go. Most sketches & libraries will
work but here's a few things we noticed!

The below note are for all M0 boards, but not all may apply (e.g. Trinket and Gemma M0 do not have ARef so you can
skip the Analog References note!)

Analog References

If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is analogReference(AR_EXTERNAL)

(it's AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups

The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)
digitalWrite(pin, HIGH)

This is because the pullup-selection register is the same as the output-selection register.

For the M0, you can't do this anymore! Instead, use

pinMode(pin, INPUT_PULLUP)

which has the benefit of being backwards compatible with AVR.

Serial vs SerialUSB

99.9% of your existing Arduino sketches use Serial.print to debug and give output. For the Official Arduino SAMD/M0
core, this goes to the Serial5 port, which isn't exposed on the Feather. The USB port for the Official Arduino M0 core, is
called SerialUSB instead.

In the Adafruit M0 Core, we fixed it so that Serial goes to USB when you use a Feather M0 so it will automatically work
just fine.

However, on the off chance you are using the official Arduino SAMD core not the Adafruit version (which really, we
recommend you use our version because as you can see it can vary) & you want your Serial prints and reads to use
the USB port, use SerialUSB instead of Serial in your sketch

If you have existing sketches and code and you want them to work with the M0 without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)
 // Required for Serial on Zero based boards
 #define Serial SERIAL_PORT_USBVIRTUAL
#endif

right above the first function definition in your code. For example:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 109 of 122

AnalogWrite / PWM on Feather/Metro M0

After looking through the SAMD21 datasheet, we've found that some of the options listed in the multiplexer table don't
exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The Timer/Counter (TC) and
Timer/Counter for Control Applications (TCC). Each SAMD21 has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output channels. Either channel can be enabled
and disabled, and either channel can be inverted. The pins connected to a TC instance can output identical versions of
the same PWM waveform, or complementary waveforms.

Each TCC instance has a single count register, but multiple compare registers and output channels. There are options
for different kinds of waveform, interleaved switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two 'waveform output' (WO) channels, and
three TCC instances with eight WO channels:

TC[0-4],WO[0-1]
TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output channels, and three TCC instances
with eight output channels:

TC[3-5],WO[0-1]
TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as the SPI, I2C, and UART pins keep
their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13
Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the following pins:

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 110 of 122

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range

On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully HIGH. On the ARM cortex, it will set it
to be 255/256 so there will be very slim but still-existing pulses-to-0V. If you need the pin to be fully on, add test code
that checks if you are trying to analogWrite(pin, 255) and, instead, does a digitalWrite(pin, HIGH)

Missing header files

there might be code that uses libraries that are not supported by the M0 core. For example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory
 #include <util/delay.h>
 ^
compilation terminated.
Error compiling.

In which case you can simply locate where the line is (the error will give you the file name and line number) and 'wrap
it' with #ifdef's so it looks like:

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching

For most other AVRs, clicking reset while plugged into USB will launch the bootloader manually, the bootloader will
time out after a few seconds. For the M0, you'll need to double click the button. You will see a pulsing red LED to let
you know you're in bootloader mode. Once in that mode, it wont time out! Click reset again if you want to go back to
launching code

Aligned Memory Access

This is a little less likely to happen to you but it happened to me! If you're used to 8-bit platforms, you can do this nice
thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];
float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer might not be aligned to a 2 or 4-byte
boundary. The ARM Cortex-M0 can only directly access data on 16-bit boundaries (every 2 or 4 bytes). Trying to access
an odd-boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU. Thankfully, there's an easy
work around ... just use memcpy!

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !defined(ESP8266) && !defined(ARDUINO_ARCH_STM32F2)
 #include <util/delay.h>
#endif

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 111 of 122

uint8_t mybuffer[4];
float f;
memcpy(f, mybuffer, 4)

Floating Point Conversion

Like the AVR Arduinos, the M0 library does not have full support for converting floating point numbers to ASCII strings.
Functions like sprintf will not convert floating point. Fortunately, the standard AVR-LIBC library includes the dtostrf
function which can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some references to using #include
<avr/dtostrf.h> to get dtostrf in your code. And while it will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in your code:

http://forum.arduino.cc/index.php?topic=368720.0

How Much RAM Available?

The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some reason. You can do so with this handy
function:

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 for the tip!

Storing data in FLASH

If you're used to AVR, you've probably used PROGMEM to let the compiler know you'd like to put a variable or string in
flash memory to save on RAM. On the ARM, its a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the compiler will automatically read from
FLASH so you dont need special progmem-knowledgeable functions.

You can verify where data is stored by printing out the address:
Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000 and $3FFFF Then it is in FLASH

extern "C" char *sbrk(int i);

int FreeRam () {
 char stack_dummy = 0;
 return &stack_dummy - sbrk(0);
}

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 112 of 122

http://forum.arduino.cc/index.php?topic=368720.0
http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879

UF2 Bootloader Details

Adafruit Express and Gemma/Trinket M0 boards feature an improved bootloader that makes it easier than ever to flash
different code onto the microcontroller. This bootloader makes it easy to switch between Microsoft MakeCode,
CircuitPython and Arduino.

Instead of needing drivers or a separate program for flashing (say, bossac , jlink or avrdude), one can simply drag a
file onto a removable drive.

The format of the file is a little special. Due to 'operating system woes' you cannot just drag a binary or hex file (trust
us, we tried it, it isn't cross-platform compatible). Instead, the format of the file has extra information to help the
bootloader know where the data goes. The format is called UF2 (USB Flashing Format). Microsoft MakeCode
generates UF2s for flashing and CircuitPython releases are also available as UF2. You can also create your own UF2s
from binary files using uf2tool, available here.

The bootloader is also BOSSA compatible, so it can be used with the Arduino IDE which expects a BOSSA bootloader
on ATSAMD-based boards

For more information about UF2, you can read a bunch more at the MakeCode blog, then check out the UF2 file format
specification. Visit Adafruit's fork of the Microsoft UF2-samd bootloader GitHub repository for source code
and releases of pre-built bootloaders.

Entering Bootloader Mode

The first step to loading new code onto your board is triggering the bootloader. It is easily done by double tapping the
reset button. Once the bootloader is active you will see the small red LED fade in and out and a new drive will appear
on your computer with a name ending in BOOT. For example, feathers show up as FEATHERBOOT, while the new
CircuitPlayground shows up as CPLAYBOOT, Trinket M0 will show up as TRINKETBOOT, and Gemma M0 will show up
as GEMMABOOT

Furthermore, when the bootloader is active, it will change the color of one or more onboard neopixels to indicate the
connection status, red for disconnected and green for connected. If the board is plugged in but still showing that its
disconnected, try a different USB cable. Some cables only provide power with no communication.

For example, here is a Feather M0 Express running a colorful Neopixel swirl. When the reset button is double clicked
(about half second between each click) the NeoPixel will stay green to let you know the bootloader is active. When the
reset button is clicked once, the 'user program' (NeoPixel color swirl) restarts.

This is an information page for advanced users who are curious how we get code from your computer into
your Express board!

The bootloader is not needed when changing your CircuitPython code. Its only needed when upgrading the
CircuitPython core or changing between CircuitPython, Arduino and Microsoft MakeCode.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 113 of 122

https://github.com/Microsoft/uf2
https://makecode.com/blog/one-chip-to-flash-them-all
https://github.com/Microsoft/uf2
https://github.com/adafruit/uf2-samd21
https://github.com/adafruit/uf2-samd21/releases/latest

If the bootloader couldn't start, you will get a red NeoPixel LED.

That could mean that your USB cable is no good, it isn't connected to a computer, or maybe the drivers could not
enumerate. Try a new USB cable first. Then try another port on your computer!

Once the bootloader is running, check your computer. You should see a USB Disk drive...

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 114 of 122

Once the bootloader is successfully connected you can open the drive and browse the virtual filesystem. This isn't the
same filesystem as you use with CircuitPython or Arduino. It should have three files:

 CURRENT.UF2 - The current contents of the microcontroller flash.
 INDEX.HTM - Links to Microsoft MakeCode.
 INFO_UF2.TXT - Includes bootloader version info. Please include it on bug reports.

Using the Mass Storage Bootloader

To flash something new, simply drag any UF2 onto the drive. After the file is finished copying, the bootloader will
automatically restart. This usually causes a warning about an unsafe eject of the drive. However, its not a problem. The
bootloader knows when everything is copied successfully.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 115 of 122

You may get an alert from the OS that the file is being copied without it's properties. You can just click Yes

You may also get get a complaint that the drive was ejected without warning. Don't worry about this. The drive only
ejects once the bootloader has verified and completed the process of writing the new code

Using the BOSSA Bootloader

As mentioned before, the bootloader is also compatible with BOSSA, which is the standard method of updating boards
when in the Arduino IDE. It is a command-line tool that can be used in any operating system. We won't cover the full
use of the bossac tool, suffice to say it can do quite a bit! More information is available at ShumaTech.

Windows 7 Drivers

If you are running Windows 7 (or, goodness, something earlier?) You will need a Serial Port driver file. Windows 10
users do not need this so skip this step.

You can download our full driver package here:

Download Latest Adafruit Driver Installer

https://adafru.it/A0N

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 116 of 122

http://www.shumatech.com/web/products/bossa
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

Download and run the installer. We recommend just selecting all the serial port drivers available (no harm to do so) and
installing them.

Verifying Serial Port in Device Manager

If you're running Windows, its a good idea to verify the device showed up. Open your Device Manager from the control
panel and look under Ports (COM & LPT) for a device called Feather M0 or Circuit Playground or whatever!

If you see something like this, it means you did not install the drivers. Go back and try again, then remove and re-plug
the USB cable for your board

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 117 of 122

Running bossac on the command line

If you are using the Arduino IDE, this step is not required. But sometimes you want to read/write custom binary files,
say for loading CircuitPython or your own code. We recommend using bossac v 1.7.0 (or greater), which has been
tested. The Arduino branch is most recommended.

You can download the latest builds here. The mingw32 version is for Windows, apple-darwin for Mac OSX and various
linux options for Linux. Once downloaded, extract the files from the zip and open the command line to the directory
with bossac

For example here's the command line you probably want to run:

bossac -e -w -v -R ~/Downloads/adafruit-circuitpython-feather_m0_express-0.9.3.bin

This will -e rase the chip, -w rite the given file, -v erify the write and -R eset the board. After reset, CircuitPython
should be running. Express boards may cause a warning of an early eject of a USB drive but just ignore it. Nothing
important was being written to the drive. A hard power-reset is also recommended after bossac, just in case.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 118 of 122

https://github.com/shumatech/BOSSA/tree/arduino
https://github.com/shumatech/BOSSA/releases

Updating the bootloader

The UF2 bootloader is a new bootloader, and while we've done a ton of testing, it may contain bugs. Usually these
bugs effect reliability rather than fully preventing the bootloader from working. If the bootloader is flaky then you can
try updating the bootloader itself to potentially improve reliability.

Updating the bootloader is as easy as flashing CircuitPython, Arduino or MakeCode. Simply enter the bootloader as
above and then drag the update bootloader uf2 file below. This uf2 contains a program which will unlock the
bootloader section, update the bootloader, and re-lock it. It will overwrite your existing code such as CircuitPython or
Arduino so make sure everything is backed up!

After the file is copied over, the bootloader will be updated and appear again. The INFO_UF2.TXT file should show the
newer version number inside.

For example:

UF2 Bootloader v1.20.0 SFHR
Model: Adafruit Feather M0
Board-ID: SAMD21G18A-Feather-v0

Lastly, reload your code from Arduino or MakeCode or flash the latest CircuitPython core.

The latest updaters for various boards:

Circuit Playground Express v1.23 update-

bootloader.uf2

https://adafru.it/yDv

Feather M0 Express v1.23 update-

bootloader.uf2

https://adafru.it/yDw

Metro M0 Express v1.23 update-bootloader.uf2

https://adafru.it/yDx

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 119 of 122

https://github.com/adafruit/circuitpython/releases
https://cdn-learn.adafruit.com/assets/assets/000/045/717/original/update-bootloader.uf2?1503523524
https://cdn-learn.adafruit.com/assets/assets/000/045/718/original/update-bootloader.uf2?1503523551
https://cdn-learn.adafruit.com/assets/assets/000/045/719/original/update-bootloader.uf2?1503523594

Gemma M0 v1.23 update-bootloader.uf2

https://adafru.it/yDy

Trinket M0 v1.23 update-bootloader.uf2

https://adafru.it/yDz

Getting Rid of Windows Pop-ups

If you do a lot of development on Windows with the UF2 bootloader, you may get annoyed by the constant "Hey you
inserted a drive what do you want to do" pop-ups.

Go to the Control Panel. Click on the Hardware and

Sound header

Click on the Autoplay header

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 120 of 122

https://cdn-learn.adafruit.com/assets/assets/000/045/720/original/update-bootloader.uf2?1503523609
https://cdn-learn.adafruit.com/assets/assets/000/045/721/original/update-bootloader.uf2?1503523622
https://learn.adafruit.com/assets/41276
https://learn.adafruit.com/assets/41277

Uncheck the box at the top, labeled Use Autoplay for all

devices

Making your own UF2

Making your own UF2 is easy! All you need is a .bin file of a program you wish to flash and the Python conversion
script. Make sure that your program was compiled to start at 0x2000 (8k) because the bootloader takes the first 8k.
CircuitPython's linker script is an example on how to do that.

Once you have a .bin file, you simply need to run the Python conversion script over it. Here is an example from the
directory with uf2conv.py:

uf2conv.py -c -o build-circuitplayground_express/revg.uf2 build-circuitplayground_express/revg.bin

This will produce a revg.uf2 file in the same directory as the source revg.bin. The uf2 can then be flashed in the same
way as above.

© Adafruit Industries https://learn.adafruit.com/adafruit-gemma-m0 Page 121 of 122

https://learn.adafruit.com/assets/41278
https://github.com/Microsoft/uf2/blob/master/utils/uf2conv.py
https://github.com/adafruit/circuitpython/blob/master/atmel-samd/boards/samd21x18-bootloader.ld

Downloads
Files:

ATSAMD21 Datasheet
Webpage for the ATSAMD21E18 (main chip used)
EagleCAD files on GitHub
Fritzing object in Adafruit Fritzing library
PigHixxx Pinout Diagram (PDF)

Default CircuitPython files included with v2.0.0

https://adafru.it/zdG

Default CircuitPython files included with v1.0.0

https://adafru.it/yb8

Schematic & Fabrication Print

© Adafruit Industries Last Updated: 2017-12-31 09:47:23 PM UTC Page 122 of 122

https://cdn-learn.adafruit.com/assets/assets/000/044/363/original/samd21.pdf?1501106093
http://www.microchip.com/wwwproducts/en/ATSAMD21E18
https://github.com/adafruit/Adafruit-Gemma-M0-PCB
https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/049/777/original/Adafruit_Gemma_M0.pdf
https://cdn-learn.adafruit.com/assets/assets/000/046/590/original/gemma_m0_2.0.0.zip?1505610596
https://cdn-learn.adafruit.com/assets/assets/000/044/655/original/releasefiles-55c8eb5.zip?1501621643

	Guide Contents
	Overview
	Guided Tour
	Pinouts
	JST Battery Input
	Power Pads
	Input/Output Pads
	Common to all pads
	Unique pad capabilities

	Secret SWD and Reset Pads
	Windows Driver Installation
	Manual Driver Installation
	CircuitPython
	Set up CircuitPython Quick Start!
	Gemma Default Zip Install

	Installing Mu Editor
	Installing Mu for Windows or Mac OS X

	Installing Mu for Linux
	Using Mu
	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.

	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing
	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

	Back to Editing Code...
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops

	More Changes
	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Returning to the serial console
	CircuitPython Libraries
	Installing the CircuitPython Library Bundle
	Express Boards
	Non-Express Boards
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries

	Troubleshooting
	CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present
	You may have a different board.
	MakeCode
	Windows 10
	Windows 7

	CircuitPython RGB Status Light
	CIRCUITPY Drive Issues
	For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
	For Non-Express Boards (Gemma M0, Trinket M0, Feather M0 Basic Proto, and Feather Adalogger):

	Running Out of File Space on Non-Express Boards
	Delete something!
	Use tabs
	Mac OSX loves to add extra files.
	Prevent & Remove Mac OSX Hidden Files
	Copy Files on Mac OSX Without Creating Hidden Files
	Other Mac OSX Space-Saving Tips

	Welcome to the Community!
	Adafruit Discord
	Adafruit Forums
	Adafruit Github
	ReadTheDocs

	CircuitPython Playground
	CircuitPython Expectations
	Small Disk Space
	No PWM & PulseIO
	No Audio or NVM
	CircuitPython Built-Ins
	Things that are Built In and Work
	flow control
	math
	tuples, lists, arrays, and dictionaries
	classes/objects and functions
	lambdas

	Things to watch out for!
	CircuitPython Digital In & Out
	CircuitPython Analog In
	Creating analog inputs
	GetVoltage Helper
	Main Loop

	CircuitPython Analog Out
	Creating an analog output
	Setting the analog output
	Main Loop

	CircuitPython PWM
	Timer mapping
	PWM Output with Fixed Frequency
	PWM Output with Variable Frequency
	CircuitPython Servo
	Wiring
	CircuitPython Cap Touch
	Creating an capacitive touch input
	Main Loop
	Copper Foil Tape with Conductive Adhesive - 6mm x 15 meter roll
	Copper Foil Tape with Conductive Adhesive - 25mm x 15 meter roll
	Small Alligator Clip Test Lead (set of 12)

	CircuitPython Internal DotStar
	CircuitPython UART Serial
	CircuitPython I2C Scan
	CircuitPython I2C Sensor
	Adafruit Si7021 Temperature & Humidity Sensor Breakout Board
	Small Alligator Clip to Male Jumper Wire Bundle - 12 Pieces

	CircuitPython NeoPixel
	CircuitPython DotStar
	CircuitPython HID Keyboard
	CircuitPython DHT Sensor
	Wiring
	CircuitPython CPU Temp
	CircuitPython Storage
	Handy Tips
	Check Heap Memory Usage
	Random Numbers
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 Only)
	Blink
	Sucessful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	Adapting Sketches to M0
	Analog References
	Pin Outputs & Pullups
	Serial vs SerialUSB
	AnalogWrite / PWM on Feather/Metro M0
	analogWrite() PWM range
	Missing header files
	Bootloader Launching
	Aligned Memory Access
	Floating Point Conversion
	How Much RAM Available?
	Storing data in FLASH
	UF2 Bootloader Details
	Entering Bootloader Mode
	Using the Mass Storage Bootloader
	Using the BOSSA Bootloader
	Windows 7 Drivers
	Verifying Serial Port in Device Manager
	Running bossac on the command line

	Updating the bootloader
	Getting Rid of Windows Pop-ups
	Making your own UF2
	Downloads
	Files:
	Schematic & Fabrication Print

