
Adafruit Metro M0 Express - Designed for CircuitPython
Created by lady ada

Last updated on 2018-01-04 11:40:15 PM UTC

2
5
9
9

10
11
11
11
11

12
13
13
14
15
15
15

16
16
18
19
19
20
21

22
23
24
25
26

28
28
28
29
31
32
32
33
33
34
34
34
34
35

Guide Contents

Guide Contents
Overview
Pinouts
Power Connections
Logic pins

Top Row
Bottom Row
Right side
Additional analog inputs

SPI Flash and NeoPixel
Other Pins!
Debug Interface

SEGGER J-Link EDU - JTAG/SWD Debugger
SEGGER J-Link BASE - JTAG/SWD Debugger
JTAG (2x10 2.54mm) to SWD (2x5 1.27mm) Cable Adapter Board
10-pin 2x5 Socket-Socket 1.27mm IDC (SWD) Cable - 150mm long

UF2 Bootloader Details
Entering Bootloader Mode
Using the Mass Storage Bootloader
Using the BOSSA Bootloader

Windows 7 Drivers
Verifying Serial Port in Device Manager
Running bossac on the command line

Updating the bootloader
Getting Rid of Windows Pop-ups
Making your own UF2
Arduino IDE Setup

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

Using with Arduino IDE
Install SAMD Support
Install Adafruit SAMD
Install Drivers (Windows 7 Only)
Blink
Sucessful Upload
Compilation Issues
Manually bootloading
Ubuntu & Linux Issue Fix
Adapting Sketches to M0
Analog References
Pin Outputs & Pullups
Serial vs SerialUSB
AnalogWrite / PWM on Feather/Metro M0

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 2 of 81

36
36
36
36
37
37
37
38
38
40
41
42
42
43
45
45
45

45
45
45
46
46

46
46

47
47
48
48
50
51

52
52
53
54
55

56
56
56
57

57

57
58
58

analogWrite() PWM range
Missing header files
Bootloader Launching
Aligned Memory Access
Floating Point Conversion
How Much RAM Available?
Storing data in FLASH
Using SPI Flash
Read & Write CircuitPython Files
Format Flash Memory
Datalogging Example
Reading and Printing Files
Full Usage Example
Accessing SPI Flash
Metro M0 HELP!

My Metro M0 stopped working when I unplugged the USB!
My Metro never shows up as a COM or Serial port in the Arduino IDE
Ack! I "did something" and now when I plug in the Metro, it doesn't show up as a device anymore so I cant
upload to it or fix it...
I can't get the Metro USB device to show up - I get "USB Device Malfunctioning" errors!
I'm having problems with COM ports and my Metro M0
I don't understand why the COM port disappears, this does not happen on my Arduino UNO!
I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding" errors
I'm trying to upload to my Metro M0, and I get this error "Connecting to programmer: .avrdude: butterfly_recv():
programmer is not responding"
I'm trying to upload to my Metro and i get this error "avrdude: ser_recv(): programmer is not responding"

CircuitPython Setup
Downloading
Flashing
Flashing UF2
Flashing with BOSSAC

After flashing

Welcome to the Community!
Adafruit Discord
Adafruit Forums
Adafruit Github
ReadTheDocs

CircuitPython Blinky
code.py
Status LED (Gemma/Trinket/Metro/Feather)

Debugging

Libraries

More info
Connecting to the Serial Console
Are you using Mu?

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 3 of 81

59
60
63
66
68
68
69
70
70
71
71

72
72
72
72
72
72
72

72
74
74
74
74
74
74

75
76
76
76

77
77
77
77
77
78
78

80
80
80

Using Something Else?
Interacting with the Serial Console
The REPL
Returning to the serial console
CircuitPython Libraries

Installing the CircuitPython Library Bundle
Express Boards
Non-Express Boards
Example: ImportError Due to Missing Library
Library Install on Non-Express Boards
Updating CircuitPython Libraries

CircuitPython Built-Ins
Things that are Built In and Work

flow control
math
tuples, lists, arrays, and dictionaries
classes/objects and functions
lambdas

Things to watch out for!
Troubleshooting
CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present

You may have a different board.
MakeCode
Windows 10
Windows 7

CircuitPython RGB Status Light
CIRCUITPY Drive Issues

For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
For the Gemma M0, Trinket M0, Feather M0: Basic (Proto) and Feather Adalogger:

Running Out of File Space on Non-Express Boards
Delete something!
Use tabs
Mac OSX loves to add extra files.
Prevent & Remove Mac OSX Hidden Files
Copy Files on Mac OSX Without Creating Hidden Files
Other Mac OSX Space-Saving Tips

Downloads
Files
Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 4 of 81

Overview

Metro is our series of microcontroller boards for use with the Arduino IDE. This new Metro board looks a whole lot like
our original Metro 328, but with a huge upgrade. Instead of the ATmega328, this Metro features a ATSAMD21G18 chip,
an ARM Cortex M0+. It's our first Metro that is designed for use with CircuitPython! CircuitPython is our beginner-
oriented flavor of MicroPython - and as the name hints at, its a small but full-featured version of the popular Python
programming language specifically for use with circuitry and electronics.

Not only can you use CircuitPython, but the Metro M0 is also usable in the Arduino IDE.

At the Metro M0's heart is an ATSAMD21G18 ARM Cortex M0 processor, clocked at 48 MHz and at 3.3V logic, the same
one used in the new Arduino Zero. This chip has a whopping 256K of FLASH (8x more than the Atmega328) and 32K
of RAM (16x as much)! This chip comes with built in USB so it has USB-to-Serial program & debug capability built in with
no need for an FTDI-like chip.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 5 of 81

https://www.adafruit.com/product/2488
https://www.adafruit.com/products/2843

Power the METRO with 7-9V polarity protected DC or the micro USB connector to any 5V USB source. The
2.1mm DC jack has an on/off switch next to it so you can turn off your setup easily. The METRO will automagically
switch between USB and DC.
METRO has 25 GPIO pins, 12 of which are analog in, and one of which is a true analog out. There's a hardware
SPI port, hardware I2C port and hardware UART. Logic level is 3.3V
Native USB, there's no need for a hardware USB to Serial converter as the Metro M0 has built in USB support.
When used to act like a serial device, the USB interface can be used by any computer to listen/send data to the
METRO, and can also be used to launch and update code via the bootloader. It can also act like a keyboard,
mouse or MIDI device as well.
Four indicator LEDs and one NeoPixel, on the front edge of the PCB, for easy debugging. One green power LED,
two RX/TX LEDs for data being sent over USB, and a red LED connected. Next to the reset button there is an
RGB NeoPixel that can be used for any purpose.
2 MB SPI Flash storage chip is included on board. You can use the SPI Flash storage like a very tiny hard drive.
When used in Circuit Python, the 2 MB flash acts as storage for all your scripts, libraries and files. When used in
Arduino, you can read/write files to it, like a little datalogger or SD card, and then with our helper program, access
the files over USB.
Easy reprogramming, comes pre-loaded with the UF2 bootloader, which looks like a USB key. Simply drag
firmware on to program, no special tools or drivers needed! It can be used by MakeCode or Arduino IDE (in bossa
compatibility)

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 6 of 81

file:///adafruit-metro-m0-express-designed-for-circuitpython/uf2-bootloader

Here's some handy specs!

Measures 2.8" x 2.1" x 0.28"
ATSAMD21G18 @ 48MHz with 3.3V logic/power
256KB of FLASH + 32KB of RAM
4 MB SPI Flash chip
No EEPROM
32.768 KHz crystal for clock generation & RTC
3.3V regulator with 500mA peak current output
USB native support, comes with USB bootloader and serial port debugging
You also get tons of pins - 25 GPIO pins, 5 more than the Metro 328
Hardware Serial, hardware I2C, hardware SPI support
PWM outputs on almost all pins
6 x 12-bit analog inputs
1 x 10-bit analog output (DAC)
Built in NeoPixel on pin #40
Pin #13 red LED for general purpose blinking
Power on/off switch
4 mounting holes
We also include 4 rubber bumpers to keep it from slipping off your desk
Reset button

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 7 of 81

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 8 of 81

Pinouts

The Metro M0 is chock-full of microcontroller goodness. There's also a lot of pins and ports. We'll take you a tour of
them now!

Power Connections

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 9 of 81

There's a lot of ways to power the Metro M0 Express, and a lot of ways to get power out as well.

There are two primary ways to power the Metro:

Through the Micro USB port up at the top left
Through the DC jack at the bottom left

The MicroUSB jack provides 5V at 500mA or so, there is a fuse that will shut off temporarily when more than 1000mA
is drawn, this is to protect a computer USB port. You can plug this into any computer or USB charger with a USB cable.
You can draw up to 500mA between the Vin, 5V and 3.3V supplies (combined).

The DC Jack is a 5.5mm/2.1mm center-positive DC connector, which is the most common available. Provide about 6V-
12V here to power the Metro. There is no fuse on this connection so you can draw more current, up to 800mA between
the 5V and 3.3V supplies, and 2A from Vin.

Onboard regulators take the USB or DC power and linearly convert it to 3.3V and 5V:

3V - this is the output from the 3.3V regulator, it can supply 500mA peak
5V - this is the output from the 5V regulator (when DC jack is used), or from USB. It can supply ~500mA peak
from USB and ~800mA peak from DC
GND - this is the common ground for all power and logic
Vin - this is the higher of the DC jack or USB voltage. So if the DC jack is plugged in and 9V, Vin is 9V. If only
USB connected, this will be 5V.

There is also an on/off switch. This switch is only for the DC jack and does not affect powering via USB

Logic pins

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 10 of 81

This is the general purpose I/O pin set for the microcontroller.
All logic is 3.3V
Most pins can do PWM output
All pins can be interrupt inputs

Top Row

#0 / RX - GPIO #0, also receive (input) pin for Serial1 (hardware UART)
#1 / TX - GPIO #1, also transmit (output) pin for Serial1
#2 through #12 - These are general purpose GPIO. If there's a dot next to the pad it can act as a PWM output.
#13 - GPIO #13 and is connected to the red LED marked L next to the USB jack
SDA - the I2C (Wire) data pin. There's no pull up on this pin by default so when using with I2C, you may need a
2.2K-10K pullup.
SCL - the I2C (Wire) clock pin. There's no pull up on this pin by default so when using with I2C, you may need a
2.2K-10K pullup.

Bottom Row

A0 - This pin is analog input A0 but is also an analog output due to having a DAC (digital-to-analog converter).
You can set the raw voltage to anything from 0 to 3.3V, unlike PWM outputs this is a true analog output
A1 thru A5 - These are each analog input as well as digital I/O pins.

Right side

SCK/MOSI/MISO - These are the hardware SPI pins, are are connected to the 2x3 header on the right hand side.
you can use them as everyday GPIO pins (but recommend keeping them free as they are best used for hardware
SPI connections for high speed.)

Additional analog inputs

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 11 of 81

In addition to the A0-A5 pins, there are extra analog inputs available

Digital #0 is also A6
Digital #1 is also A7
Digital #4 is also A8
Digital #5 is also A9
Digital #8 is also A10
Digital #9 is also A11

These pins are available in CircuitPython under the board module. Names that start with # are prefixed with D and
other names are as is. So #0 / RX above is available as board.D0 and board.RX for example.

SPI Flash and NeoPixel

As part of the 'Express' series of boards, the Metro M0 Express is designed for use with CircuitPython. To make that
easy, we have added two extra parts to this Metro M0: a mini NeoPixel (RGB LED) and a 2 MB SPI Flash chip

The NeoPixel is connected to pin #40 in Arduino, so just use our NeoPixel library and set it up as a single-LED strand
on pin 40. In CircuitPython, the NeoPixel is board.NEOPIXEL and the library for it is here and in the bundle. The
NeoPixel is powered by the 3.3V power supply but that hasn't shown to make a big difference in brightness or color.
The NeoPixel is also used by the bootloader to let you know if the device has enumerated correctly (green) or USB
failure (red). In CircuitPython, the LED is used to indicate the runtime status.

The SPI Flash is connected to 4 pins that are not brought out on the GPIO pads. This way you don't have to worry
about the SPI flash colliding with other devices on the main SPI connection. Under Arduino, the FLASH SCK pin is #38,
MISO is #36, MOSI is #37, and CS is #39. If you use Metro M0 Express as your board type, you'll be able to access the
Flash SPI port under SPI1 - this is a fully new hardware SPI device separate from the GPIO pins on the outside edge of
the Feather. In CircuitPython, the SPI flash is used natively by the interpretter and is read-only to user code, instead the

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 12 of 81

file:///adafruit-neopixel-uberguide
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

Flash just shows up as the writeable disk drive!

Other Pins!

RST - this is the Reset pin, tie to ground to manually reset the ATSAMD21, as well as launch the bootloader
manually
ARef - the analog reference pin. Normally the reference voltage is the same as the chip logic voltage (3.3V) but if
you need an alternative analog reference, connect it to this pin and select the external AREF in your firmware.
Can't go higher than 3.3V!

Debug Interface

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 13 of 81

If you'd like to do more advanced development, trace-debugging, or not use the bootloader, we have the SWD
interface exposed.

You can use any 2x5 0.05" pitch SWD interface to connect. We suggest a J-Link. Since the SWCLK pin is shared
between the NeoPixel, and the bootloader takes control of the pin, you need to reset the board right before beginning
debug. OpenOCD and some other debug interfaces may not be able to do this. That's why we really really suggest a
JLink!

SEGGER J-Link EDU - JTAG/SWD Debugger
PRODUCT ID: 1369

https://adafru.it/e9G $69.95
IN STOCK

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 14 of 81

https://www.adafruit.com/product/1369

You'll need an adapter and cable to convert the 2x10 JTAG cable to SWD

SEGGER J-Link BASE - JTAG/SWD Debugger
PRODUCT ID: 2209

https://adafru.it/e5q $399.95
IN STOCK

JTAG (2x10 2.54mm) to SWD (2x5 1.27mm) Cable Adapter
Board
PRODUCT ID: 2094

https://adafru.it/wbz $4.95
IN STOCK

10-pin 2x5 Socket-Socket 1.27mm IDC (SWD) Cable -
150mm long
PRODUCT ID: 1675

https://adafru.it/wbA $2.95
IN STOCK

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 15 of 81

https://www.adafruit.com/product/2209
https://www.adafruit.com/product/2094
https://www.adafruit.com/product/1675

UF2 Bootloader Details

Adafruit Express and Gemma/Trinket M0 boards feature an improved bootloader that makes it easier than ever to flash
different code onto the microcontroller. This bootloader makes it easy to switch between Microsoft MakeCode,
CircuitPython and Arduino.

Instead of needing drivers or a separate program for flashing (say, bossac , jlink or avrdude), one can simply drag a
file onto a removable drive.

The format of the file is a little special. Due to 'operating system woes' you cannot just drag a binary or hex file (trust
us, we tried it, it isn't cross-platform compatible). Instead, the format of the file has extra information to help the
bootloader know where the data goes. The format is called UF2 (USB Flashing Format). Microsoft MakeCode
generates UF2s for flashing and CircuitPython releases are also available as UF2. You can also create your own UF2s
from binary files using uf2tool, available here.

The bootloader is also BOSSA compatible, so it can be used with the Arduino IDE which expects a BOSSA bootloader
on ATSAMD-based boards

For more information about UF2, you can read a bunch more at the MakeCode blog, then check out the UF2 file format
specification. Visit Adafruit's fork of the Microsoft UF2-samd bootloader GitHub repository for source code
and releases of pre-built bootloaders.

Entering Bootloader Mode

The first step to loading new code onto your board is triggering the bootloader. It is easily done by double tapping the
reset button. Once the bootloader is active you will see the small red LED fade in and out and a new drive will appear
on your computer with a name ending in BOOT. For example, feathers show up as FEATHERBOOT, while the new
CircuitPlayground shows up as CPLAYBOOT, Trinket M0 will show up as TRINKETBOOT, and Gemma M0 will show up
as GEMMABOOT

Furthermore, when the bootloader is active, it will change the color of one or more onboard neopixels to indicate the
connection status, red for disconnected and green for connected. If the board is plugged in but still showing that its
disconnected, try a different USB cable. Some cables only provide power with no communication.

For example, here is a Feather M0 Express running a colorful Neopixel swirl. When the reset button is double clicked
(about half second between each click) the NeoPixel will stay green to let you know the bootloader is active. When the
reset button is clicked once, the 'user program' (NeoPixel color swirl) restarts.

This is an information page for advanced users who are curious how we get code from your computer into
your Express board!

The bootloader is not needed when changing your CircuitPython code. Its only needed when upgrading the
CircuitPython core or changing between CircuitPython, Arduino and Microsoft MakeCode.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 16 of 81

https://github.com/Microsoft/uf2
https://makecode.com/blog/one-chip-to-flash-them-all
https://github.com/Microsoft/uf2
https://github.com/adafruit/uf2-samd21
https://github.com/adafruit/uf2-samd21/releases/latest

If the bootloader couldn't start, you will get a red NeoPixel LED.

That could mean that your USB cable is no good, it isn't connected to a computer, or maybe the drivers could not
enumerate. Try a new USB cable first. Then try another port on your computer!

Once the bootloader is running, check your computer. You should see a USB Disk drive...

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 17 of 81

Once the bootloader is successfully connected you can open the drive and browse the virtual filesystem. This isn't the
same filesystem as you use with CircuitPython or Arduino. It should have three files:

 CURRENT.UF2 - The current contents of the microcontroller flash.
 INDEX.HTM - Links to Microsoft MakeCode.
 INFO_UF2.TXT - Includes bootloader version info. Please include it on bug reports.

Using the Mass Storage Bootloader

To flash something new, simply drag any UF2 onto the drive. After the file is finished copying, the bootloader will
automatically restart. This usually causes a warning about an unsafe eject of the drive. However, its not a problem. The
bootloader knows when everything is copied successfully.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 18 of 81

You may get an alert from the OS that the file is being copied without it's properties. You can just click Yes

You may also get get a complaint that the drive was ejected without warning. Don't worry about this. The drive only
ejects once the bootloader has verified and completed the process of writing the new code

Using the BOSSA Bootloader

As mentioned before, the bootloader is also compatible with BOSSA, which is the standard method of updating boards
when in the Arduino IDE. It is a command-line tool that can be used in any operating system. We won't cover the full
use of the bossac tool, suffice to say it can do quite a bit! More information is available at ShumaTech.

Windows 7 Drivers

If you are running Windows 7 (or, goodness, something earlier?) You will need a Serial Port driver file. Windows 10
users do not need this so skip this step.

You can download our full driver package here:

Download Latest Adafruit Driver Installer

https://adafru.it/A0N

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 19 of 81

http://www.shumatech.com/web/products/bossa
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

Download and run the installer. We recommend just selecting all the serial port drivers available (no harm to do so) and
installing them.

Verifying Serial Port in Device Manager

If you're running Windows, its a good idea to verify the device showed up. Open your Device Manager from the control
panel and look under Ports (COM & LPT) for a device called Feather M0 or Circuit Playground or whatever!

If you see something like this, it means you did not install the drivers. Go back and try again, then remove and re-plug
the USB cable for your board

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 20 of 81

Running bossac on the command line

If you are using the Arduino IDE, this step is not required. But sometimes you want to read/write custom binary files,
say for loading CircuitPython or your own code. We recommend using bossac v 1.7.0 (or greater), which has been
tested. The Arduino branch is most recommended.

You can download the latest builds here. The mingw32 version is for Windows, apple-darwin for Mac OSX and various
linux options for Linux. Once downloaded, extract the files from the zip and open the command line to the directory
with bossac

For example here's the command line you probably want to run:

bossac -e -w -v -R ~/Downloads/adafruit-circuitpython-feather_m0_express-0.9.3.bin

This will -e rase the chip, -w rite the given file, -v erify the write and -R eset the board. After reset, CircuitPython
should be running. Express boards may cause a warning of an early eject of a USB drive but just ignore it. Nothing
important was being written to the drive. A hard power-reset is also recommended after bossac, just in case.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 21 of 81

https://github.com/shumatech/BOSSA/tree/arduino
https://github.com/shumatech/BOSSA/releases

Updating the bootloader

The UF2 bootloader is a new bootloader, and while we've done a ton of testing, it may contain bugs. Usually these
bugs effect reliability rather than fully preventing the bootloader from working. If the bootloader is flaky then you can
try updating the bootloader itself to potentially improve reliability.

Updating the bootloader is as easy as flashing CircuitPython, Arduino or MakeCode. Simply enter the bootloader as
above and then drag the update bootloader uf2 file below. This uf2 contains a program which will unlock the
bootloader section, update the bootloader, and re-lock it. It will overwrite your existing code such as CircuitPython or
Arduino so make sure everything is backed up!

After the file is copied over, the bootloader will be updated and appear again. The INFO_UF2.TXT file should show the
newer version number inside.

For example:

UF2 Bootloader v1.20.0 SFHR
Model: Adafruit Feather M0
Board-ID: SAMD21G18A-Feather-v0

Lastly, reload your code from Arduino or MakeCode or flash the latest CircuitPython core.

The latest updaters for various boards:

Circuit Playground Express v1.23 update-

bootloader.uf2

https://adafru.it/yDv

Feather M0 Express v1.23 update-

bootloader.uf2

https://adafru.it/yDw

Metro M0 Express v1.23 update-bootloader.uf2

https://adafru.it/yDx

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 22 of 81

https://github.com/adafruit/circuitpython/releases
https://cdn-learn.adafruit.com/assets/assets/000/045/717/original/update-bootloader.uf2?1503523524
https://cdn-learn.adafruit.com/assets/assets/000/045/718/original/update-bootloader.uf2?1503523551
https://cdn-learn.adafruit.com/assets/assets/000/045/719/original/update-bootloader.uf2?1503523594

Gemma M0 v1.23 update-bootloader.uf2

https://adafru.it/yDy

Trinket M0 v1.23 update-bootloader.uf2

https://adafru.it/yDz

Getting Rid of Windows Pop-ups

If you do a lot of development on Windows with the UF2 bootloader, you may get annoyed by the constant "Hey you
inserted a drive what do you want to do" pop-ups.

Go to the Control Panel. Click on the Hardware and

Sound header

Click on the Autoplay header

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 23 of 81

https://cdn-learn.adafruit.com/assets/assets/000/045/720/original/update-bootloader.uf2?1503523609
https://cdn-learn.adafruit.com/assets/assets/000/045/721/original/update-bootloader.uf2?1503523622
https://learn.adafruit.com/assets/41276
https://learn.adafruit.com/assets/41277

Uncheck the box at the top, labeled Use Autoplay for all

devices

Making your own UF2

Making your own UF2 is easy! All you need is a .bin file of a program you wish to flash and the Python conversion
script. Make sure that your program was compiled to start at 0x2000 (8k) because the bootloader takes the first 8k.
CircuitPython's linker script is an example on how to do that.

Once you have a .bin file, you simply need to run the Python conversion script over it. Here is an example from the
directory with uf2conv.py:

uf2conv.py -c -o build-circuitplayground_express/revg.uf2 build-circuitplayground_express/revg.bin

This will produce a revg.uf2 file in the same directory as the source revg.bin. The uf2 can then be flashed in the same
way as above.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 24 of 81

https://learn.adafruit.com/assets/41278
https://github.com/Microsoft/uf2/blob/master/utils/uf2conv.py
https://github.com/adafruit/circuitpython/blob/master/atmel-samd/boards/samd21x18-bootloader.ld

Arduino IDE Setup
The first thing you will need to do is to download the latest release of the Arduino IDE. You will need to be using
version 1.8 or higher for this guide

Arduino IDE Download

https://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will need to start the IDE and navigate
to the Preferences menu. You can access it from the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 25 of 81

http://www.arduino.cc/en/Main/Software

We will be adding a URL to the new Additional Boards Manager URLs option. The list of URLs is comma separated,
and you will only have to add each URL once. New Adafruit boards and updates to existing boards will automatically be
picked up by the Board Manager each time it is opened. The URLs point to index files that the Board Manager uses to
build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party board URLs on the Arduino IDE
wiki. We will only need to add one URL to the IDE in this example, but you can add multiple URLS by separating them
with commas. Copy and paste the link below into the Additional Boards Manager URLs option in the Arduino IDE
preferences.

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 26 of 81

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

Here's a short description of each of the Adafruit supplied packages that will be available in the Board Manager when
you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4, Trinket, & Trinket Pro.
Adafruit SAMD Boards - Includes support for Feather M0, Metro M0, Circuit Playground Express, Gemma M0
and Trinket M0
Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the Flora, Feather 32u4, Micro and
Leonardo using the arcore project.

If you have multiple boards you want to support, say ESP8266 and Adafruit, have both URLs in the text box separated
by a comma (,)

Once done click OK to save the new preference settings. Next we will look at installing boards with the Board
Manager.

Now continue to the next step to actually install the board support package!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 27 of 81

https://github.com/rkistner/arcore

Using with Arduino IDE
Since the Feather/Metro/Gemma/Trinket M0 use an ATSAMD21 chip running at 48 MHz, you can pretty easily get it
working with the Arduino IDE. Most libraries (including the popular ones like NeoPixels and display) will work with the
M0, especially devices & sensors that use i2c or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the previous page, you can open
the Boards Manager by navigating to the Tools->Board menu.

Once the Board Manager opens, click on the category drop down menu on the top left hand side of the window and
select Contributed. You will then be able to select and install the boards supplied by the URLs added to the
prefrences.

Install SAMD Support

First up, install the Arduino SAMD Boards version 1.6.15 or later

You can type Arduino SAMD in the top search bar, then when you see the entry, click Install

Install Adafruit SAMD

Next you can install the Adafruit SAMD package to add the board file definitions

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 28 of 81

You can type Adafruit SAMD in the top search bar, then when you see the entry, click Install

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly installed. You should now be able to
select and upload to the new boards listed in the Tools->Board menu.

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)
Feather M0 Express
Metro M0 Express
Circuit Playground Express
Gemma M0
Trinket M0

Install Drivers (Windows 7 Only)

When you plug in the board, you'll need to possibly install a driver

Click below to download our Driver Installer

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 29 of 81

Download Adafruit Driver Installer v2.0.0.0

https://adafru.it/zek

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to click through the license

Select which drivers you want to install, the defaults will set you up with just about every Adafruit board!

Click Install to do the installin'

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 30 of 81

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/2.0.0.0/adafruit_drivers_2.0.0.0.exe

Blink

Now you can upload your first blink sketch!

Plug in the Gemma M0, Trinket M0, Metro M0 or Feather M0 and wait for it to be recognized by the OS (just takes a
few seconds). It will create a serial/COM port, you can now select it from the dropdown, it'll even be 'indicated' as
Trinket/Gemma/Metro/Feather M0!

Now load up the Blink example

And click upload! That's it, you will be able to see the LED blink rate change as you adapt the delay() calls.

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 31 of 81

Sucessful Upload

If you have a successful upload, you'll get a bunch of red text that tells you that the device was found and it was
programmed, verified & reset

Compilation Issues

If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Arduino & Adafruit SAMD board
packages

If you are having issues, make sure you selected the matching Board in the menu that matches the hardware
you have in your hand.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 32 of 81

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that crashes and doesn't auto-reboot
into the bootloader, click the RST button twice (like a double-click)to get back into the bootloader.

The red LED will pulse, so you know that its in bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want to use the normal upload.

Ubuntu & Linux Issue Fix

Note if you're using Ubuntu 15.04 (or perhaps other more recent Linux distributions) there is an issue with the modem
manager service which causes the Bluefruit LE micro to be difficult to program. If you run into errors like "device or
resource busy", "bad file descriptor", or "port is busy" when attempting to program then you are hitting this issue.

The fix for this issue is to make sure Adafruit's custom udev rules are applied to your system. One of these rules is
made to configure modem manager not to touch the Feather board and will fix the programming difficulty issue.
 Follow the steps for installing Adafruit's udev rules on this page.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 33 of 81

https://bugs.launchpad.net/ubuntu/+source/modemmanager/+bug/1473246
file:///adafruit-arduino-ide-setup/linux-setup#udev-rules

Adapting Sketches to M0
The ATSAMD21 is a very nice little chip but its fairly new as Arduino-compatible cores go. Most sketches & libraries will
work but here's a few things we noticed!

The below note are for all M0 boards, but not all may apply (e.g. Trinket and Gemma M0 do not have ARef so you can
skip the Analog References note!)

Analog References

If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is analogReference(AR_EXTERNAL)

(it's AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups

The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)
digitalWrite(pin, HIGH)

This is because the pullup-selection register is the same as the output-selection register.

For the M0, you can't do this anymore! Instead, use

pinMode(pin, INPUT_PULLUP)

which has the benefit of being backwards compatible with AVR.

Serial vs SerialUSB

99.9% of your existing Arduino sketches use Serial.print to debug and give output. For the Official Arduino SAMD/M0
core, this goes to the Serial5 port, which isn't exposed on the Feather. The USB port for the Official Arduino M0 core, is
called SerialUSB instead.

In the Adafruit M0 Core, we fixed it so that Serial goes to USB when you use a Feather M0 so it will automatically work
just fine.

However, on the off chance you are using the official Arduino SAMD core not the Adafruit version (which really, we
recommend you use our version because as you can see it can vary) & you want your Serial prints and reads to use
the USB port, use SerialUSB instead of Serial in your sketch

If you have existing sketches and code and you want them to work with the M0 without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)
 // Required for Serial on Zero based boards
 #define Serial SERIAL_PORT_USBVIRTUAL
#endif

right above the first function definition in your code. For example:

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 34 of 81

AnalogWrite / PWM on Feather/Metro M0

After looking through the SAMD21 datasheet, we've found that some of the options listed in the multiplexer table don't
exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The Timer/Counter (TC) and
Timer/Counter for Control Applications (TCC). Each SAMD21 has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output channels. Either channel can be enabled
and disabled, and either channel can be inverted. The pins connected to a TC instance can output identical versions of
the same PWM waveform, or complementary waveforms.

Each TCC instance has a single count register, but multiple compare registers and output channels. There are options
for different kinds of waveform, interleaved switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two 'waveform output' (WO) channels, and
three TCC instances with eight WO channels:

TC[0-4],WO[0-1]
TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output channels, and three TCC instances
with eight output channels:

TC[3-5],WO[0-1]
TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as the SPI, I2C, and UART pins keep
their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13
Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the following pins:

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 35 of 81

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range

On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully HIGH. On the ARM cortex, it will set it
to be 255/256 so there will be very slim but still-existing pulses-to-0V. If you need the pin to be fully on, add test code
that checks if you are trying to analogWrite(pin, 255) and, instead, does a digitalWrite(pin, HIGH)

Missing header files

there might be code that uses libraries that are not supported by the M0 core. For example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory
 #include <util/delay.h>
 ^
compilation terminated.
Error compiling.

In which case you can simply locate where the line is (the error will give you the file name and line number) and 'wrap
it' with #ifdef's so it looks like:

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching

For most other AVRs, clicking reset while plugged into USB will launch the bootloader manually, the bootloader will
time out after a few seconds. For the M0, you'll need to double click the button. You will see a pulsing red LED to let
you know you're in bootloader mode. Once in that mode, it wont time out! Click reset again if you want to go back to
launching code

Aligned Memory Access

This is a little less likely to happen to you but it happened to me! If you're used to 8-bit platforms, you can do this nice
thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];
float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer might not be aligned to a 2 or 4-byte
boundary. The ARM Cortex-M0 can only directly access data on 16-bit boundaries (every 2 or 4 bytes). Trying to access
an odd-boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU. Thankfully, there's an easy
work around ... just use memcpy!

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !defined(ESP8266) && !defined(ARDUINO_ARCH_STM32F2)
 #include <util/delay.h>
#endif

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 36 of 81

uint8_t mybuffer[4];
float f;
memcpy(f, mybuffer, 4)

Floating Point Conversion

Like the AVR Arduinos, the M0 library does not have full support for converting floating point numbers to ASCII strings.
Functions like sprintf will not convert floating point. Fortunately, the standard AVR-LIBC library includes the dtostrf
function which can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some references to using #include
<avr/dtostrf.h> to get dtostrf in your code. And while it will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in your code:

http://forum.arduino.cc/index.php?topic=368720.0

How Much RAM Available?

The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some reason. You can do so with this handy
function:

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 for the tip!

Storing data in FLASH

If you're used to AVR, you've probably used PROGMEM to let the compiler know you'd like to put a variable or string in
flash memory to save on RAM. On the ARM, its a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the compiler will automatically read from
FLASH so you dont need special progmem-knowledgeable functions.

You can verify where data is stored by printing out the address:
Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000 and $3FFFF Then it is in FLASH

extern "C" char *sbrk(int i);

int FreeRam () {
 char stack_dummy = 0;
 return &stack_dummy - sbrk(0);
}

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 37 of 81

http://forum.arduino.cc/index.php?topic=368720.0
http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879

Using SPI Flash
One of the best features of the M0 express board is a small SPI flash memory chip built into the board. This memory
can be used for almost any purpose like storing data files, Python code, and more. Think of it like a little SD card that is
always connected to the board, and in fact with Arduino you can access the memory using a library that is very similar
to the Arduino SD card library. You can even read and write files that CircuitPython stores on the flash chip!

To use the flash memory with Arduino you'll need to install the Adafruit SPI Flash Memory library in the Arduino IDE.
 Click the button below to download the source for this library, open the zip file, and then copy it into an
Adafruit_SPIFlash folder (remove the -master GitHub adds to the downloaded zip and folder) in the Arduino library
folder on your computer:

Download Adafruit_SPIFlash

https://adafru.it/wbu

Once the library is installed open the Arduino IDE and look for the following examples in the library:

fatfs_circuitpython
fatfs_datalogging
fatfs_format
fatfs_full_usage
fatfs_print_file
flash_erase

These examples allow you to format the flash memory with a FAT filesystem (the same kind of filesystem used on SD
cards) and read and write files to it just like a SD card.

Read & Write CircuitPython Files

The fatfs_circuitpython example shows how to read and write files on the flash chip so that they're accessible from
CircuitPython. This means you can run a CircuitPython program on your board and have it store data, then run an
Arduino sketch that uses this library to interact with the same data.

Note that before you use the fatfs_circuitpython example you must have loaded CircuitPython on your board. Load
the latest version of CircuitPython as explained in this guide first to ensure a CircuitPython filesystem is initialized and
written to the flash chip. Once you've loaded CircuitPython then you can run the fatfs_circuitpython example sketch.

To run the sketch load it in the Arduino IDE and upload it to the Feather M0 board. Then open the serial monitor at
115200 baud. You should see the serial monitor display messages as it attempts to read files and write to a file on the
flash chip. Specifically the example will look for a boot.py and main.py file (like what CircuitPython runs when it starts)
and print out their contents. Then it will add a line to the end of a data.txt file on the board (creating it if it doesn't exist
already). After running the sketch you can reload CircuitPython on the board and open the data.txt file to read it from
CircuitPython!

To understand how to read & write files that are compatible with CircuitPython let's examine the sketch code. First
notice an instance of the Adafruit_M0_Express_CircuitPython class is created and passed an instance of the flash
chip class in the last line below:

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 38 of 81

https://www.arduino.cc/en/reference/SD
https://github.com/adafruit/Adafruit_SPIFlash
file:///adafruit-all-about-arduino-libraries-install-use/arduino-libraries
https://github.com/adafruit/Adafruit_SPIFlash/archive/master.zip
file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/circuitpython

By using this Adafruit_M0_Express_CircuitPython class you'll get a filesystem object that is compatible with reading
and writing files on a CircuitPython-formatted flash chip. This is very important for interoperability between
CircuitPython and Arduino as CircuitPython has specialized partitioning and flash memory layout that isn't compatible
with simpler uses of the library (shown in the other examples).

Once an instance of the Adafruit_M0_Express_CircuitPython class is created (called pythonfs in this sketch) you can
go on to interact with it just like if it were the SD card library in Arduino. You can open files for reading & writing, create
directories, delete files and directories and more. Here's how the sketch checks if a boot.py file exists and prints it out
a character at a time:

Notice the exists function is called to check if the boot.py file is found, and then the open function is used to open it in
read mode. Once a file is opened you'll get a reference to a File class object which you can read and write from as if it
were a Serial device (again just like the SD card library, all of the same File class functions are available). In this case
the available function will return the number of bytes left to read in the file, and the read function will read a character
at a time to print it to the serial monitor.

Writing a file is just as easy, here's how the sketch writes to data.txt:

#define FLASH_SS SS1 // Flash chip SS pin.
#define FLASH_SPI_PORT SPI1 // What SPI port is Flash on?

Adafruit_SPIFlash flash(FLASH_SS, &FLASH_SPI_PORT); // Use hardware SPI

// Alternatively you can define and use non-SPI pins!
//Adafruit_SPIFlash flash(SCK1, MISO1, MOSI1, FLASH_SS);

// Finally create an Adafruit_M0_Express_CircuitPython object which gives
// an SD card-like interface to interacting with files stored in CircuitPython's
// flash filesystem.
Adafruit_M0_Express_CircuitPython pythonfs(flash);

 // Check if a boot.py exists and print it out.
 if (pythonfs.exists("boot.py")) {
 File bootPy = pythonfs.open("boot.py", FILE_READ);
 Serial.println("Printing boot.py...");
 while (bootPy.available()) {
 char c = bootPy.read();
 Serial.print(c);
 }
 Serial.println();
 }
 else {
 Serial.println("No boot.py found...");
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 39 of 81

https://www.arduino.cc/en/Reference/SD
https://www.arduino.cc/en/Reference/SD

Again the open function is used but this time it's told to open the file for writing. In this mode the file will be opened for
appending (i.e. data added to the end of it) if it exists, or it will be created if it doesn't exist. Once the file is open print
functions like print and println can be used to write data to the file (just like writing to the serial monitor). Be sure to
close the file when finished writing!

That's all there is to basic file reading and writing. Check out the fatfs_full_usage example for examples of even more
functions like creating directories, deleting files & directories, checking the size of files, and more! Remember though
to interact with CircuitPython files you need to use the Adafruit_Feather_M0_CircuitPython class as shown in the
fatfs_circuitpython example above!

Format Flash Memory

The fatfs_format example will format the SPI flash with a new blank filesystem. Be warned this sketch will delete all
data on the flash memory, including any Python code or other data you might have stored! The format sketch is
useful if you'd like to wipe everything away and start fresh, or to help get back in a good state if the memory should
get corrupted for some reason.

Be aware too the fatfs_format and examples below are not compatible with a CircuitPython-formatted flash chip! If
you need to share data between Arduino & CircuitPython check out the fatfs_circuitpython example above.

To run the format sketch load it in the Arduino IDE and upload it to the Feather M0 board. Then open the serial
monitor at 115200 baud. You should see the serial monitor display a message asking you to confirm formatting the
flash. If you don't see this message then close the serial monitor, press the board's reset button, and open the serial
monitor again.

 // Create or append to a data.txt file and add a new line
 // to the end of it. CircuitPython code can later open and
 // see this file too!
 File data = pythonfs.open("data.txt", FILE_WRITE);
 if (data) {
 // Write a new line to the file:
 data.println("Hello CircuitPython from Arduino!");
 data.close();
 // See the other fatfs examples like fatfs_full_usage and fatfs_datalogging
 // for more examples of interacting with files.
 Serial.println("Wrote a new line to the end of data.txt!");
 }
 else {
 Serial.println("Error, failed to open data file for writing!");
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 40 of 81

Type OK and press enter in the serial monitor input to confirm that you'd like to format the flash memory. You need to
enter OK in all capital letters!

Once confirmed the sketch will format the flash memory. The format process takes about a minute so be patient as the
data is erased and formatted. You should see a message printed once the format process is complete. At this point
the flash chip will be ready to use with a brand new empty filesystem.

Datalogging Example

One handy use of the SPI flash is to store data, like datalogging sensor readings. The fatfs_datalogging example
shows basic file writing/datalogging. Open the example in the Arduino IDE and upload it to your Feather M0 board.
 Then open the serial monitor at 115200 baud. You should see a message printed every minute as the sketch writes a
new line of data to a file on the flash filesystem.

To understand how to write to a file look in the loop function of the sketch:

 // Open the datalogging file for writing. The FILE_WRITE mode will open
 // the file for appending, i.e. it will add new data to the end of the file.
 File dataFile = fatfs.open(FILE_NAME, FILE_WRITE);
 // Check that the file opened successfully and write a line to it.
 if (dataFile) {
 // Take a new data reading from a sensor, etc. For this example just
 // make up a random number.
 int reading = random(0,100);
 // Write a line to the file. You can use all the same print functions
 // as if you're writing to the serial monitor. For example to write
 // two CSV (commas separated) values:
 dataFile.print("Sensor #1");
 dataFile.print(",");
 dataFile.print(reading, DEC);
 dataFile.println();
 // Finally close the file when done writing. This is smart to do to make
 // sure all the data is written to the file.
 dataFile.close();
 Serial.println("Wrote new measurement to data file!");
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 41 of 81

Just like using the Arduino SD card library you create a File object by calling an open function and pointing it at the
name of the file and how you'd like to open it (FILE_WRITE mode, i.e. writing new data to the end of the file). Notice
however instead of calling open on a global SD card object you're calling it on a fatfs object created earlier in the
sketch (look at the top after the #define configuration values).

Once the file is opened it's simply a matter of calling print and println functions on the file object to write data inside of
it. This is just like writing data to the serial monitor and you can print out text, numeric, and other types of data. Be
sure to close the file when you're done writing to ensure the data is stored correctly!

Reading and Printing Files

The fatfs_print_file example will open a file (by default the data.csv file created by running the fatfs_datalogging
example above) and print all of its contents to the serial monitor. Open the fatfs_print_file example and load it on your
Feather M0 board, then open the serial monitor at 115200 baud. You should see the sketch print out the contents of
data.csv (if you don't have a file called data.csv on the flash look at running the datalogging example above first).

To understand how to read data from a file look in the setup function of the sketch:

Just like when writing data with the datalogging example you create a File object by calling the open function on a
fatfs object. This time however you pass a file mode of FILE_READ which tells the filesystem you want to read data.

After you open a file for reading you can easily check if data is available by calling the available function on the file,
and then read a single character with the read function. This makes it easy to loop through all of the data in a file by
checking if it's available and reading a character at a time. However there are more advanced read functions you can
use too--see the fatfs_full_usage example or even the Arduino SD library documentation (the SPI flash library
implements the same functions).

Full Usage Example

For a more complete demonstration of reading and writing files look at the fatfs_full_usage example. This examples
uses every function in the library and demonstrates things like checking for the existence of a file, creating directories,
deleting files, deleting directories, and more.

Remember the SPI flash library is built to have the same functions and interface as the Arduino SD library so if you
have code or examples that store data on a SD card they should be easy to adapt to use the SPI flash library, just
create a fatfs object like in the examples above and use its open function instead of the global SD object's open
function. Once you have a reference to a file all of the functions and usage should be the same between the SPI flash

 // Open the file for reading and check that it was successfully opened.
 // The FILE_READ mode will open the file for reading.
 File dataFile = fatfs.open(FILE_NAME, FILE_READ);
 if (dataFile) {
 // File was opened, now print out data character by character until at the
 // end of the file.
 Serial.println("Opened file, printing contents below:");
 while (dataFile.available()) {
 // Use the read function to read the next character.
 // You can alternatively use other functions like readUntil, readString, etc.
 // See the fatfs_full_usage example for more details.
 char c = dataFile.read();
 Serial.print(c);
 }
 }

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 42 of 81

https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/reference/SD

and SD libraries!

Accessing SPI Flash

Arduino doesn't have the ability to show up as a 'mass storage' disk drive. So instead we must use CircuitPython to do
that part for us. Here's the full technique:

Start the bootloader on the Express board. Drag over the latest circuitpython uf2 file
After a moment, you should see a CIRCUITPY drive appear on your hard drive with boot_out.txt on it
Now go to Arduino and upload the fatfs_circuitpython example sketch from the Adafruit SPI library. Open the
serial console. It will successfully mount the filesystem and write a new line to data.txt

Back on your computer, re-start the Express board bootloader, and re-drag circuitpython.uf2 onto the BOOT
drive to reinstall circuitpython
Check the CIRCUITPY drive, you should now see data.txt which you can open to read!

Once you have your Arduino sketch working well, for datalogging, you can simplify this procedure by dragging
CURRENT.UF2 off of the BOOT drive to make a backup of the current program before loading circuitpython on. Then
once you've accessed the file you want, re-drag CURRENT.UF2 back onto the BOOT drive to re-install the Arduino

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 43 of 81

sketch!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 44 of 81

Metro M0 HELP!
My Metro M0 stopped working when I unplugged the USB!

A lot of our example sketches have a

while (!Serial);

line in setup(), to keep the board waiting until the USB is opened. This makes it a lot easier to debug a program
because you get to see all the USB data output. If you want to run your Metro M0 without USB connectivity, delete
or comment out that line

My Metro never shows up as a COM or Serial port in the Arduino IDE

A vast number of Metro 'failures' are due to charge-only USB cables

We get upwards of 5 complaints a day that turn out to be due to charge-only cables!

Use only a cable that you know is for data syncing

If you have any charge-only cables, cut them in half throw them out. We are serious! They tend to be low quality in
general, and will only confuse you and others later, just get a good data+charge USB cable

Ack! I "did something" and now when I plug in the Metro, it doesn't show up as a device anymore so I cant upload
to it or fix it...

No problem! You can 'repair' a bad code upload easily. Note that this can happen if you set a watchdog timer or
sleep mode that stops USB, or any sketch that 'crashes' your Metro

1. Turn on verbose upload in the Arduino IDE preferences
2. Plug in Metro M0, it won't show up as a COM/serial port that's ok
3. Open up the Blink example (Examples->Basics->Blink)
4. Select the correct board in the Tools menu, e.g. Metro M0 (check your board to make sure you have the right

one selected!)
5. Compile it (make sure that works)
6. Click Upload to attempt to upload the code
7. The IDE will print out a bunch of COM Ports as it tries to upload. During this time, double-click the reset

button, you'll see the red pulsing LED and the NeoPixel will be green that tells you its now in bootloading
mode

8. The Metro will show up as the Bootloader COM/Serial port
9. The IDE should see the bootloader COM/Serial port and upload properly

I can't get the Metro USB device to show up - I get "USB Device Malfunctioning" errors!

This seems to happen when people select the wrong board from the Arduino Boards menu.

If you have a Metro M0 (look on the board to read what it is you have) Make sure you select Metro M0 - do not use
Feather M0 or Arduino Zero

I'm having problems with COM ports and my Metro M0

Theres two COM ports you can have with the M0, one is the user port and one is the bootloader port. They are not
the same COM port number!

When you upload a new user program it will come up with a user com port, particularly if you use Serial in your user
program.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 45 of 81

If you crash your user program, or have a program that halts or otherwise fails, the user com port can disappear.

When the user COM port disappears, Arduino will not be able to automatically start the bootloader and upload
new software.

So you will need to help it by performing the click-during upload procedure to re-start the bootloader, and upload
something that is known working like "Blink"

I don't understand why the COM port disappears, this does not happen on my Arduino UNO!

UNO-type Arduinos have a seperate serial port chip (aka "FTDI chip" or "Prolific PL2303" etc etc) which handles all
serial port capability seperately than the main chip. This way if the main chip fails, you can always use the COM port.

M0 and 32u4-based Arduinos do not have a seperate chip, instead the main processor performs this task for you. It
allows for a lower cost, higher power setup...but requires a little more effort since you will need to 'kick' into the
bootloader manually once in a while

I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding" errors

This is likely because the bootloader is not kicking in and you are accidentally trying to upload to the wrong COM
port

The best solution is what is detailed above: manually upload Blink or a similar working sketch by hand by manually
launching the bootloader

I'm trying to upload to my Metro M0, and I get this error "Connecting to programmer: .avrdude: butterfly_recv():
programmer is not responding"

You probably don't have Metro M0 selected in the boards drop-down. Make sure you selected Metro M0.

I'm trying to upload to my Metro and i get this error "avrdude: ser_recv(): programmer is not responding"

You probably don't have Metro M0 selected in the boards drop-down. Make sure you selected Metro M0

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 46 of 81

CircuitPython Setup

CircuitPython is a derivative of MicroPython designed to simplify experimentation and education on low-cost
microcontrollers. It makes it easier than ever to get prototyping by requiring no upfront desktop software downloads.
Simply download CircuitPython and drag it onto the drive that appears (only available on Express boards currently).
Once installed, simply copy and edit files on the drive to iterate.

Downloading

The latest builds of CircuitPython are available from the GitHub release page. Binaries for different boards are listed
under the Downloads section. Pick the one that matches your board such as
adafruit-circuitpython-feather_m0_express-0.9.3.bin for the Feather M0 Express or
adafruit-circuitpython-metro_m0_express-0.9.3.bin for the Metro M0 Express.

Files that end with .bin can be flashed with esptool.py or bossac . Files ending in .uf2 can be flashed onto a
virtual drive when in bootloader mode.

Click here to see the latest CircuitPython

Releases

https://adafru.it/vlF

You will see a list of all available flavors of CircuitPython. Since we support a lot of different hardware, we have a long
list of available downloads!

See below for which file to download!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 47 of 81

https://github.com/adafruit/circuitpython
https://micropython.org
https://github.com/adafruit/circuitpython/releases/latest
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/releases/latest
https://github.com/adafruit/circuitpython/releases/latest

Flashing

Flashing is the process of updating the CircuitPython core. It isn't needed for updating your own code. There are two
available methods: UF2 and bossac UF2 flashing is only available on Express boards, they have a UF2-capable beta
bootloader. Flashing via bossac is possible with both the Express bootloader and the original "Arduino" one. We
recommend using UF2 if you can. If UF2 fails, or is not available, try bossac.

Regardless of what method you use, you must first get the board into the bootloader mode. This is done by double
clicking the reset button. The board is in bootloader mode when the red led fades in and out. Boards with the status
neopixel will also show USB status while the red led fades. Green means USB worked while red means the board
couldn't talk to the computer. The first step to troubleshooting a red neopixel is trying a different USB cable to make
sure its not a charge-only cable.

Flashing UF2

Adafruit Express boards come with a new beta bootloader called UF2 that makes flashing CircuitPython even easier
than before. This beta bootloader allows you to drag so-called ".uf2" type files onto the BOOT drive. For more
information, check out our UF2 bootloader page.

Start by double-clicking the reset button while it is plugged into your computer. You should see a new disk drive 'pop
up' called METROBOOT or FEATHERBOOT or similar, and the NeoPixel on your board glow green.

The drive will contain a few files. If you want to make a 'backup' of the current firmware on the device, drag-off and
save the CURRENT.UF2 file. Other than that, you can ignore the index.htm and info_uf2.txt files. They cannot be
deleted and are only for informational purposes.

Next up, find the Feather M0 Express UF2 or Metro M0 Express UF2 file in the github downloads list:

Click to download and save the file onto your Desktop or somewhere else you can find it

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 48 of 81

file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader

Then drag the uf2 file into the BOOT drive

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 49 of 81

Once the full file has been received, the board will automatically restart into CircuitPython. Your computer may warn
about ejecting the drive early, if it does, simply ignore it because the board made sure the file was received ok.

Flashing with BOSSAC

This method is only recommended if you can't use UF2 for some reason!

To flash with bossac (BOSSA's command line tool) first download the latest version from here. The mingw32 version
is for Windows, apple-darwin for Mac OSX and various linux options for Linux. Once downloaded, extract the files
from the zip and open the command line to the directory with bossac .

bossac -e -w -v -R ~/Downloads/adafruit-circuitpython-feather_m0_express-0.9.3.bin

This will e rase the chip, w rite the given file, v erify the write and R eset the board. After reset, CircuitPython should
be running. Express boards may cause a warning of an early eject of a USB drive but just ignore it. Nothing important
was being written to the drive.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 50 of 81

https://github.com/shumatech/BOSSA/releases/latest

After flashing

After a successful flash by bossac or UF2 you should see a CIRCUITPY drive appear.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 51 of 81

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and great for learning. It runs on
microcontrollers and works out of the box. You can plug it in and get started with any text editor. The best part?
CircuitPython comes with an amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for anyone to use, edit, copy and
improve upon. This also means CircuitPython becomes better because of you being a part of it. It doesn't matter
whether this is your first microcontroller board or you're a computer engineer, you have something important to offer
the Adafruit CircuitPython community. We're going to highlight some of the many ways you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community comes together to volunteer and
provide live support of all kinds. From general discussion to detailed problem solving, and everything in between,

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 52 of 81

Discord is a digital maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your needs. Each channel is shown on
Discord as "#channelname". There's the #projecthelp channel for assistance with your current project or help coming
up with ideas for your next one. There's the #showandtell channel for showing off your newest creation. Don't be afraid
to ask a question in any channel! If you're unsure, #general is a great place to start. If another channel is more likely to
provide you with a better answer, someone will guide you.

The CircuitPython channel is where to go with your CircuitPython questions. #circuitpython is there for new users and
developers alike so feel free to ask a question or post a comment! Everyone of any experience level is welcome to join
in on the conversation. We'd love to hear what you have to say!

The easiest way to contribute to the community is to assist others on Discord. Supporting others doesn't always mean
answering questions. Join in celebrating successes! Celebrate your mistakes! Sometimes just hearing that someone
else has gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your granddaughter to.

Visit https://adafru.it/discord to sign up for Discord. We're looking forward to meeting you!

Adafruit Forums

The Adafruit Forums are the perfect place for support. Adafruit has wonderful paid support folks to answer any
questions you may have. Whether your hardware is giving you issues or your code doesn't seem to be working, the
forums are always there for you to ask. You need an Adafruit account to post to the forums. You can use the same
account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums are a more reliable source of
information. If you want to be certain you're getting an Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything Adafruit. The Adafruit CircuitPython and
MicroPython category under "Supported Products & Projects" is the best place to post your CircuitPython questions.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 53 of 81

https://adafru.it/discord
https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves wiring, post a picture! If your code is giving
you trouble, include your code in your post! These are great ways to make sure that there's enough information to
help you with your issue.

You might think you're just getting started, but you definitely know something that someone else doesn't. The great
thing about the forums is that you can help others too! Everyone is welcome and encouraged to provide constructive
feedback to any of the posted questions. This is an excellent way to contribute to the community and share your
knowledge!

Adafruit Github

Whether you're just beginning or are life-long programmer who would like to contribute, there are ways for everyone
to be a part of building CircuitPython. GitHub is the best source of ways to contribute to CircuitPython itself. If you need
an account, visit https://github.com/ and sign up.

If you're new to GitHub or programming in general, there are great opportunities for you. Head over to
adafruit/circuitpython on GitHub, click on "Issues", and you'll find a list that includes issues labeled "good first issue".
These are things we've identified as something that someone with any level of experience can help with. These issues
include options like updating documentation, providing feedback, and fixing simple bugs.

Already experienced and looking for a challenge? Checkout the rest of the issues list and you'll find plenty of ways to
contribute. You'll find everything from new driver requests to core module updates. There's plenty of opportunities for
everyone at any level!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 54 of 81

https://github.com/adafruit/circuitpython
https://github.com/
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/issues?page=1&q=is%3Aissue+is%3Aopen
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22

When working with CircuitPython, you may find problems. If you find a bug, that's great! We love bugs! Posting a
detailed issue to GitHub is an invaluable way to contribute to improving CircuitPython. Be sure to include the steps to
replicate the issue as well as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of CircuitPython or a library onto
your CircuitPython hardware, and use it. Let us know about any problems you find by posting a new issue to GitHub.
Software testing on both current and beta releases is a very important part of contributing CircuitPython. We can't
possibly find all the problems ourselves! We need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and much more. If you have
questions, remember that Discord and the Forums are both there for help!

ReadTheDocs

ReadTheDocs is a an excellent resource for a more in depth look at CircuitPython. This is where you'll find things like
API documentation and details about core modules. There is also a Design Guide that includes contribution guidelines
for CircuitPython.

RTD gives you access to a low level look at CircuitPython. There are details about each of the core modules. Each
module lists the available libraries. Each module library page lists the available parameters and an explanation for
each. In many cases, you'll find quick code examples to help you understand how the modules and parameters work,
however it won't have detailed explanations like the Learn Guides. If you want help understanding what's going on
behind the scenes in any CircuitPython code you're writing, ReadTheDocs is there to help!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 55 of 81

https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/en/2.x/shared-bindings/index.html

CircuitPython Blinky
Let's get blinky going with CircuitPython to explore the way we can write code and confirm everything is working as
expected.

code.py

After plugging in a board with CircuitPython into your computer a CIRCUITPY drive will appear. At first, the drive may
be empty but you can create and edit files on it just like you would on a USB drive. On here, you can save a code.py
(code.txt and main.py also work) file to run every time the board resets. This is the CircuitPython equivalent of an
Arduino sketch. However, all of the compiling is done on the board itself. All you need to do is edit the file.

So, fire up your favorite text editor, such as Notepad on Windows, TextEdit on Mac or download Atom (my favorite), and
create a new file. In the file copy this:

import digitalio
import board
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT
while True:
 led.value = not led.value
 time.sleep(0.5)

Now, save the file to the drive as code.py (main.py or code.txt also works). After a brief time, the board's red LED
should begin to flash every second.

Status LED (Gemma/Trinket/Metro/Feather)

Do not click the RESET button after saving your code file! It could cause the computer to not-finish writing
your code to disk. Just wait a few seconds and it should automatically restart the python code for you!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 56 of 81

https://atom.io/

If you have a Gemma, Trinket, Metro or Feather running CircuitPython, there's a single RGB LED on the board to help
you know what's up. While code.py is running the status neopixel will be solid green. After it is finished, the neopixel
will fade green on success or flash an error code on failure. Red flashes happen when data is written to the drive.

Debugging

Did the status LED flash a bunch of colors at you? You may have an error in your code. Don't worry it happens to
everyone. Python code is checked when you run it rather than before like Arduino does when it compiles. To see the
CircuitPython error you'll need to connect to the serial output (like Arduino's serial monitor).

See this guide for detailed instructions.

If you are new to Python try googling the error first, if that doesn't find an answer feel free to drop by the support
forum.

Libraries

Using libraries with CircuitPython is also super easy. Simply drag and drop libraries onto the CIRCUITPY drive or into a
lib folder on the drive to keep it tidy.

Find CircuitPython libraries on GitHub using the topic and through our tutorials.

Make sure the libraries are for CircuitPython and not MicroPython. There are some differences that may cause it to not
work as expected.

More info

Guides and Tutorials
API Reference
Adafruit forum
Libraries

Circuit Playground Express does not have this status LED

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 57 of 81

https://learn.adafruit.com/micropython-basics-how-to-load-micropython-on-a-board/serial-terminal
https://forums.adafruit.com/viewforum.php?f=60
https://github.com/search?q=topic%3Acircuitpython
https://learn.adafruit.com/category/circuitpython
https://learn.adafruit.com/category/micropython
https://circuitpython.readthedocs.io/en/latest/
https://forums.adafruit.com/viewforum.php?f=60
https://github.com/search?q=topic%3Acircuitpython

Connecting to the Serial Console
One of the staples of CircuitPython (and programming in general!) is something called a "print statement". This is a line
you include in your code that causes your code to output text. A print statement in CircuitPython looks like this:

print("Hello, world!")

This line would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial console comes in!

The serial console receives output from your CircuitPython board sent over USB and displays it so you can see it. This
is necessary when you've included a print statement in your code and you'd like to see what you printed. It is also
helpful for troubleshooting errors, because your board will send errors and the serial console will print those too.

The serial console requires a terminal program. A terminal is a program that gives you a text-based interface to perform
various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board making using the REPL really really
easy.

Please note that Mu does yet not work with nRF52 or ESP8266-based CircuitPython boards, skip down to the next
section for details on using a terminal program.

First, make sure your CircuitPython board is plugged in.

If you are using Windows 7, make sure you installed the

drivers (https://adafru.it/Amd).

Once in Mu, look for the REPL button in the menu and click it

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 58 of 81

https://learn.adafruit.com/assets/49652
file:///welcome-to-circuitpython/installing-circuitpython#windows-7-drivers

The editor window will split in half.

The bottom half is your serial output/input. You can see

text from the CircuitPython board as well as send text to
the board.

Using Something Else?

If you're not using Mu to edit, are using ESP8266 or nRF52 CircuitPython, or if for some reason you are not a fan of the
built in serial console, you can run the serial console as a separate program.

Windows requires you to download a terminal program, check out this page for more details

Mac and Linux both have one built in, though other options are available for download, check this page for more
details

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 59 of 81

https://learn.adafruit.com/assets/49655
file:///welcome-to-circuitpython/advanced-serial-console-on-windows
file:///welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Interacting with the Serial Console
Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, we're going to edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print anything you like! Just include
your phrase between the quotation marks inside the parentheses. For example:

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed text to something else.

Keep your serial console window where you can see it. Save your file. You'll see what the serial console displays when

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello, CircuitPython!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 60 of 81

the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board was doing before you saved your file. This is
normal behavior and will happen every time the board resets. This is really handy for troubleshooting. Let's introduce
an error so we can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says led.value = Tru

Save your file. You will notice that your red LED will stop blinking, and you may have a colored status LED blinking at
you. This is because the code is no longer correct and can no longer run properly. We need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose. You may have 200 lines of code,
and have no idea where your error could be hiding. This is where the serial console can help. Let's take a look!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 61 of 81

The Traceback (most recent call last): is telling you that the last thing it was able to run was line 10 in your code. The next
line is your error: NameError: name 'Tru' is not defined . This error might not mean a lot to you, but combined with knowing
the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the problem is already. But if you didn't,
you'd want to look at line 10 and see if you could figure it out. If you're still unsure, try googling the error to get some
help. In this case, you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking again.

The serial console will display any output generated by your code. Some sensors, such as a humidity sensor or a
thermistor, receive data and you can use print statements to display that information. You can also use print statements
for troubleshooting. If your code isn't working, and you want to know where it's failing, you can put print statements in
various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and programming!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 62 of 81

The REPL
The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL. The REPL allows you to enter
individual lines of code and have them run immediately. It's really handy if you're running into trouble with a particular
program and can't figure out why. It's interactive so it's great for testing new ideas.

To use the REPL, you first need to be connected to the serial console. Once that connection has been established,
you'll want to press Ctrl + C.

If there is code running, it will stop and you'll see Press any key to enter the REPL. Use CTRL-D to reload. Follow those
instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board was doing before you pressed Ctrl + C and
interrupted it. The KeyboardInterrupt is you pressing Ctrl + C. This information can be handy when troubleshooting, but
for now, don't worry about it. Just note that it is expected behavior.

If there is no code running, you will enter the REPL immediately after pressing Ctrl + C. There is no information about
what your board was doing before you interrupted it because there is no code running.

Either way, once you press a key you'll see a >>> prompt welcoming you to the REPL!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 63 of 81

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released. Next, it gives you the type of
board you're using and the type of microcontroller the board uses. Each part of this may be different for your board
depending on the versions you're working with.

This is followed by the CircuitPython prompt.

From this prompt you can run all sorts of commands and code. The first thing we'll do is run help() . This will tell us
where to start exploring the REPL. To run code in the REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're using. Second, a URL for the
CircuitPython related project guides. Then... wait. What's this? To list built-in modules, please do `help("modules")`.

Remember the libraries you learned about while going through creating code? That's exactly what this is talking about!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 64 of 81

This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core libraries built into CircuitPython. We discussed how board contains all of the pins on the
board that you can use in your code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might look like nothing happened, but
that's not the case! If you recall, the import statement simply tells the code to expect to do something with that module.
In this case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 65 of 81

This is a list of all of the pins on your board that are available for you to use in your code. Each board's list will differ
slightly depending on the number of pins available. Do you see D13 ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the REPL isn't saved anywhere. If
you're testing something new that you'd like to keep, make sure you have it saved somewhere on your computer as
well!

Every programmer in every programming language starts with a piece of code that says, "Hello, World." We're going to
say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire programs into the REPL to test them.
As we said though, remember that nothing typed into the REPL is saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to see if a few new lines of code will
work. It's fantastic for troubleshooting code by entering it one line at a time and finding out where it fails. It lets you see
what libraries are available and explore those libraries.

Try typing more into the REPL to see what happens!

Returning to the serial console

When you're ready to leave the REPL and return to the serial console, simply press Ctrl + D. This will reload your board
and reenter the serial console. You will restart the program you had running before entering the REPL. In the console
window, you'll see any output from the program you had running. And if your program was affecting anything visual on
the board, you'll see that start up again as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 66 of 81

You can return to the REPL at any time!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 67 of 81

CircuitPython Libraries
Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython is so simple
to use is that most of that information is stored in other files and works in the background. These files are called
libraries. Some of them are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder called lib .
Part of what makes CircuitPython so awesome is its ability to store code separately from the firmware itself. Storing
code separately from the firmware makes it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, its in the base directory of the drive. If not, simply create the folder
yourself.

CircuitPython libraries work in the same was as regular Python modules so the Python docs are a great reference for
how it all should work. In Python terms, we can place our library files in the lib directory because its part of the Python
path by default.

One downside of this approach of separate libraries is that they are not built in. To use them, one needs to copy them
to the CIRCUITPY drive before they can be used. Fortunately, we provide a bundle full of our libraries.

Our bundle and releases also feature optimized versions of the libraries with the .mpy file extension. These files take
less space on the drive and have a smaller memory footprint as they are loaded.

Installing the CircuitPython Library Bundle

We're constantly updating and improving our libraries, so we don't (at this time) ship our CircuitPython boards with the
full library bundle. Instead, you can find example code in the guides for your board that depends on external libraries.
Some of these libraries may be available from us at Adafruit, some may be written by community members!

Either way, as you start to explore CircuitPython, you'll want to know how to get libraries on board.

You can grab the latest Adafruit CircuitPython 2.x Bundle release by clicking this button:

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 68 of 81

https://docs.python.org/3/tutorial/modules.html

Click for the Latest Adafruit CircuitPython Library

Bundle Release

https://adafru.it/AgR

If you need another version, you can also visit the bundle release page which will let you select exactly what version
you're looking for, as well as information about changes.

Either way, download the version that matches your CircuitPython run-time. For example, if you're running v2.2
download the v2 bundle. If you're running 3.0, download the v3 bundle. There's also a py bundle which contains the
uncompressed python files, you probably don't want that!

After downloading the zip, extract its contents. This is usually done by double clicking on the zip. On Mac OSX, it
places the file in the same directory as the zip.

When you open the folder, you'll see a large number of mpy files and folders

Express Boards

If you are using a Feather M0 Express, Metro M0 Express or Circuit Playground Express (or any other "Express" board)
your CircuitPython board comes with at least 2 MB of Flash storage. This is plenty of space for all of our library files so
we recommend you just install them all! (If you have a Gemma M0 or Trinket M0 or other non-Express board, skip
down to the next section)

On Express boards, the lib directory can be copied directly to the CIRCUITPY drive.

Just drag the entire lib folder into the CIRCUITPY drive, and 'replace' any old files if your operating system prompts
you

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 69 of 81

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/adafruit-circuitpython-bundle-2.*zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/

Non-Express Boards

If you are using Trinket M0 or Gemma M0, you will need to load the libraries individually, due to file space
restrictions. If you are using a non-express board, or you would rather load libraries as you use them, you'll first want to
create a lib folder on your CIRCUITPY drive. Open the drive, right click, choose the option to create a new folder, and
call it lib . Then, open the lib folder you extracted from the downloaded zip. Inside you'll find a number of folders and
.mpy files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, you may write up code that tries to use a library you haven't yet
loaded. We're going to demonstrate what happens when you try to utilise a library that you don't have loaded on your
board, and cover the steps required to resolve the issue. This demonstration will only return an error if you do not
have the required library loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the blinky example.

Save this file. Nothing happens to your board. Let's check the serial console to see what's going on.

We have an ImportError . It says there is no module named 'simpleio' . That's the one we just included in our code!

Click the link above to download the correct bundle. Extract the lib folder from the downloaded bundle file. Scroll
down to find simpleio.mpy . This is the library file we're looking for! Follow the steps above to load an individual library
file.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.D13)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 70 of 81

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose the library that matches the one
you're missing.

Library Install on Non-Express Boards

If you have a Trinket M0 or Gemma M0, you'll want to follow the same steps in the example above to install libraries as
you need them. You don't always need to wait for an ImportError as you probably know what library you added to your
code. Simply open the lib folder you downloaded, find the library you need, and drag it to the lib folder on your
CIRCUITPY drive.

For these boards, your internal storage is from the chip itself. So, these boards don't have enough space for all of the
libraries. If you try to copy over the entire lib folder you won't have enough space on your CIRCUITPY drive.

You may end up running out of space on your Trinket M0 or Gemma M0 even if you only load libraries as you need
them. There are a number of steps you can use to try to resolve this issue. You'll find them in the Troubleshooting page
in the Learn guides for your board.

Updating CircuitPython Libraries

Libraries are updated from time to time, and it's important to update the files you have on your CIRCUITPY drive.

To update a single library, follow the same steps above. When you drag the library file to your lib folder, it will ask if you
want to replace it. Say yes. That's it!

If you'd like to update the entire bundle at once, drag the lib folder to your CIRUCITPY drive. Different operating
systems will have a different dialog pop up. You want to tell it to replace the current folder. Then you're updated and
ready to go!

A new library bundle is released every time there's an update to a library. Updates include things like bug fixes and
new features. It's important to check in every so often to see if the libraries you're using have been updated.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 71 of 81

CircuitPython Built-Ins
CircuitPython comes 'with the kitchen sink' - a lot of the things you know and love about classic Python 3 (sometimes
called CPython) already work. There are a few things that don't but we'll try to keep this list updated as we add more
capabilities!

Things that are Built In and Work

flow control

All the usual if , elif , else , for , while ... work just as expected

math

import math will give you a range of handy mathematical functions

>>> dir(math)
['__name__', 'e', 'pi', 'sqrt', 'pow', 'exp', 'log', 'cos', 'sin', 'tan', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'copysign', 'fabs', 'floor', 'fmod', 'frexp',

'ldexp', 'modf', 'isfinite', 'isinf', 'isnan', 'trunc', 'radians', 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int's and float's whenever you expect

tuples, lists, arrays, and dictionaries

You can organize data in ()', []'s , and {}'s including strings, objects, floats, etc

classes/objects and functions

We use objects and functions extensively in our libraries so check out one of our many examples like this MCP9808
library for class examples

lambdas

Yep! You can create function-functions with lambda just the way you like em:

>>> g = lambda x: x**2
>>> g(8)
64

Things to watch out for!

The wide body of python libraries have not been ported over, so while we wish you could import numpy , numpy
isn't available. So you may have to port some code over yourself!
For the ATSAMD21 based boards (Feather M0, Metro M0, Trinket M0, Gemma M0, Circuit PlayGround Express)
there's a limited amount of RAM, we've found you can have about 250-ish lines of python (that's with various
libraries) before you hit MemoryErrors. The upcoming SAMD51 chipset will help with that a ton but its not yet
available)
Non-Express boards like Trinket M0 and Gemma M0 and non-Express Feathers do not include all of the
hardware support. For example, audioio and bitbangio are not included.
Integers can only be up to 31 bits. Integers of unlimited size are not supported.

This is not an exhaustive list! It's just some of the many featuers you can use

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 72 of 81

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808adafruit_mcp9808.py

We keep up with MicroPython stable releases, so check out the core 'differences' they document here.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 73 of 81

http://docs.micropython.org/en/latest/pyboard/genrst/index.html

Troubleshooting
From time to time, you will run into issues when working with CircuitPython. Here are a few things you may encounter
and how to resolve them.

CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the Trinket M0 and Gemma M0 boards ship with the UF2 bootloader installed.
Feather M0 Basic, Feather M0 Adalogger, and similar boards use a regular Arduino-compatible bootloader, which
does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode program on Circuit Playground Express, press the reset button just once to get the
CPLAYBOOT drive to show up. Pressing it twice will not work.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake? You don't need to install this package on Windows
10 for most Adafruit boards. The old version (v1.5) can interfere with recognizing your device. Go to Settings -> Apps
and uninstall all the "Adafruit" driver programs.

Windows 7

The latest version of the Adafruit Windows Drivers (version 2.0.0.0 or later) will fix the missing boardnameBOOT drive
problem on Windows 7. To resolve this, first uninstall the old versions of the drivers:

Unplug any boards. In Uninstall or Change a Program (Control Panel->Programs->Uninstall a program), uninstall
everything named "Windows Driver Package - Adafruit Industries LLC ...".

Now install the new 2.0.0.0 (or higher) Adafruit Windows Drivers Package:

Download Latest Drivers

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 74 of 81

file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

https://adafru.it/A0N

When running the installer, you'll be shown a list of drivers to choose from. You can check and uncheck the
boxes to choose which drivers to install.

You should now be done! Test by unplugging and replugging the board. You should see the CIRCUITPY drive, and
when you double-click the reset button (single click on Circuit Playground Express running MakeCode), you should see
the appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums or on the Adafruit Discord if this does not work for you!

CircuitPython RGB Status Light

The Feather M0 Express, Metro M0 Express, Gemma M0, and Trinket M0 all have a single NeoPixel or DotStar RGB
LED on the board that indicates the status of CircuitPython. Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt , main.py , or main.txt) is running
pulsing GREEN: code.py (etc.) has finished or does not exist
YELLOW: Circuit Python is in safe mode: it crashed and restarted
WHITE: REPL is running
BLUE: Circuit Python is starting up

Colors with multiple flashes following indicate a Python exception and then indicate the line number of the error. The
color of the first flash indicates the type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError
ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHITE flashes are thousands' place,
BLUE are hundreds' place, YELLOW are tens' place, and CYAN are one's place. So for example, an error on line 32
would flash YELLOW three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 75 of 81

https://forums.adafruit.com
https://adafrui.it/discord

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find that your CIRCUITPY stops
showing up in your file explorer, or shows up as NO_NAME . These are indicators that your filesystem has become
corrupted.

This happens most often when the CIRCUITPY disk is not safely ejected before being reset by the button or being
disconnected from USB. It can happen on Windows, Mac or Linux.

In this situation, the board must be completely erased and CircuitPython must be reloaded onto the board.

For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:

 1. Download the correct erase file:

Circuit Playground Express

https://adafru.it/AdI

Feather M0 Express

https://adafru.it/AdJ

Metro M0 Express

https://adafru.it/AdK

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The onboard NeoPixel will turn blue, indicating the erase has started.
 5. After approximately 15 seconds, the NeoPixel will start flashing green.
 6. Double-click the reset button on the board to bring up the boardnameBOOT drive.
 7. Drag the appropriate latest release of CircuitPython .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board, you can find it here.

For the Gemma M0, Trinket M0, Feather M0: Basic (Proto) and Feather Adalogger:

 1. Download the erase file:

Gemma M0, Trinket M0, Feather M0 Basic,

Feather Adalogger

You WILL lose everything on the board when you complete the following steps. If possible, make a copy of
your code before continuing.

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 76 of 81

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://github.com/adafruit/circuitpython/releases
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2?1512152239

https://adafru.it/AdL

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The boot LED will start flashing again, and the boardnameBOOT drive will reappear.
 5. Drag the appropriate latest release CircuitPython .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If you haven't already downloaded the latest version of CircuitPython for your board, you can find it here.

Running Out of File Space on Non-Express Boards

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its likely you'll run out of space but
don't panic! There are a couple ways to free up space.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you don't need it or have already
installed it. Its ~12KiB or so.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there are libraries in the lib folder that
you aren't using anymore or test code that isn't in use.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the recommendation is to indent code
with four spaces for every indent. In general, we recommend that too. However, one trick to storing more human-
readable code is to use a single tab character for indentation. This approach uses 1/4 of the space for indentation and
can be significant when we're counting bytes.

Mac OSX loves to add extra files.

Luckily you can disable some of the extra hidden files that Mac OSX adds by running a few commands to disable
search indexing and create zero byte placeholders. Follow the steps below to maximize the amount of space available
on OSX:

Prevent & Remove Mac OSX Hidden Files

First find the volume name for your board. With the board plugged in run this command in a terminal to list all the
volumes:

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 77 of 81

https://github.com/adafruit/circuitpython/releases

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full path to the volume is
the /Volumes/CIRCUITPY path.

Now follow the steps from this question to run these terminal commands that stop hidden files from being created on
the board:

Replace /Volumes/CIRCUITPY in the commands above with the full path to your board's volume if it's different. At this
point all the hidden files should be cleared from the board and some hidden files will be prevented from being created.

However there are still some cases where hidden files will be created by Mac OSX. In particular if you copy a file that
was downloaded from the internet it will have special metadata that Mac OSX stores as a hidden file. Luckily you can
run a copy command from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on Mac OSX Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on Mac OSX you need to be careful to
copy files to the board with a special command that prevents future hidden files from being created. Unfortunately
you cannot use drag and drop copy in Finder because it will still create these hidden extended attribute files in some
cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For example to copy a foo.mpy file to the
board use a command like:

Or to copy a folder and all of its child files/folders use a command like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

Other Mac OSX Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden files here's how to do so. First
list the amount of space used on the CIRCUITPY drive with the df command:

ls -l /Volumes

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

cp -X foo.mpy /Volumes/CIRCUITPY

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 78 of 81

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

Lets remove the ._ files first.

Whoa! We have 13Ki more than before! This space can now be used for libraries and code!

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 79 of 81

Downloads
Files

ATSAMD21 Datasheet (the main chip on the Metro M0)
Fritzing object in the Adafruit Fritzing Library

CircuitPython 2.2 Metro M0 Demo Files.zip

https://adafru.it/Aql

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython Page 80 of 81

https://www.adafruit.com/images/product-files/2772/atmel-42181-sam-d21_datasheet.pdf
https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/049/829/original/CircuitPython_2.2_Metro_M0_Files.zip?1515108299

© Adafruit Industries Last Updated: 2018-01-04 11:40:15 PM UTC Page 81 of 81

	Guide Contents
	Overview
	Pinouts
	Power Connections
	Logic pins
	Top Row
	Bottom Row
	Right side
	Additional analog inputs

	SPI Flash and NeoPixel
	Other Pins!
	Debug Interface
	SEGGER J-Link EDU - JTAG/SWD Debugger
	SEGGER J-Link BASE - JTAG/SWD Debugger
	JTAG (2x10 2.54mm) to SWD (2x5 1.27mm) Cable Adapter Board
	10-pin 2x5 Socket-Socket 1.27mm IDC (SWD) Cable - 150mm long

	UF2 Bootloader Details
	Entering Bootloader Mode
	Using the Mass Storage Bootloader
	Using the BOSSA Bootloader
	Windows 7 Drivers
	Verifying Serial Port in Device Manager
	Running bossac on the command line

	Updating the bootloader
	Getting Rid of Windows Pop-ups
	Making your own UF2
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 Only)
	Blink
	Sucessful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	Adapting Sketches to M0
	Analog References
	Pin Outputs & Pullups
	Serial vs SerialUSB
	AnalogWrite / PWM on Feather/Metro M0
	analogWrite() PWM range
	Missing header files
	Bootloader Launching
	Aligned Memory Access
	Floating Point Conversion
	How Much RAM Available?
	Storing data in FLASH
	Using SPI Flash
	Read & Write CircuitPython Files
	Format Flash Memory
	Datalogging Example
	Reading and Printing Files
	Full Usage Example
	Accessing SPI Flash
	Metro M0 HELP!
	My Metro M0 stopped working when I unplugged the USB!
	My Metro never shows up as a COM or Serial port in the Arduino IDE
	Ack! I "did something" and now when I plug in the Metro, it doesn't show up as a device anymore so I cant upload to it or fix it...
	I can't get the Metro USB device to show up - I get "USB Device Malfunctioning" errors!
	I'm having problems with COM ports and my Metro M0
	I don't understand why the COM port disappears, this does not happen on my Arduino UNO!
	I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding" errors
	I'm trying to upload to my Metro M0, and I get this error "Connecting to programmer: .avrdude: butterfly_recv(): programmer is not responding"
	I'm trying to upload to my Metro and i get this error "avrdude: ser_recv(): programmer is not responding"

	CircuitPython Setup
	Downloading
	Flashing
	Flashing UF2
	Flashing with BOSSAC
	After flashing

	Welcome to the Community!
	Adafruit Discord
	Adafruit Forums
	Adafruit Github
	ReadTheDocs

	CircuitPython Blinky
	code.py
	Status LED (Gemma/Trinket/Metro/Feather)
	Debugging

	Libraries

	More info
	Connecting to the Serial Console
	Are you using Mu?
	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Returning to the serial console
	CircuitPython Libraries
	Installing the CircuitPython Library Bundle
	Express Boards
	Non-Express Boards
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries

	CircuitPython Built-Ins
	Things that are Built In and Work
	flow control
	math
	tuples, lists, arrays, and dictionaries
	classes/objects and functions
	lambdas

	Things to watch out for!
	Troubleshooting
	CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present
	You may have a different board.
	MakeCode
	Windows 10
	Windows 7

	CircuitPython RGB Status Light
	CIRCUITPY Drive Issues
	For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
	For the Gemma M0, Trinket M0, Feather M0: Basic (Proto) and Feather Adalogger:

	Running Out of File Space on Non-Express Boards
	Delete something!
	Use tabs
	Mac OSX loves to add extra files.
	Prevent & Remove Mac OSX Hidden Files
	Copy Files on Mac OSX Without Creating Hidden Files
	Other Mac OSX Space-Saving Tips

	Downloads
	Files
	Schematic & Fabrication Print

