
Analog Feedback Servos
Created by Bill Earl

Last updated on 2013-08-30 11:30:20 AM EDT

2
3
3
3
6
7
7
8
8
9

10
11

Guide Contents

Guide Contents
About Servos and Feedback
What is a Servo?
Open and Closed Loops
Using Feedback
Reading the feedback
Calibrating the feedback
Using feedback in your code

Seeking to a position
Finding out where you are

Servos as Input Devices
To run the Servo Record/Play Demo Sketch:

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 2 of 12

About Servos and Feedback

What is a Servo?

The word 'servo' means more than just those little RC Servo Motors we usually think of. Servo is
a general term for a closed loop control system using negative feedback.

The cruise control in a car is one example of a servo system. It measures your speed and
feeds that back into a control circuit which adjusts the accelerator to maintain speed.

For the familiar RC Servo motor, the position of the output shaft is measured and fed back to
the internal control circuit which adjusts current to the motor to maintain position.

Open and Closed Loops

An "Open Loop" system has no feedback, so there is no way to verify that it is performing as
expected. A common expression among control engineers is "You can't control what you can't
measure.".

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 3 of 12

A "Closed Loop" system can use the feedback signal to adjust the speed and direction of the
motor to achieve the desired result. In the case of an RC servo motor, the feedback is in the
form of a potentiometer (pot) connected to the output shaft of the motor. The output of the
pot is proportional to the position of the servo shaft.

The problem with controlling a standard RC servo motor from a microcontroller is that it is
'closed loop' inside the servo motor case, but 'open loop' with respect to your microcontroller.
You can tell the servo control circuit how you want the shaft positioned, but you have no way to
confirm if or when this actually happens.

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 4 of 12

The Feedback Servos allow you to close this outer loop by providing the feedback signal to the
microcontroller too!

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 5 of 12

Using Feedback

If a servo motor does what it is told to do, why do we need feedback?

RC servos usually do what they are told to do, but there are many cases where a servo motor
might not. These can include:

Insufficient motor size
Insufficient power supply
Physical interference
Electrical interference
loose connection

In these cases, feedback could alert you to the problem.

But even if the servo is adequately sized and functioning normally, it still takes some time to
respond to a position command, and in many applications it is just as important to know when
the position is reached.

This following code snippet is from the "Sweep" example in the Servo library. Note the arbitrary
15 millisecond delay after
"myservo.write(val)".

Without feedback, most servo programming has to make some assumptions about how long a
particular move will take. Adding fixed-time delays to servo code works OK for simple
applications, but can result in slow and/or jerky performance when trying to coordinate multiple
servo motions or interactions between servos and other sensors or actuators.

Or worse: If the delays are not long enough, your servos may not reach the desired position in
time. This can cause malfunctions and/or damage to your project. Timing problems are a big
problem in battery-powered projects because the motors will run slower as the battery power
fades.

void loop()
{
 val = analogRead(potpin); // reads the value of the potentiometer (value between 0 and 1023)
 val = map(val, 0, 1023, 0, 179); // scale it to use it with the servo (value between 0 and 180)
 myservo.write(val); // sets the servo position according to the scaled value
 delay(15); // waits for the servo to get there
}

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 6 of 12

Reading the feedback

The feedback signal is tapped off the position pot attached to the servo shaft. You can
connect the white feedback wire to any of the analog input pins and read the feedback value
using analogRead().

Calibrating the feedback

The raw feedback signal is a voltage. In order to convert that voltage into a meaningful position,
we need to calibrate it to the servo. By reading the feedback values at two known positions, we
can interpolate the expected feedback values for every position in between.

The following bit of code does just that. If you call "calibrate" in your setup function, it will
perform the calibration on the two points you specify. These servos operate over a range of
about 0 to 180 degrees. For maximum accuracy, you should choose the minPos and maxPos
calibration points based on the range of motion required in your project.

 int feedback = analogRead(feedbackPin);

#include <Servo.h>

Servo myservo;

// Control and feedback pins
int servoPin = 9;
int feedbackPin = A0;

// Calibration values
int minDegrees;
int maxDegrees;
int minFeedback;
int maxFeedback;

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 7 of 12

Using feedback in your code

Now that we have a calibrated feedback signal, we can easily convert between servo position
and feedback voltages in our code.

Seeking to a position
The following bit of code will seek to a position and return as soon as we reach it. There is no
need to add an arbitrary delay to the code because the feedback signal will tell us exactly when
we get there!

int maxFeedback;
int tolerance = 2; // max feedback measurement error

/*
 This function establishes the feedback values for 2 positions of the servo.
 With this information, we can interpolate feedback values for intermediate positions
*/
void calibrate(Servo servo, int analogPin, int minPos, int maxPos)
{
 // Move to the minimum position and record the feedback value
 servo.write(minPos);
 minDegrees = minPos;
 delay(2000); // make sure it has time to get there and settle
 minFeedback = analogRead(analogPin);

 // Move to the maximum position and record the feedback value
 servo.write(maxPos);
 maxDegrees = maxPos;
 delay(2000); // make sure it has time to get there and settle
 maxFeedback = analogRead(analogPin);
}

void setup()
{
 myservo.attach(servoPin);

 calibrate(myservo, feedbackPin, 20, 160); // calibrate for the 20-160 degree range
}

void loop()
{
}

void Seek(Servo servo, int analogPin, int pos)
{
 // Start the move...
 servo.write(pos);

 // Calculate the target feedback value for the final position
 int target = map(pos, minDegrees, maxDegrees, minFeedback, maxFeedback);

 // Wait until it reaches the target
 while(abs(analogRead(analogPin) - target) > tolerance){} // wait...

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 8 of 12

Finding out where you are
Another great thing about feedback is: You don't need to write code to remember the last
position command you sent to the servo (assuming it got there). If you want to find out what
position your servo is in, you can simply ask it!

Once you have calibrated your servo with the calibration function above, this bit of code will tell
you the current position (in degrees) of your servo:

The ability to simply read the servo position opens up the possibility of using it as an input
device as well. The next page will show you how.

 while(abs(analogRead(analogPin) - target) > tolerance){} // wait...
}

int getPos(int analogPin)
{
 return map(analogRead(analogPin), minFeedback, maxFeedback, minDegrees, maxDegrees);
}

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 9 of 12

Servos as Input Devices

Another neat feature of feedback servos is that they can be used as an input device too! The
Servo Record/Play Demo lets you record a series of servo movements, then it will replay them
back for you! The recorded positions are saved in EEPROM, so they will be remembered even
after resetting or powering down the Arduino

To run this demo, first wire up your Servo as in the Fritzing diagram below:

Components used:

Arduino Uno (http://adafru.it/50)
Feedback Servo (http://adafru.it/1404)
2x pushbuttons (http://adafru.it/1119)
LED (http://adafru.it/299)(most any 3 or 5mm led will work)
220 ohm resistor
Misc. jumpers (http://adafru.it/758)
Breadboard (http://adafru.it/64)

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 10 of 12

http://www.adafruit.com/products/50
http://www.adafruit.com/products/1404
http://www.adafruit.com/products/1119
http://www.adafruit.com/products/299
http://www.adafruit.com/products/758
http://www.adafruit.com/products/64

Next, download the example sketch from Github using this button:

Download ServoDownload Servo
Record/PlayRecord/Play

Demo SketchDemo Sketch
http://adafru.it/cCE

To run the Servo Record/Play Demo Sketch:

1. Upload servo_recordplay to the arduino
2. press the top button to start recording. (The LED should light up.)
3. Press the top button once more to stop recording.
4. Press the bottom button to replay.
5. You can press the green button as many times as you want.
6. To record a new sequence, go back to step 2.

Watch the video below to see it in operation:

You can record up to 512 samples (about 12.8 seconds worth). You can record up to 512 samples (about 12.8 seconds worth). When you reach theWhen you reach the
limit, the led will go out and recording will stop automatically.limit, the led will go out and recording will stop automatically.

© Adafruit Industries http://learn.adafruit.com/analog-feedback-servos Page 11 of 12

https://github.com/adafruit/Feedback-Servo-Record-and-Play/archive/master.zip

© Adafruit Industries Last Updated: 2013-08-30 11:30:22 AM EDT Page 12 of 12

	Guide Contents
	About Servos and Feedback
	What is a Servo?
	Open and Closed Loops
	Using Feedback
	Reading the feedback
	Calibrating the feedback
	Using feedback in your code
	Seeking to a position
	Finding out where you are

	Servos as Input Devices
	To run the Servo Record/Play Demo Sketch:

