

bq29410, bq29411, bq29412 bq29413, bq29414 bq29415, bq29419

SLUS669G - AUGUST 2005 - REVISED AUGUST 2008

VOLTAGE PROTECTION FOR 2-, 3-, OR 4-CELL Li-lon BATTERIES (2nd-LEVEL PROTECTION)

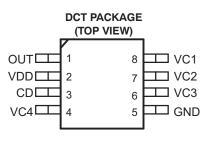
Check for Samples: bq29410, bq29411, bq29412, bq29413, bq29414, bq29415, bq29419

FEATURES

www.ti.com

- 2-, 3-, or 4-Cell Secondary Protection
- Low Power Consumption I_{CC} < 2 μA [VCELL_(ALL) < V_(PROTECT)]
- Fixed High Accuracy Overvoltage Protection Threshold
 - bq29410 = 4.35 V
 - bq29411 = 4.40 V
 - bq29412 = 4.45 V
 - bq29413 = 4.50 V
 - bq29414 = 4.55 V
 - bq29415 = 4.60 V
 - bq29419 = 4.30 V
- Programmable Delay Time of Detection
- High Power Supply Ripple Rejection
- Stable During Pulse Charge Operation

APPLICATIONS


- 2nd-Level Overvoltage Protection in Li-Ion Battery Packs in:
 - Notebook Computers
 - Portable Instrumentation
 - Portable Equipment

DESCRIPTION

The bq2941x is a secondary overvoltage protection IC for 2-, 3-, or 4-cell lithium-ion battery packs that incorporates a high-accuracy precision overvoltage detection circuit. It includes a programmable delay circuit for overvoltage detection time.

FUNCTION

Each cell in a multiple-cell pack is compared to an internal reference voltage. If one cell reaches an overvoltage condition, the protection sequence begins. The bq2941x device starts charging an external capacitor through the CD pin. When the CD pin voltage reaches 1.2 V, the OUT pin changes from a low level to a high level.

PW PACKAGE (TOP VIEW)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLUS669G -AUGUST 2005-REVISED AUGUST 2008

bq29410, bq29411, bq29412

bq29413, bq29414

bg29415, bg29419

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Ŧ	V (2)		PAG	CKAGE ⁽³⁾	
T _A	V _(PROTECT) ⁽²⁾	MSOP (DCT)	SYMBOL	SSO	P (PW)
	4.30 V	bq29419DCTR	CJQ	h~20440D\\/C4	h=20440DW/DC4
	4.30 V	bq29419DCTT	CJQ	bq29419PWG4	bq29419PWRG4
		bq29410DCT3R			
	4.35 V	bq29410DCTR	CJG	bq29410PW bg29410PWG4	bq29410PWR bq29410PWRG4
		bq29410DCTT		5420 1101 1101	
	4.40 V	bq29411DCT3R			
		bq29411DCTR	CJH	bq29411PW bq29411PWG4	bq29411PWR bq29411PWRG4
		bq29411DCTT		2q_0 · · · · · · • ·	5q_0 · · · · · · · · · · · · ·
–40°C to 110°C		bq29412DCT3R			
	4.45 V	bq29412DCTR	CJJ	bq29412PW bg29412PWG4	bq29412PWR bq29412PWRG4
		bq29412DCTT		54 <u>-</u> 0 · · <u>-</u> · · · 0 ·	54 <u>-</u> 0 · · <u>-</u> . · · · · O ·
	4.50 V	bq29413DCTR	CJk	ha20/12DW/	bg29413PWR
	4.50 V	bq29413DCTT	CJK	bq29413PW	DQ29413FWR
	4.55 V	bq29414DCTR	CJL	bq29414PW	bq29414PWR
	4.00 v	bq29414DCTT	CJL	DY29414FV	DY29414FVVR
	4.60 V	bq29415DCTR	CJM	bc20415DW	ba20415DW/P
	4.00 V	bq29415DCTT	CJIVI	bq29415PW	bq29415PWR

ORDERING INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(2) Contact your local Texas Instruments representative or sales office for alternative overvoltage threshold options.

(3) The "R" suffix indicates tape-and-reel packaging.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted $^{\left(1\right) }$ $^{\left(2\right) }$

		UNIT
Supply voltage range	VDD	–0.3 V to 28 V
Input voltage renge	VC1, VC2, VC3, VC4	–0.3 V to 28 V
Input voltage range	VC1 TO VC2, VC2 TO VC3, VC3 TO VC4, VC4 TO GND	–0.3 V to 8 V
	OUT	–0.3 V to 28 V
Output voltage range	CD	–0.3 V to 28 V
Continuous total power d	issipation	See Dissipation Rating Table
Storage temperature range	ge, T _{stg}	–65°C to 150°C
Lead temperature (solder	ring, 10 s)	300°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground of this device except the differential voltage of VC1-VC2, VC2-VC3, VC3-VC4, and VC4-GND.

PACKAGE DISSIPATION RATINGS

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DCT	412 mW	3.3 mW/°C	264 mW	214 mW
PW	525 mW	4.2 mW/°C	336 mW	273 mW

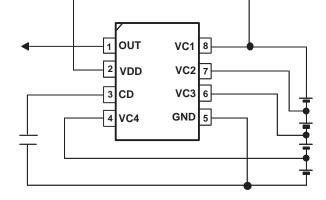
www.ti.com

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V _{DD}	Supply voltage		4		25	V
V	Input voltogo rongo	VC1, VC2, VC3, VC4			25	V
VI	Input voltage range	VCn – VC (n=1), (n=1, 2, 3), VC4 – GND	0		5	V
t _{d(CD)}	Delay time capacitanc	e		0.22		μF
R _{IN}	Voltage-monitor filter r	resistance	100	100 1k		Ω
C _{IN}	Voltage-monitor filter of	capacitance	0.01	100 1k		μF
R_{VD}	Supply-voltage filter re	esistance	0		1	kΩ
C_{VD}	Supply-voltage filter ca	apacitance		0.1		μF
T _A	Operating ambient ten	nperature range	-40		110	°C

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range, $T_A = 25^{\circ}C$ (unless otherwise noted)


	PARAMETER	TEST CONDITION	MIN	NOM	MAX	UNIT
		$T_A = 25^{\circ}C$		25	35	
V _(OA)	Overvoltage detection accuracy	$T_A = -20^{\circ}C \text{ to } 85^{\circ}C$		25	50	mV
	accuracy	$T_A = -40^{\circ}C$ to $110^{\circ}C$			80	I
		bq29410		4.35		
		bq29411		4.40		
		bq29412		4.45		I
V _(PROTECT)	Overvoltage detection voltage	bq29413		4.50		V
		bq29414		4.55		
		bq29415		4.60		I
		bq29419		4.30		I
M	Overvoltage detection	bq29410/11/12/13/14/15		320		
V _{hys}	hysteresis	bq29419	250	320	450	mV
I _{IN}	Input current	V2, V3 , VC4 input ,V _{DD} = VC1 VC1 = VC2 = VC3 = VC4 = 3.5 V (see Figure 1)			0.3	μA
t _{D1}	Overvoltage detection delay time	V _{DD} = VC1, CD = 0.22 μF	1	1.5	2	S
I _(CD_dis)	CD GND clamp current	$V_{DD} = VC1, CD = 1 V$	5	12		μA
	Quere la compart	V _{DD} = VC1, VC1-VC2 = VC2-VC3 = VC3-VC4 = VC4-GND = 3.5 V (see Figure 1)		2	3	
I _{CC}	Supply current	V _{DD} = VC1, VC1-VC2 = VC2-VC3 = VC3-VC4 = VC4-GND = 2.3 V (see Figure 1)		1.5	2.5	μA
Views	OUT pin drive voltage	$\label{eq:VC1-VC2} \begin{array}{l} VC1-VC2 = VC2-VC3 = VC3-VC4 = VC4-GND = \\ V_{(PROTECT)}Max, \ V_{\mathsf{DD}} = 14 \ V, \ I_{\mathsf{OH}} = 0 \ mA \end{array}$		7		V
V _(OUT)	OUT pin drive voltage	VC1 = VC2 = VC3 = VC4 = V _(PROTECT) Max, V _{DD} = 4.3 V, T _A = 0°C to 70°C, I _{OH} = 40 μ A	1.5	2	2.5	v
I _{OH}	High-level output current	$\begin{array}{l} \text{OUT} = 3 \text{ V}, \\ \text{VC1-VC2} = \text{VC2-VC3} = \text{VC3-VC4} = \text{VC4-GND} = \\ \text{V}_{(\text{PROTECT})}\text{Max}, \text{ V}_{\text{DD}} = 14 \text{ V} \end{array}$			-1	mA
I _{OL}	Low-level output current	OUT = 0.1 V, V _{DD} = VC1, VC1-VC2 = VC2-VC3 = VC3-VC4 = VC4-GND = 3.5 V	5			μA

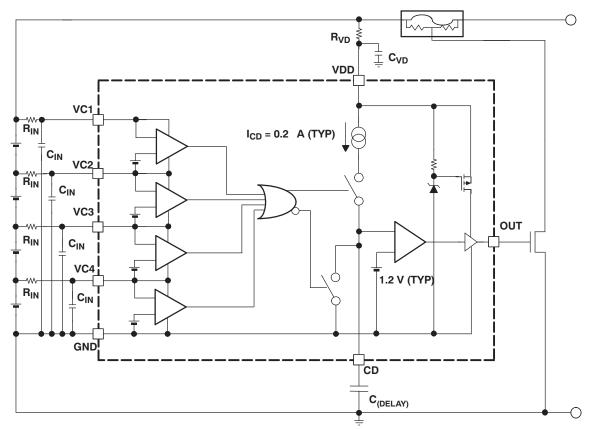
Copyright © 2005–2008, Texas Instruments Incorporated

Submit Documentation Feedback 3

TEXAS INSTRUMENTS

www.ti.com

	TERMINAL			
MSOP (DCT)	TSSOP (PW)	NAME	DESCRIPTION	
8	1	VC1	Sense voltage input for most positive cell	
7	2	VC2	Sense voltage input for second most positive cell	
6	3	VC3	Sense voltage input for third most positive cell	
5	4	GND	Ground pin	
4	5	VC4	Sense voltage input for least positive cell	
3	6	CD	An external capacitor is connected to determine the programmable delay time	
2	7	VDD	Power supply	
1	8	OUT	Output	


Terminal Functions

www.ti.com

SLUS669G - AUGUST 2005 - REVISED AUGUST 2008

FUNCTIONAL BLOCK DIAGRAM

OVERVOLTAGE PROTECTION

When one of the cell voltages exceeds $V_{(PROTECT)}$, an internal current source begins to charge the capacitor, $C_{(DELAY)}$, connected to the CD pin. If the voltage at the CD pin, V_{CD} , reaches 1.2 V, the OUT pin is activated and transitions high. An externally connected NCH FET is activiated and blows the external fuse in the positive battery rail; see the functional block diagram.

If all cell voltages fall below $V_{(PROTECT)}$ before the voltage at pin CD reaches 1.2 V, the delay time does not run out. An internal switch clamps the CD pin to GND and discharges the capacitor, $C_{(DELAY)}$, and secures the full delay time for the next occurring overvoltage event.

Once the pin OUT is activated, it transitions back from high to low after all battery cells reach V(PROTECT) - Vhvs.

DELAY TIME CALCULATION

The delay time is calculated as follows:

$$t_{d} = \frac{\left[1.2 \text{ V} \times \text{C}_{(\text{DELAY})}\right]}{I_{\text{CD}}}$$
$$C_{(\text{DELAY})} = \frac{\left[t_{d} \times \text{I}_{\text{CD}}\right]}{1.2 \text{ V}}$$

Where $I_{(CD)} = CD$ current source = 0.18 μ A

bq29410, bq29411, bq29412 bq29413, bq29414 bq29415, bq29419 SLUS669G – AUGUST 2005 – REVISED AUGUST 2008

www.ti.com

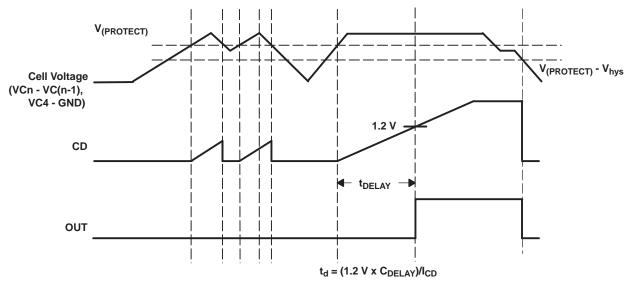


Figure 2. Timing for Overvoltage Sensing

APPLICATION INFORMATION

BATTERY CONNECTIONS

The following diagrams show the DCT package device in different cell configurations.

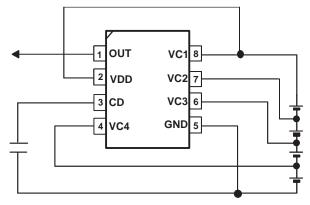
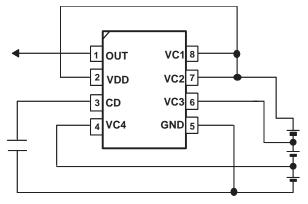
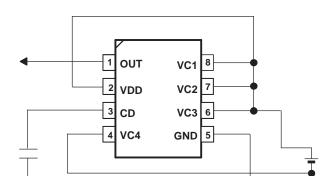


Figure 3. 4-Series Cell Configuration




Figure 4. 3-Series Cell Configuration (Connect together VC1 and VC2)

6

SLUS669G - AUGUST 2005 - REVISED AUGUST 2008

CELL CONNECTIONS

To prevent incorrect output activation, the following connection sequences must be used.

4-Series Cell Configuration

- $VC1(=VDD) \rightarrow VC2 \rightarrow VC3 \rightarrow VC4 \rightarrow GND$ or
- $\text{GND} \rightarrow \text{VC4} \rightarrow \text{VC3} \rightarrow \text{VC2} \rightarrow \text{VC1}(=\text{VDD})$

3-Series Cell Configuration

- VC1(=VC2=VDD) \rightarrow VC3 \rightarrow VC4 \rightarrow GND or
- GND \rightarrow VC4 \rightarrow VC3 \rightarrow VC1(=VC2=VDD)

2-Series Cell Configuration

- VC1(=VC2=VC3=VDD) \rightarrow VC4 \rightarrow GND or
- GND \rightarrow VC4 \rightarrow VC1(=VC2=VC3=VDD)

2-Oct-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
BQ29410DCT3R	NRND	SM8	DCT	8	3000	Pb-Free (RoHS)	CU SNBI	Level-1-260C-UNLIM	-40 to 110	CJG W	
BQ29410DCT3RE6	NRND	SM8	DCT	8	3000	Pb-Free (RoHS)	CU SNBI	Level-1-260C-UNLIM	-40 to 110	CJG W	
BQ29410DCTR	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJG W	
BQ29410DCTRG4	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJG W	
BQ29410DCTT	NRND	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJG W	
BQ29410DCTTG4	NRND	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJG W	
BQ29410PW	NRND	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	29410	
BQ29410PWR	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	29410	
BQ29410PWRG4	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29410	
BQ29411DCT3R	NRND	SM8	DCT	8	3000	Pb-Free (RoHS)	CU SNBI	Level-1-260C-UNLIM	-40 to 110	CJH W	
BQ29411DCTR	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJH W	
BQ29411DCTRG4	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJH W	
BQ29411DCTT	NRND	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJH W	
BQ29411PW	NRND	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	29411	
BQ29411PWR	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	29411	
BQ29411PWRG4	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29411	
BQ29412DCT3R	NRND	SM8	DCT	8	3000	Pb-Free (RoHS)	CU SNBI	Level-1-260C-UNLIM	-40 to 110	CJJ W	

PACKAGE OPTION ADDENDUM

2-Oct-2014

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
BQ29412DCT3RE6	NRND	SM8	DCT	8	3000	Pb-Free (RoHS)	CU SNBI	Level-1-260C-UNLIM	-40 to 110	CJJ W	
BQ29412DCT3T	PREVIEW			8		TBD	Call TI	Call TI	-40 to 110		
BQ29412DCTR	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJJ W	
BQ29412DCTRG4	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJJ W	
BQ29412DCTT	NRND	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJJ W	
BQ29412DCTTG4	NRND	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJJ W	
BQ29412PW	NRND	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	29412	
BQ29412PWG4	NRND	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29412	
BQ29412PWR	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		29412	
BQ29412PWRG4	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR		29412	
BQ29413DCTR	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJK W	
BQ29413DCTRG4	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJK W	
BQ29413DCTT	NRND	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJK W	
BQ29413PWR	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29413	
BQ29414DCTR	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJL W	
BQ29414DCTRG4	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJL W	
BQ29414PW	NRND	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	2914	
BQ29414PWR	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	2914	

2-Oct-2014

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
BQ29414PWRG4	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	2914	
BQ29415DCTR	NRND	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 110	CJM W	
BQ29415PWR	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	2915	
BQ29419PW	NRND	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29419	
BQ29419PWG4	NRND	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29419	
BQ29419PWR	NRND	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 110	29419	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

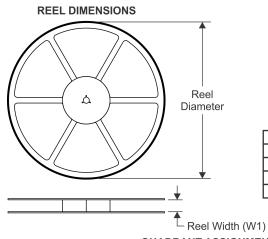
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

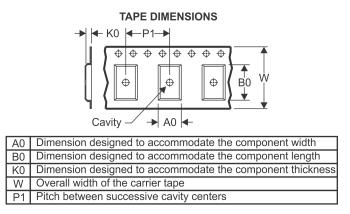
www.ti.com

2-Oct-2014

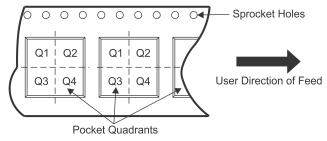
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

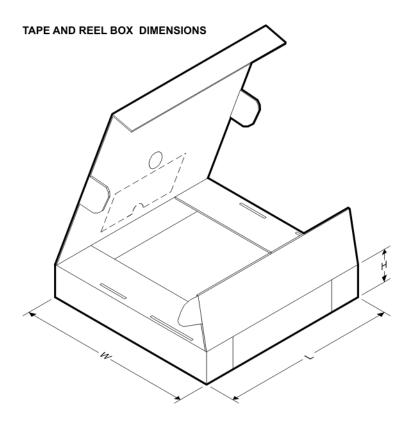

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

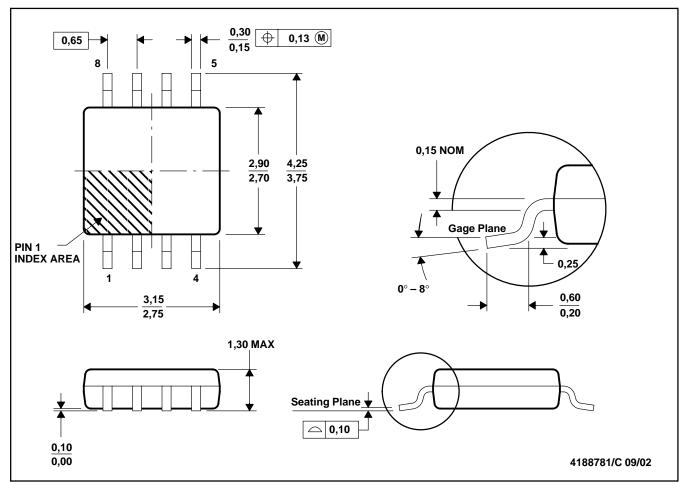

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ29410DCT3R	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29410DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29410DCTT	SM8	DCT	8	250	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29410PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
BQ29410PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
BQ29411DCT3R	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29411DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29411DCTT	SM8	DCT	8	250	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29411PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
BQ29411PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
BQ29413DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29413DCTT	SM8	DCT	8	250	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29413PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
BQ29414DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29414PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
BQ29415DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
BQ29415PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
BQ29419PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

29-Jan-2017


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ29410DCT3R	SM8	DCT	8	3000	182.0	182.0	20.0
BQ29410DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
BQ29410DCTT	SM8	DCT	8	250	182.0	182.0	20.0
BQ29410PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
BQ29410PWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
BQ29411DCT3R	SM8	DCT	8	3000	182.0	182.0	20.0
BQ29411DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
BQ29411DCTT	SM8	DCT	8	250	182.0	182.0	20.0
BQ29411PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
BQ29411PWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
BQ29413DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
BQ29413DCTT	SM8	DCT	8	250	182.0	182.0	20.0
BQ29413PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
BQ29414DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
BQ29414PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
BQ29415DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
BQ29415PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
BQ29419PWR	TSSOP	PW	8	2000	367.0	367.0	35.0

MECHANICAL DATA

MPDS049B - MAY 1999 - REVISED OCTOBER 2002

DCT (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

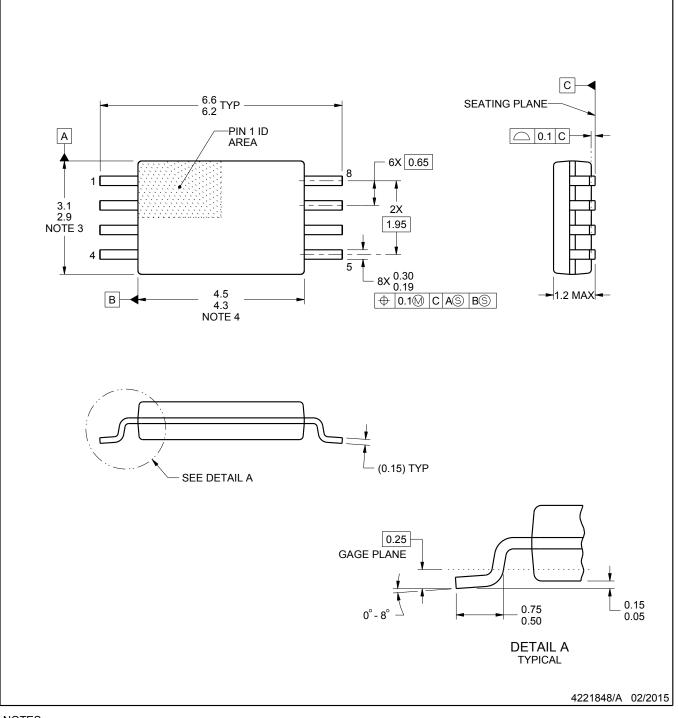
C. Body dimensions do not include mold flash or protrusion

D. Falls within JEDEC MO-187 variation DA.

DCT (R-PDSO-G8) PLASTIC SMALL OUTLINE Example Board Layout Example Stencil Design (Note C,E) (Note D) - 6x0,65 - 6x0,65 8x0,25-8x1,55 3,40 3,40 Non Solder Mask Defined Pad Example Pad Geometry -0,30 (Note C) 1,60 Example -0,07 Non-solder Mask Opening All Around (Note E) 4212201/A 10/11

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0008A

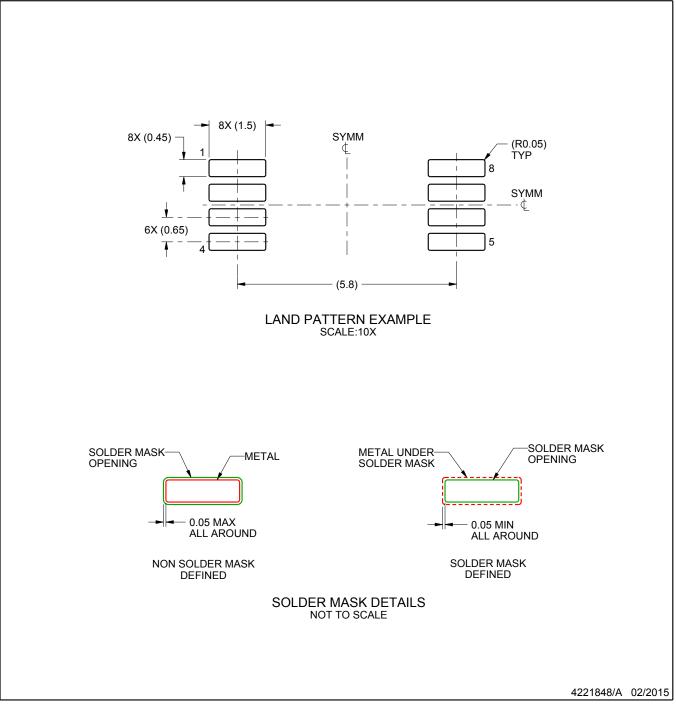
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



PW0008A

EXAMPLE BOARD LAYOUT

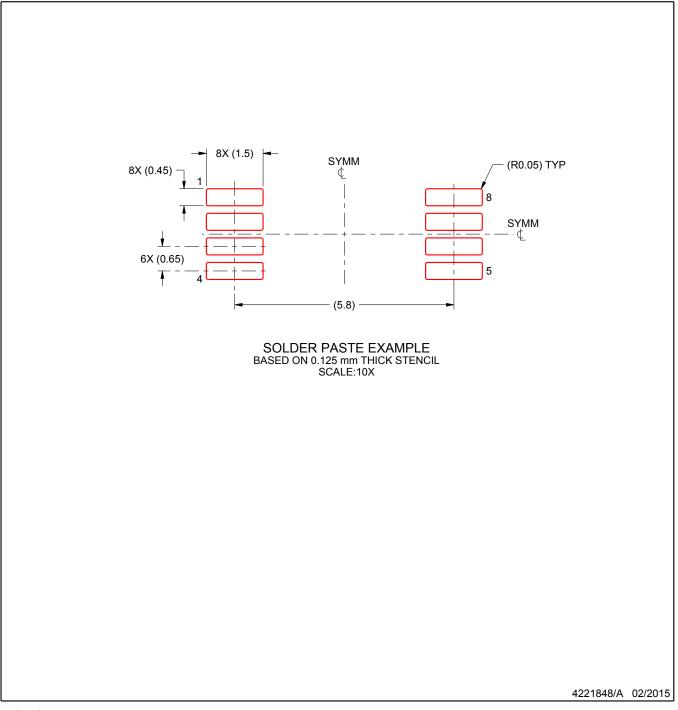
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0008A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated