

SNLS260D – DECEMBER 2007 – REVISED APRIL 2013

DS10BR254 1.5 Gbps 1:4 LVDS Repeater

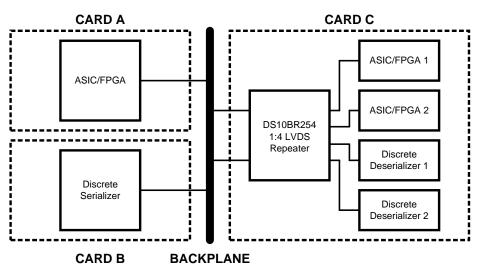
Check for Samples: DS10BR254

FEATURES

- DC 1.5 Gbps Low Jitter, Low Skew, Low Power Operation
- Wide Input Common Mode Voltage Range Allows for DC-Coupled Interface to LVDS, CML and LVPECL Drivers
- Redundant Inputs
- LOS Circuitry Detects Open Inputs Fault Condition
- Integrated 100Ω Input and Output Terminations
- 8 kV ESD on LVDS I/O Pins Protects Adjoining Components
- Small 6 mm x 6 mm WQFN-40 Space Saving Package

APPLICATIONS

- Clock Distribution
- Clock and Data Buffering and Muxing
- OC-12 / STM-4
- SD/HD SDI Routers

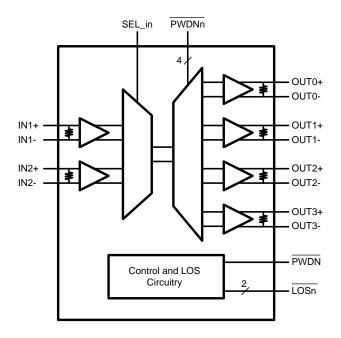

Typical Application

DESCRIPTION

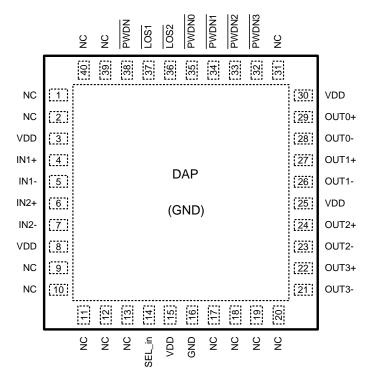
The DS10BR254 is a 1.5 Gbps 1:4 LVDS repeater optimized for high-speed signal routing and distribution over FR-4 printed circuit board backplanes and balanced cables. Fully differential signal paths ensure exceptional signal integrity and noise immunity.

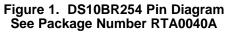
The device has two different LVDS input channels and a select pin determines which input is active. A loss-of-signal (\overline{LOS}) circuit monitors both input channels and a unique LOS pin is asserted when no signal is detected at that input.

Wide input common mode range allows the switch to accept signals with LVDS, CML and LVPECL levels; the output levels are LVDS. A very small package footprint requires a minimal space on the board while the flow-through pinout allows easy board layout. Each differential input and output is internally terminated with a 100Ω resistor to lower device return losses, reduce component count and further minimize board space.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. SNLS260D - DECEMBER 2007 - REVISED APRIL 2013




www.ti.com

Block Diagram

Connection Diagram

SNLS260D - DECEMBER 2007 - REVISED APRIL 2013

	PIN DESCRIPTIONS									
Pin Name	Pin Number	I/O, Type	Pin Description							
IN1+, IN1-, IN2+, IN2-,	4, 5, 6, 7,	I, LVDS	Inverting and non-inverting high speed LVDS input pins.							
OUT0+, OUT0-, OUT1+, OUT1-, OUT2+, OUT2-, OUT3+, OUT3-	29, 28, 27, 26, 24, 23, 22, 21	O, LVDS	Inverting and non-inverting high speed LVDS output pins.							
SEL_in	14	I, LVCMOS	This pin selects which LVDS input is active.							
LOS1, LOS2	37, 36	O, LVCMOS	Loss Of Signal output pins, LOSn report when an open input fault condition detected at the input, INn. These are open drain outputs. External pull up resistors are required.							
PWDN0, PWDN1, PWDN2, PWDN3	35, 34 33, 32	I, LVCMOS	Channel output power down pin. When the PWDNn is set to L, the channel output OUTn is in the power down mode.							
PWDN	38	I, LVCMOS	Device power down pin. When the $\overline{\text{PWDN}}$ is set to L, the device is in the power down mode.							
VDD	3, 8, 15,25, 30	Power	Power supply pins.							
GND	16, DAP	Power	Ground pin and a pad (DAP - die attach pad).							
NC	1, 2 9, 10, 11, 12, 13, 17, 18, 19, 20, 31, 39, 40	NC	NO CONNECT pins. May be left floating.							

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾

	0	
Supply Voltage		-0.3V to +4V
LVCMOS Input Voltage		-0.3V to (V _{CC} + 0.3V)
LVCMOS Output Voltage		-0.3V to (V _{CC} + 0.3V)
LVDS Input Voltage		-0.3V to +4V
Differential Input Voltage VI		1V
LVDS Output Voltage		-0.3V to (V _{CC} + 0.3V)
LVDS Differential Output Vol	age	0.0V to +1V
LVDS Output Short Circuit C	urrent Duration	5 ms
Junction Temperature		+150°C
Storage Temperature Range		−65°C to +150°C
Lead Temperature Range	Soldering (4 sec.)	+260°C
Maximum Package Power	SQA Package	4.65W
Dissipation at 25°C	Derate SQA Package	37.2 mW/°C above +25°C
Package Thermal	θ _{JA}	+26.9°C/W
Resistance	θ _{JC}	+3.8°C/W
ESD Susceptibility	HBM ⁽³⁾	≥8 kV
	MM ⁽⁴⁾	≥250V
	CDM ⁽⁵⁾	≥1250V

"Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of (1) device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and (2) specifications.

Human Body Model, applicable std. JESD22-A114C (3)

(4) (5) Machine Model, applicable std. JESD22-A115-A

Field Induced Charge Device Model, applicable std. JESD22-C101-C

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Receiver Differential Input Voltage (VID)	0		1	V
Operating Free Air Temperature (T _A)	-40	+25	+85	°C

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified. (1)(2)(3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
LVCMO	S DC SPECIFICATIONS						
VIH	High Level Input Voltage		2.0		V _{DD}	V	
VIL	Low Level Input Voltage		GND		0.8	V	
I _{IH}	High Level Input Current	V _{IN} = 3.6V V _{CC} = 3.6V		0	±10	μA	
I _{IL}	Low Level Input Current	$V_{IN} = GND$ $V_{CC} = 3.6V$		0	±10	μA	
V _{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}, V_{CC} = 0 \text{V}$		-0.9	-1.5	V	
V _{OL}	Low Level Output Voltage	I _{OL} = 4 mA		0.26	0.4	V	
LVDS IN	IPUT DC SPECIFICATIONS						
V _{ID}	Input Differential Voltage		0		1	V	
V _{TH}	Differential Input High Threshold	V_{CM} = +0.05V or V_{CC} -0.05V		0	+100	mV	
V _{TL}	Differential Input Low Threshold		-100	0		mV	
V _{CMR}	Common Mode Voltage Range	V _{ID} = 100 mV	0.05		V _{CC} - 0.05	V	
I _{IN}	Input Current	V _{IN} = +3.6V or 0V V _{CC} = 3.6V or 0V		±1	±10	μA	
C _{IN}	Input Capacitance	Any LVDS Input Pin to GND		1.7		pF	
R _{IN}	Input Termination Resistor	Between IN+ and IN-		100		Ω	
LVDS O	UTPUT DC SPECIFICATIONS						
V _{OD}	Differential Output Voltage		250	350	450	mV	
ΔV_{OD}	Change in Magnitude of V _{OD} for Complimentary Output States	$R_{L} = 100\Omega$	-35		35	mV	
V _{OS}	Offset Voltage		1.05	1.2	1.375	V	
ΔV _{OS}	Change in Magnitude of V _{OS} for Complimentary Output States	$R_L = 100\Omega$	-35		35	mV	
l _{os}	Output Short Circuit Current ⁽⁴⁾	OUT to GND		-35	-55	mA	
		OUT to V _{CC}		7	55	mA	
C _{OUT}	Output Capacitance	Any LVDS Output Pin to GND		1.2		pF	
R _{OUT}	Output Termination Resistor	Between OUT+ and OUT-		100		Ω	
SUPPLY	CURRENT						
I _{CC}	Supply Current	PWDN = H		113	135	mA	
I _{CCZ}	Power Down Supply Current	$\overline{PWDN} = L$		50	60	mA	

(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

(2) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD} and ΔV_{OD} .

(3) Typical values represent most likely parametric norms for $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C$, and at the Recommended Operation Conditions at the time of product characterization and are not ensured.

(4) Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only.

SNLS260D - DECEMBER 2007 - REVISED APRIL 2013

NSTRUMENTS

EXAS

www.ti.com

AC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter Conditions		Min	Тур	Мах	Units	
LVDS OUTPUT	AC SPECIFICATIONS						
t _{PLHD}	Differential Propagation Delay Low to High ⁽¹⁾	D 1000				650	ps
t _{PHLD}	Differential Propagation Delay High to Low ⁽¹⁾	— R _L = 100Ω			400	650	ps
t _{SKD1}	Pulse Skew t _{PLHD} - t _{PHLD} ⁽¹⁾⁽²⁾				40	100	ps
t _{SKD2}	Channel to Channel Skew ⁽¹⁾⁽³⁾				40	125	ps
t _{SKD3}	Part to Part Skew ⁽¹⁾⁽⁴⁾				50	200	ps
t _{LHT}	Rise Time ⁽¹⁾	P 1000			150	300	ps
t _{HLT}	Fall Time ⁽¹⁾	$R_L = 100\Omega$			150	300	ps
t _{ON}	Any PWDN to Output Active Time				8	20	μs
t _{OFF}	Any PWDN to Output Inactive Time				5	12	ns
t _{SEL}	Select Time				5	12	ns
JITTER PERFC	DRMANCE ⁽¹⁾						
t _{RJ1}		V _{ID} = 350 mV	135 MHz		0.5	1	ps
t _{RJ2}	Random Jitter	V _{CM} = 1.2V Clock (RZ)	311 MHz		0.5	1	ps
t _{RJ3}	(RMS Value) ⁽⁵⁾		503 MHz		0.5	1	ps
t _{RJ4}			750 MHz		0.5	1	ps
t _{DJ1}		V _{ID} = 350 mV	270 Mbps		6	22	ps
t _{DJ2}	Deterministic Jitter	V _{CM} = 1.2V K28.5 (NRZ)	622 Mbps		6	21	ps
t _{DJ3}	(Peak to Peak Value) ⁽⁶⁾	1020.0 (1112)	1.0625 Gbps		9	18	ps
t _{DJ4}			1.5 Gbps		9	17	ps
t _{TJ1}		V _{ID} = 350 mV	270 Mbps		0.01	0.03	UI _{P-P}
t _{TJ2}	Total Jitter ⁽⁷⁾	V _{CM} = 1.2V PRBS-23 (NRZ)	622 Mbps		0.01	0.03	UI _{P-P}
t _{TJ3}			1.0625 Gbps		0.01	0.04	UI _{P-P}
t _{TJ4}			1.5 Gbps		0.01	0.06	UI _{P-P}

(1) Specification is specified by characterization and is not tested in production.

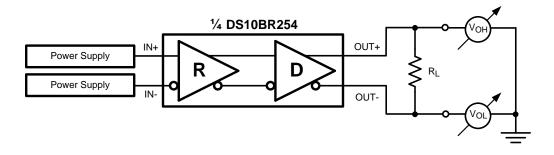
(2) t_{SKD1}, |t_{PLHD} - t_{PHLD}], Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

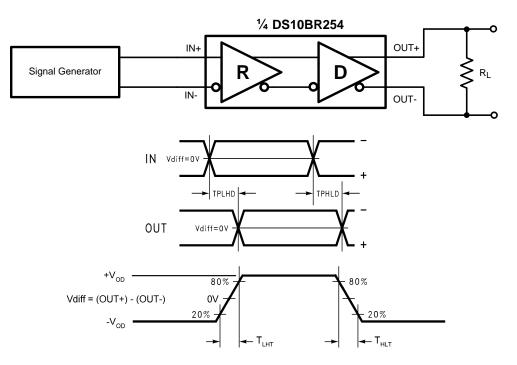
(3) t_{SKD2}, Channel to Channel Skew, is the difference in propagation delay (t_{PLHD} or t_{PHLD}) among all output channels in Broadcast mode (any one input to all outputs).

(4) t_{SKD3} , Part to Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same V_{CC} and within 5°C of each other within the operating temperature range.

(5) Measured on a clock edge with a histogram and an accumulation of 1500 histogram hits. Input stimulus jitter is subtracted geometrically.

(6) Tested with a combination of the 1100000101 (K28.5+ character) and 0011111010 (K28.5- character) patterns. Input stimulus jitter is subtracted algebraically.


(7) Measured on an eye diagram with a histogram and an accumulation of 3500 histogram hits. Input stimulus jitter is subtracted.


SNLS260D - DECEMBER 2007 - REVISED APRIL 2013

APPLICATION INFORMATION

DC TEST CIRCUITS

AC TEST CIRCUITS AND TIMING DIAGRAMS

FUNCTIONAL DESCRIPTION

The DS10BR254 is a 1.5 Gbps 1:4 LVDS repeater optimized for high-speed signal routing and distribution over lossy FR-4 printed circuit board backplanes and balanced cables.

Table	1. Inj	out Select	Truth	Table
-------	--------	------------	-------	-------

CONTROL Pin (SEL_in) State	Input Selected
0	IN1
1	IN2

Input Interfacing

The DS10BR254 accepts differential signals and allows simple AC or DC coupling. With a wide common mode range, the DS10BR254 can be DC-coupled with all common differential drivers (i.e. LVPECL, LVDS, CML). The following three figures illustrate typical DC-coupled interface to common differential drivers. Note that the DS10BR254 inputs are internally terminated with a 100Ω resistor.

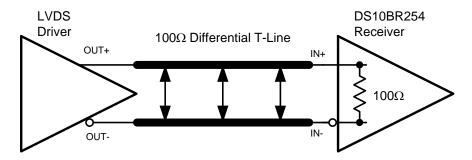


Figure 2. Typical LVDS Driver DC-Coupled Interface to an DS10BR254 Input

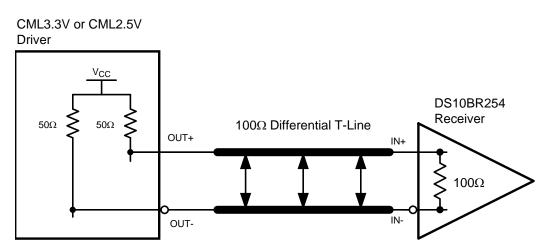


Figure 3. Typical CML Driver DC-Coupled Interface to an DS10BR254 Input

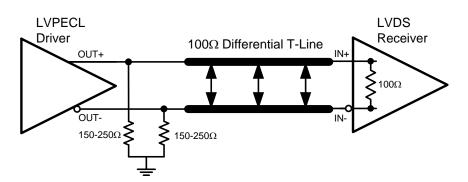


Figure 4. Typical LVPECL Driver DC-Coupled Interface to an DS10BR254 Input

Output Interfacing

The DS10BR254 outputs signals compliant to the LVDS standard. Its outputs can be DC-coupled to most common differential receivers. The following figure illustrates typical DC-coupled interface to common differential receivers and assumes that the receivers have high impedance inputs. While most differential receivers have a common mode input range that can accomodate LVDS compliant signals, it is recommended to check respective receiver's data sheet prior to implementing the suggested interface implementation.

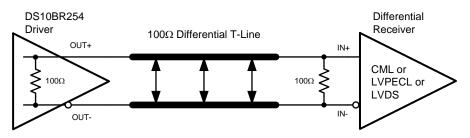
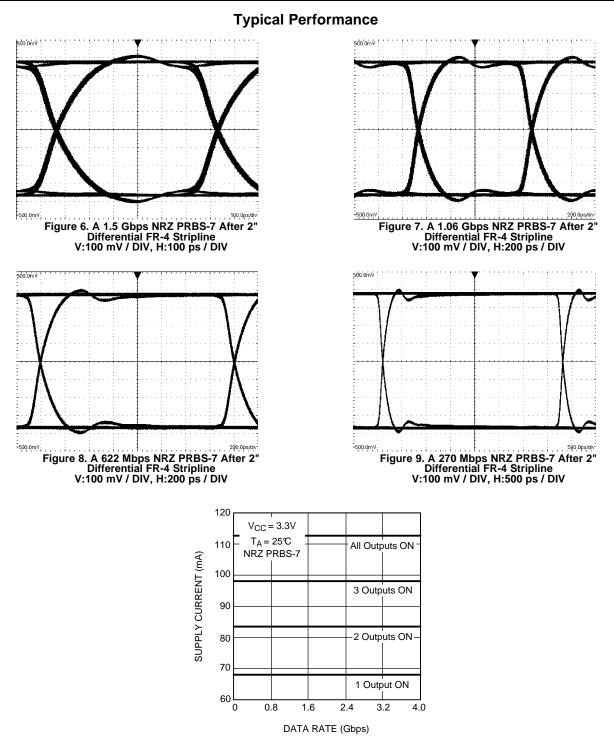



Figure 5. Typical DS10BR254 Output DC-Coupled Interface to an LVDS, CML or LVPECL Receiver

SNLS260D - DECEMBER 2007 - REVISED APRIL 2013

REVISION HISTORY

Cł	nanges from Revision C (April 2013) to Revision D	Page
•	Changed layout of National Data Sheet to TI format	10

12-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DS10BR254TSQ/NOPB	ACTIVE	WQFN	RTA	40	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	1BR254SQ	Samples
DS10BR254TSQX/NOPB	ACTIVE	WQFN	RTA	40	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	1BR254SQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

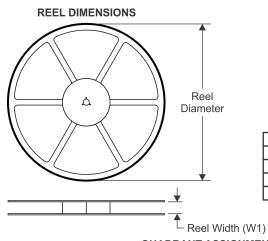
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

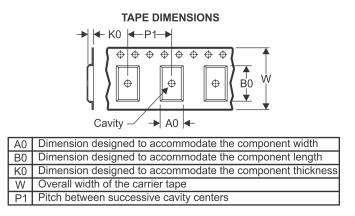
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

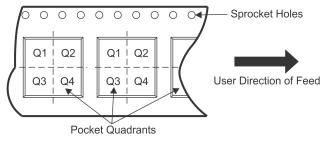
PACKAGE OPTION ADDENDUM

12-Jun-2014


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

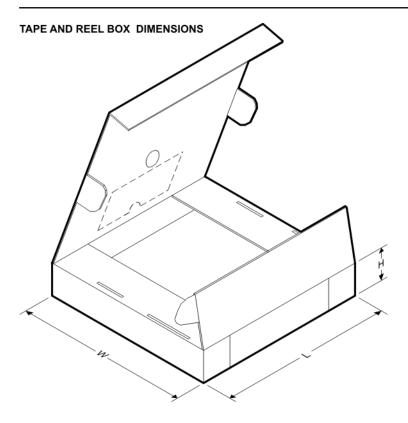

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS10BR254TSQ/NOPB	WQFN	RTA	40	250	178.0	16.4	6.3	6.3	1.5	12.0	16.0	Q1
DS10BR254TSQX/NOPB	WQFN	RTA	40	2500	330.0	16.4	6.3	6.3	1.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Sep-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS10BR254TSQ/NOPB	WQFN	RTA	40	250	210.0	185.0	35.0
DS10BR254TSQX/NOPB	WQFN	RTA	40	2500	367.0	367.0	38.0

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated