

GaAs, Nonreflective, SP4T Switch 100 MHz to 4 GHz

Data Sheet HMC241ALP3E

FEATURES

Broadband frequency range: 100 MHz to 4 GHz

Nonreflective 50 Ω design

Low insertion loss: 0.7 dB at 2 GHz High isolation: 43 dB at 2 GHz

High input linearity at 250 MHz to 4 GHz

1 dB compression (P1dB): 29 dBm typical

Third order intercept (IP3): 47 dBm typical

High power handling

28.5 dBm through path

25 dBm terminated path

Single positive supply: 3 V to 5 V

Integrated 2 to 4 line decoder

16-lead, 3 mm × 3 mm LFCSP package

ESD rating: 250 V (Class 1A)

Pin compatible with the HMC7992

APPLICATIONS

Cellular/4 G infrastructure Wireless infrastructure Automotive telematics Mobile radios Test equipment

GENERAL DESCRIPTION

The HMC241ALP3E is a general-purpose, nonreflective, 100 MHz to 4 GHz single-pole, four-throw (SP4T) switch manufactured using a gallium arsenide (GaAs) process. This switch offers high isolation of 43 dB typical at 2 GHz, low insertion loss of 0.7 dB at 2 GHz, and on-chip termination of the isolated ports.

The on-chip circuitry allows the HMC241ALP3E to operate at a single, positive supply voltage range of 3 V to 5 V. This switch requires two positive logic control voltages. The HMC241ALP3E

FUNCTIONAL BLOCK DIAGRAM

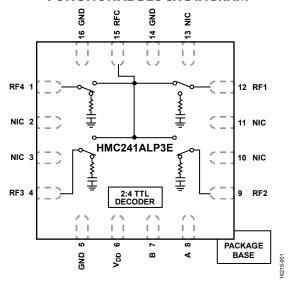


Figure 1.

includes an on-chip, binary two to four line decoder that provides logic control from two logic input lines to select one of the four radio frequency (RF) lines.

The HMC241ALP3E is available in a 3 mm \times 3 mm, 16-lead LFCSP package. The HMC7992 is the silicon version of this switch and features better performance up to higher frequencies.

HMC241ALP3E* PRODUCT PAGE QUICK LINKS

Last Content Update: 12/16/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

· HMC241ALP3 Evaluation Board

DOCUMENTATION

Data Sheet

 HMC241ALP3E: GaAs, Nonreflective, SP4T Switch 100 MHz to 4 GHz Data Sheet

REFERENCE MATERIALS \Box

Product Selection Guide

 RF, Microwave, and Millimeter Wave IC Selection Guide 2017

Quality Documentation

Semiconductor Qualification Test Report: PHEMT-J (QTR: 2013-00285)

DESIGN RESOURCES 🖵

- HMC241ALP3E Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC241ALP3E EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	
Absolute Maximum Ratings	4
ESD Caution	4
Pin Configuration and Function Descriptions	5
Interface Schematics	

Typical Performance Charcteristics
Insertion Loss, Return Loss, and Isolation
Input Power Compression and Third-Order Intercept (IP3)
Theory of Operations
Applications Information
Evaluation Board
Outline Dimensions
Ordering Guide

REVISION HISTORY

This Hittite Microwave Products data sheet has been reformatted to meet the styles and standards of Analog Devices, Inc.

11/2017—Rev. A to Rev. B

Changes to Features, Applications, and General Description	Changed N/C to NICThre	oughout
Changes to Table 2	Changes to Features, Applications, and General Descrip	tion 1
Changes to Figure 2 and Table 3	Changes to Table 1	3
Changes to Figure 10 through Figure 13	Changes to Table 2	4
Added Theory of Operation Section	Changes to Figure 2 and Table 3	5
Added Applications Information Section	Changes to Figure 10 through Figure 13	7
Changes to Table 5	Added Theory of Operation Section	8
Updated Outline Dimensions11	Added Applications Information Section	9
-	Changes to Table 5	9
Changes to Ordering Guide11	Updated Outline Dimensions	11
	Changes to Ordering Guide	11

SPECIFICATIONS

 V_{DD} = 3 V or 5 V, V_{CTRL} = 0 V or V_{DD} , T_{CASE} = 25°C, 50 Ω system, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
FREQUENCY RANGE	f		0.1		4	GHz
INSERTION LOSS						
Between RFC and RF1 to RF4 (On)		100 MHz to 1 GHz		0.6	0.9	dB
		1 GHz to 2 GHz		0.7	1.0	dB
		2 GHz to 2.5 GHz		0.9	1.2	dB
		2.5 GHz to 4 GHz		1.2	1.5	dB
ISOLATION						
Between RFC and RF1 to RF4 (Off)		100 MHz to 1 GHz	40	45		dB
		1 GHz to 2 GHz	38	43		dB
		2 GHz to 2.5 GHz	35	41		dB
		2.5 GHz to 4 GHz	25	32		dB
RETURN LOSS						
RFC and RF1 to RF4 (On)		100 MHz to 2.5 GHz		18		dB
		2.5 GHz to 4 GHz		12		dB
RF1 to RF4 (Off)		100 MHz to 4 GHz		12		dB
SWITCHING		250 MHz to 4 GHz				
Rise and Fall Time	trise, trall	10 % to 90 % of RF output		30		ns
On and Off Time	ton, toff	50 % V _{CTL} to 90 % of RF output 100			ns	
INPUT LINEARITY ¹		250 MHz to 4 GHz				
1 dB Power Compression	P1dB	$V_{DD} = 3 V$		24		dBm
·		$V_{DD} = 5 V$	23	29		dBm
Third-Order Intercept	IP3	10 dBm per tone, 1 MHz spacing				
·		$V_{DD} = 3 V$		50		dBm
		$V_{DD} = 5 \text{ V}$		47		dBm
SUPPLY		V _{DD} pin				
Voltage	V_{DD}		3		5	V
Current	I_{DD}			2.5	5	mA
DIGITAL CONTROL INPUTS		CTRLA and CTRLB pins				
Voltage	V _{CTL}					
Low	V _{INL}	$V_{DD} = 3 V$	0		0.8	٧
		$V_{DD} = 5 V$	0		0.8	V
High V _i		$V_{DD} = 3 V$	2		3	V
		$V_{DD} = 5 V$	2		5	V
Current						
Low	I _{INL}			0.2		μΑ
High	I _{INH}			40		μΑ

 $^{^{\}rm 1}$ Input linearity performance degrades at frequencies less than 250 MHz.

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1.

Table 2.

ParameterRatingPositive Supply Voltage (VDD)7 VDigital Control Input Voltage-0.5 V to VDD +1 V
Digital Control Input Voltage0.5 V to Voc. ±1 V
RF Input Power
$(f = 100 \text{ MHz to } 4 \text{ GHz}, T_{CASE} = 85^{\circ}\text{C})$
$V_{DD} = 3 V$
Through Path 23.5 dBm
Terminated Path 20 dBm
Hot Switching 17.5 dBm
$V_{DD} = 5 V$
Through Path 28.5 dBm
Terminated Path 25 dBm
Hot Switching 22.5 dBm
Junction Temperature, T _J 150°C
Storage Temperature Range -65°C to +150°C
Reflow Temperature (MSL1 Rating) ¹ 260°C
Junction to Case Thermal Resistance, θ _{JC}
Through Path 144°C/W
Terminated Path 300°C/W
Electrostatic Discharge (ESD) Sensitivity
Human Body Model (HBM) 250 V (Class 1A)

¹ See the Ordering Guide section.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

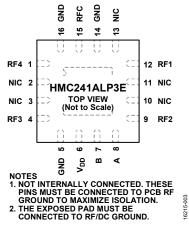


Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RF4	RF Port 4. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
2, 3, 10, 11, 13	NIC	Not Internally Connected. These pins must be connected to the printed circuit board (PCB) RF ground to maximize isolation.
4	RF3	RF Port 3. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
5, 14, 16	GND	Ground. The package bottom has an exposed metal pad that must connect to the PCB RF/dc ground.
6	V_{DD}	Supply Voltage.
7	В	Logic Control Input B. See Figure 4 for the control input interface schematic. See Table 4 and the recommended input control voltages range in Table 1
8	A	Logic Control Input A. See Figure 4 for the control input interface schematic. See Table 4 and the recommended input control voltages range in Table 1
9	RF2	RF Port 2. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
12	RF1	RF Port 1. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
15	RFC	RF Common Port. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
	EPAD	Exposed Pad. The exposed pad must be connected to RF/dc ground.

INTERFACE SCHEMATICS

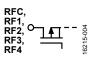


Figure 3. RFC to RF4 Interface Schematic

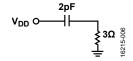


Figure 5. Supply Voltage Schematic

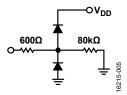


Figure 4. CTRLA and CTRLB Interface Schematic

TYPICAL PERFORMANCE CHARCTERISTICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

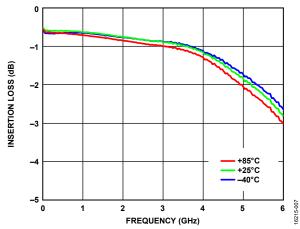


Figure 6. Insertion Loss Between RFC and RF1 vs. Frequency at Various Temperatures

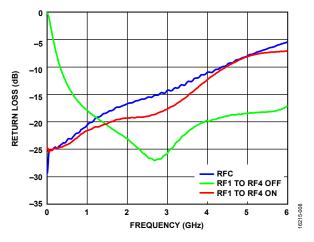


Figure 7. Return Loss for RFC, RF1 to RF4 On, and RF1 to RF4 Off vs. Frequency

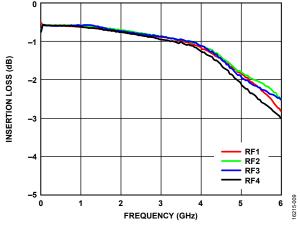


Figure 8. Insertion Loss Between RFC to RFx vs. Frequency

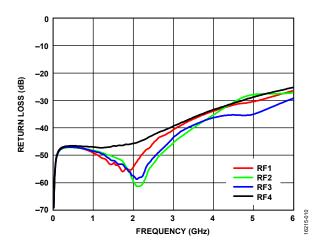


Figure 9. Isolation Between RFC and RFx vs. Frequency

INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT (IP3)

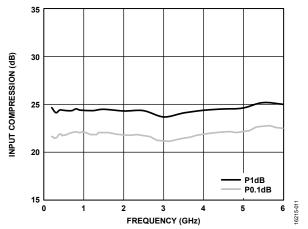


Figure 10. Input Compression vs. Frequency at Room Temperature, $V_{DD} = 3 V$

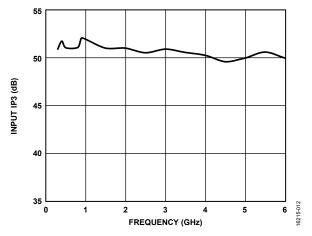


Figure 11. Input IP3 vs. Frequency at Room Temperature, $V_{DD} = 3 V$

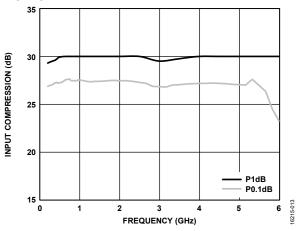


Figure 12. Input Compression vs. Frequency at Room Temperature, $V_{DD} = 5 V$

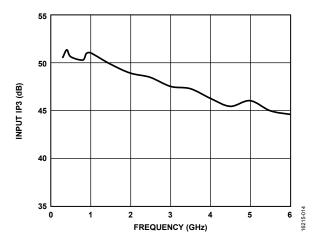


Figure 13. Input IP3 vs. Frequency at Room Temperature, $V_{DD} = 5 V$

THEORY OF OPERATIONS

The HMC241ALP3E requires a positive supply voltage at the $V_{\rm DD}$ pin and two logic control inputs at the A and B pins to control the state of the RF paths.

Depending on the logic level applied to the A and B pins, one RF path is in the insertion loss state while the other three paths are in an isolation state (See Table 4). The insertion loss path conducts the RF signal between the RF throw pad and RF common pad while the isolation paths provide high loss between RF throw pads terminated to internal 50 Ω resistors and the insertion loss path.

The ideal power-up sequence is as follows:

- 1. Ground to the die bottom.
- 2. Power up V_{DD} .
- 3. Power up the digital control inputs. The relative order of the logic control inputs is not important. However, powering the digital control inputs before the V_{DD} supply can inadvertently become forward biased and damage the internal ESD protection structures.
- 4. Apply an RF input signal. The design is bidirectional; the RF input signal can be applied to the RFC pad while the RF throw pads are the outputs, or the RF input signal can be applied to the RF throw pads while the RFC pad is the output. All of the RF pads are dc-coupled to 0 V, and no dc blocking is required at the RF pads when the RF line potential is equal to 0 V.

The power-down sequence is the reverse of the power-up sequence.

Table 4. Control Voltage Truth Table

	U					
Digital	Control Input	RF Paths				
CTRLA	CTRLB	RFC to RF1	RFC to RF2	RFC to RF3	RFC to RF4	
Low	Low	Insertion loss (on)	Isolation (off)	Isolation (off)	Isolation (off)	
High	Low	Isolation (off)	Insertion loss (on)	Isolation (off)	Isolation (off)	
Low	High	Isolation (off)	Isolation (off)	Insertion loss (on)	Isolation (off)	
High	High	Isolation (off)	Isolation (off)	Isolation (off)	Insertion loss (on)	

APPLICATIONS INFORMATION EVALUATION BOARD

The 108333-HMC241ALP3 is a 4-layer evaluation board. Each copper layer is 0.7 mil (0.5 oz) and separated by dielectric materials. Figure 14 shows the stack up for this evaluation board.

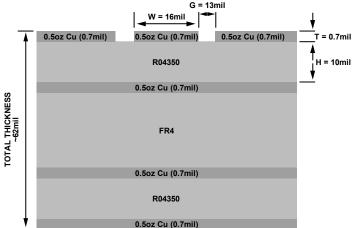


Figure 14. The 108333-HMC241ALP3 Evaluation Board (Cross Sectional View)

All RF and dc traces are routed on the top copper layer whereas the inner and bottom layers are grounded planes that provide a solid ground for the RF transmission lines. Top dielectric material is a 10 mil Rogers RO4350. The middle and bottom dielectric materials provide mechanical strength. The overall board thickness is 62 mil, allowing the SMA launchers to be connected at the board edges.

The RF transmission lines were designed using a coplanar waveguide (CPWG) model, with trace width of 16 mil and ground clearance of 13 mil to have a characteristic impedance

of 50 Ω . For optimal RF and thermal grounding, as many plated through vias as possible are arranged around transmission lines and under the exposed pad of the package.

Figure 15 shows the layout of the 108333-HMC241ALP3 evaluation board with component placement. The power supply port is connected to the $V_{\rm DD}$ test point, J6. The control voltages are connected to the A and B test points, J8 and J7. The ground reference is connected to the GND test point, J9. The NIC pins are connected to the PCB ground to maximize isolation. On the supply trace, $V_{\rm DD}$, a 10 nF bypass capacitor, is used to filter high frequency noise.

The RF input and output ports (RFC, RF1, RF2, RF3, and RF4) are connected through 50 Ω transmission lines to the soldered down SMA launchers, J1 to J5. For dc blocking to the RF pins, C1 to C5 are populated with 100 pF capacitors. A thru calibration line connects the unpopulated J10 and J11 launchers; this transmission line is used to estimate the loss of the PCB over the environmental conditions being evaluated.

Table 5 and Figure 16 are the bill of materials and schematic, respectively.

Table 5. Evaluation Board Components

1 able 5. Evaluation board components							
Component	Default Value	Description					
J1 to J5	Not Applicable	PCB mount SMA connector					
J6 to J9	Not Applicable	DC pin					
J10, J11	Do not insert	PCB mount SMA connector					
C1 to C5	100 pF	Capacitor, C0402 package					
C6	10 nF	Capacitor, C0402 package					
U1	Not Applicable	HMC241ALP3E SP4T switch					
PCB	104708	Evaluation PCB					

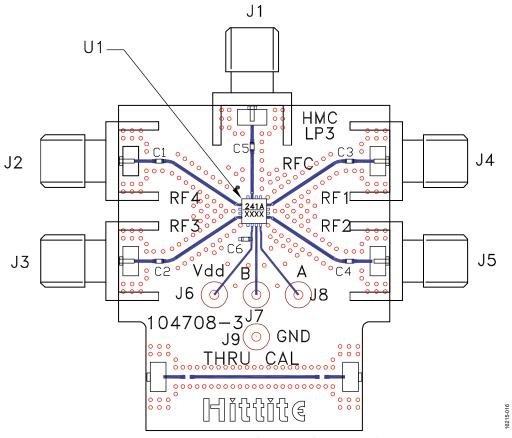


Figure 15. 108333-HMC241ALP3 Evaluation Board Component Placement

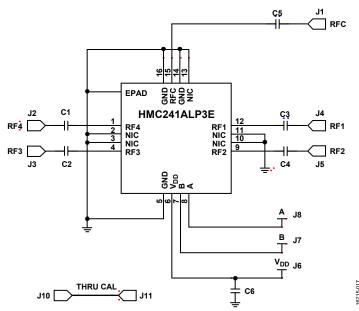


Figure 16. Evaluation Board Schematic

OUTLINE DIMENSIONS

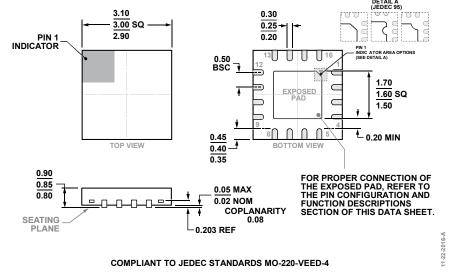


Figure 17. 16-Terminal Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.85 mm Package Height (CP-16-50) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	MSL Rating ²	Package Description	Package Option
HMC241ALP3E	-40°C to +85°C	MSL1	16-Terminal Lead Frame Chip Scale Package [LFCSP]	CP-16-50
HMC241ALP3ETR	-40°C to +85°C	MSL1	16-Terminal Lead Frame Chip Scale Package [LFCSP]	CP-16-50
108333-HMC241ALP3			Evaluation Board	

¹ All models are RoHS compliant.

 $^{^{\}rm 2}$ See the Absolute Maximum Ratings section.