www.vishay.com Vishay Siliconix # **Power MOSFET** | PRODUCT SUMMARY | | | | | |--------------------------|------------------------|------|--|--| | V _{DS} (V) | 600 | 600 | | | | R _{DS(on)} (Ω) | V _{GS} = 10 V | 0.75 | | | | Q _g max. (nC) | 49 | | | | | Q _{gs} (nC) | 13 | | | | | Q _{gd} (nC) | 20 | | | | | Configuration | Single | | | | #### **FEATURES** Low gate charge Q_g results in simple drive requirement Improved gate, avalanche and dynamic dV/dt ruggedness RoHS* - Fully characterized capacitance and avalanche voltage and current - Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u> #### Note This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details. #### **APPLICATIONS** - Switch mode power supply (SMPS) - Uninterruptible power supply - · High speed power switching - High voltage isolation = 2.5 kV_{RMS} (t = 60 s, f = 60 Hz) #### TYPICAL SMPS TOPOLOGIES - · Single transistor forward - · Active clamped forward | ORDERING INFORMATION | | | |----------------------|----------------|--| | Package | TO-220 FULLPAK | | | Lead (Pb)-free | IRFIB6N60APbF | | | | SiHFIB6N60A-E3 | | | SnPb | IRFIB6N60A | | | | SiHFIB6N60A | | | ABSOLUTE MAXIMUM RATINGS ($T_{\mbox{\scriptsize C}}$ | = 25 °C, uni | ess otherwis | se notea) | | | | |---|-------------------------|-------------------------|-----------------------------------|-------------|----------|--| | PARAMETER | | | SYMBOL | LIMIT | UNIT | | | Drain-Source Voltage | | | V_{DS} | 600 | V | | | Gate-Source Voltage | | | V_{GS} | ± 30 | v | | | Continuous Drain Current | V _{GS} at 10 V | T _C = 25 °C | | 5.5 | | | | | | T _C = 100 °C | ID | 3.5 | | | | Pulsed Drain Current ^a | | | I _{DM} | 37 | | | | Linear Derating Factor | | | | 0.48 | W/°C | | | Single Pulse Avalanche Energy b | | | E _{AS} | 290 | mJ | | | Repetitive Avalanche Current ^a | | | I _{AR} | 9.2 | А | | | Repetitive Avalanche Energy a | | | E _{AR} | 6.0 | mJ | | | Maximum Power Dissipation | T _C = | 25 °C | P _D | 60 | W | | | Peak Diode Recovery dV/dt ^c | | | dV/dt | 5.0 | V/ns | | | Operating Junction and Storage Temperature Range | | | T _J , T _{stg} | -55 to +150 | ** | | | Soldering Recommendations (Peak temperature) d | for 10 s | | | 300 | °C | | | Mounting Torque | 6-32 or M3 screw | | | 10 | lbf ⋅ in | | | | | | | 1.1 | N·m | | #### Notes - a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). - b. Starting T_J = 25 °C, L = 6.8 mH, R_G = 25 Ω , I_{AS} = 9.2 A (see fig. 12). - c. $I_{SD} \le 9.2$ A, $dI/dt \le 50$ A/ μ s, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C. - d. 1.6 mm from case. www.vishay.com Vishay Siliconix | THERMAL RESISTANCE RATINGS | | | | | | |----------------------------------|-------------------|------|------|------|--| | PARAMETER | SYMBOL | TYP. | MAX. | UNIT | | | Maximum Junction-to-Ambient | R _{thJA} | - | 65 | °C/W | | | Maximum Junction-to-Case (Drain) | R _{thJC} | - | 2.1 | C/VV | | | PARAMETER | SYMBOL | TES | MIN. | TYP. | MAX. | UNIT | | |---|-----------------------|---|--|------|----------------------|------------------|-----------| | Static | | | | | • | • | | | Drain-Source Breakdown Voltage | V _{DS} | V _{GS} | 600 | - | - | V | | | V _{DS} Temperature Coefficient | $\Delta V_{DS}/T_{J}$ | Referenc | e to 25 °C, I _D = 1 mA ^d | - | 660 | - | mV/°C | | Gate-Source Threshold Voltage | V _{GS(th)} | V _{DS} : | = V _{GS} , I _D = 250 μA | 2.0 | - | 4.0 | V | | Gate-Source Leakage | I _{GSS} | | $V_{GS} = \pm 30 \text{ V}$ | | - | ± 100 | nA | | Zero Gate Voltage Drain Current | l | V _{DS} : | V _{DS} = 600 V, V _{GS} = 0 V | | - | 25 | | | Zeio Gate Voltage Drain Gunent | I _{DSS} | $V_{DS} = 480 \text{ V}$ | $V_{\rm S} = 0 \ V_{\rm S} = 125 \ ^{\circ}{\rm C}$ | 1 | - | 250 | μA | | Drain-Source On-State Resistance | R _{DS(on)} | V _{GS} = 10 V | $I_D = 3.3 \text{ A}^{\text{ b}}$ | 1 | - | 0.75 | Ω | | Forward Transconductance | 9 _{fs} | V _{DS} | = 25 V, I _D = 5.5 A | 5.5 | - | - | S | | Dynamic | | | | | | | | | Input Capacitance | C_{iss} | V _{GS} = 0 V, | | ı | 1400 | - | | | Output Capacitance | C _{oss} | | V _{DS} = 25 V,
f = 1.0 MHz, see fig. 5 | | 180 | - | | | Reverse Transfer Capacitance | C_{rss} | f = 1 | | | 7.1 | - | pF | | Output Capacitance | | | $V_{DS} = 1.0 \text{ V}, f = 1.0 \text{ MHz}$ | ı | 1957 | - | - pr
- | | Output Capacitance | C _{oss} | $V_{GS} = 0 V$ | $V_{DS} = 480 \text{ V}, f = 1.0 \text{ MHz}$ | - | 49 | - | | | Effective Output Capacitance | Coss eff. | | $V_{DS} = 0 \text{ V to } 480 \text{ V}^{\text{ c}}$ | - | 96 | - | | | Total Gate Charge | Q_g | | $V_{GS} = 10 \text{ V}$ $I_D = 9.2 \text{ A}, V_{DS} = 400 \text{ V},$ see fig. 6 and 13 b | ı | - | 49 | nC | | Gate-Source Charge | Q_{gs} | V _{GS} = 10 V | | ı | - | 13 | | | Gate-Drain Charge | Q _{gd} | | | | - | 20 | 1 | | Turn-On Delay Time | t _{d(on)} | | | | 13 | - | - ns | | Rise Time | t _r | V_{DD} = 300 V, I_{D} = 9.2 A, R_{G} = 9.1 Ω , R_{D} = 35.5 Ω , see fig. 10 b | | 1 | 25 | - | | | Turn-Off Delay Time | t _{d(off)} | | | - | 30 | - | | | Fall Time | t _f | | | - | 22 | - | | | Gate Input Resistance | R_g | f = 1 MHz, open drain | | 0.5 | - | 3.2 | Ω | | Drain-Source Body Diode Characteristic | s | | | | | | | | Continuous Source-Drain Diode Current | Is | MOSFET symbol showing the integral reverse p - n junction diode | | - | - | 5.5 | | | Pulsed Diode Forward Current ^a | I _{SM} | | | - | - | 37 | A | | Body Diode Voltage | V _{SD} | $T_J = 25 ^{\circ}\text{C}, I_S = 9.2 \text{A}, V_{GS} = 0 \text{V}^{ \text{b}}$ | | - | - | 1.5 | V | | Body Diode Reverse Recovery Time | t _{rr} | $T_J = 25 \text{ °C}, I_F = 9.2 \text{ A, dI/dt} = 100 \text{ A/}\mu\text{s}^{\text{b}}$ | | - | 530 | 800 | ns | | Body Diode Reverse Recovery Charge | Q _{rr} | | | - | 3.0 | 4.4 | μC | | Forward Turn-On Time | t _{on} | Intrinsic turn-on time is negligible (turn-on is dominated | | | y L _S and | L _D) | | #### Notes - a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). - b. Pulse width $\leq 300~\mu s;$ duty cycle $\leq 2~\%.$ - c. C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS} . - d. t = 60 s, f = 60 Hz. ## TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) Fig. 1 - Typical Output Characteristics Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics Fig. 4 - Normalized On-Resistance vs. Temperature Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage Fig. 8 - Maximum Safe Operating Area Vishay Siliconix Fig. 9 - Maximum Drain Current vs. Case Temperature Fig. 10a - Switching Time Test Circuit Fig. 10b - Switching Time Waveforms Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms Fig. 12c - Maximum Avalanche Energy vs. Drain Current Fig. 13a - Basic Gate Charge Waveform Fig. 13b - Gate Charge Test Circuit ### Peak Diode Recovery dV/dt Test Circuit Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91175. # **Legal Disclaimer Notice** Vishay ## **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Revision: 13-Jun-16 1 Document Number: 91000