SN54122, SN54123, SN54130, SN54LS122, SN54LS123, SN74122, SN74123, SN74130, SN74LS122, SN74LS123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS SDLS043 – DECEMBER 1983 – REVISED MARCH 1988

- D-C Triggered from Active-High or Active-Low Gated Logic Inputs
- Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle
- Overriding Clear Terminates Output Pulse
- '122 and 'LS122 Have Internal Timing Resistors

description

These d-c triggered multivibrators feature output pulseduration control by three methods. The basic pulse time is programmed by selection of external resistance and capacitance values (see typical application data). The '122 and 'LS122 have internal timing resistors that allow the circuits to be used with only an external capacitor, if so desired. Once triggered, the basic pulse duration may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear. Figure 1 illustrates pulse control by retriggering and early clear.

The 'LS122 and 'LS123 are provided enough Schmitt hysteresis to ensure jitter-free triggering from the B input with transition rates as slow as 0.1 millivolt per nanosecond.

The R_{int} in nominall 10 k Ω for '122 and 'LS122.

SN54122, SN54LS122...J OR W PACKAGE SN74122...N PACKAGE SN74LS122...D OR N PACKAGE (TOP VIEW) (SEE NOTES 1 THRU 4)

A1	1 U	14	Vcc
A2 []	2	13	R _{ext} /C _{ext}
в1 🛛	3	12	NC
B2 🗌	4	11	Cext
	5	10	NC
ād	6	9	R _{int}
	7	8	Q

- NOTES: 1. An external timing capacitor may be connected between C_{ext} and Re_{xt}/C_{ext} (positive).
 - 2. To use the internal timing resistor of '122 or 'LS122, connect R_{int} to $V_{CC}.$
 - For improved pulse duration accuracy and repeatability, connect an external resistor between R_{ext}/Ce_{xt} and V_{CC} with R_{int} open-circuited.
 - To obtain variable pulse durations, connect an external variable resistance between R_{int} or R_{ext}/C_{ext} and V_{CC}.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54LS122 . . . FK PACKAGE (TOP VIEW) (SEE NOTES 1 THRU 4)

SN54LS123 . . . FK PACKAGE (TOP VIEW) (SEE NOTES 1 THRU 4)

NC - No internal connection

STRUMENTS

SN54122, SN54123, SN54130, SN54LS122, SN54LS123, SN74122, SN74123, SN74130, SN74LS122, SN74LS123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

SDLS043 - DECEMBER 1983 - REVISED MARCH 1988

description (continued)

NOTE: Retrigger pulses starting before 0.22 C_{ext} (in picofrads) nanoseconds after the initial trigger pulse will be ignored and the output duration will remain unchanged.

FIGURE 1-TYPICAL INPUT/OUTPUT PULSES

122, LS122 FUNCTION TABLE

	INP	JTS			OUT	UTS					
CLEAR	A1	A2	B1	B2	Q	ā					
L	Х	х	Х	Х	L	н					
×	н	н	х	х	L†	н†					
×	х	х	L	х	L†	н†					
х	х	х	х	L	L†	н†					
н	L	х	1	н	Л	ប					
н	L	Х	н	1	Л	ប					
н	х	i,	Ť	н	л	ប					
н	х	L	н	1	Л	ប					
н	н	Ļ	н	H	Л	ប					
н	Ļ	\downarrow	н	н	л	ਪ					
н	Ļ	н	н	н	Л	ν					
1	L	х	н	н	L.	v					
1	х	L	н	н	L	v					

See explanation of function tables on page

† These lines of the functional tables assume that the indicated steady-state conditons at the A and B inputs have been set up long enough to complete any pulse started before the set up.

'123, '130, 'LS123 FUNCTION TABLE

INPL	JTS		Ουτι	PUTS
CLEAR	Α	В	۵	ā
L	Х	Х	L	н
х	н	х	L†	нŤ
×	х	L	L†	нŤ
н	L	1	л	ប
н	ţ	н	Л	U
1	L	н	л	v

SN54122, SN54123, SN54130, SN54LS122, SN54LS123, SN74122, SN74123, SN74130, SN74LS122, SN74LS123 **RETRIGGERABLE MONOSTABLE MULTIVIBRATORS** SDLS043 – DECEMBER 1983 – REVISED MARCH 1988

logic diagram (positive logic)

logic symbol[†]

Rint Cext Rext/Cext

 R_{int} is nominally 10 k Ω for '122 and 'LS122

logic diagram (positive logic) (each multivibrator)

'123, '130, 'LS123

logic symbol[†]

'123, '130, 'LS123

Pin numbers shown are for D, J, N, and W packages.

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54122, SN54123, SN54130, SN54LS122, SN54LS123, SN74122, SN74123, SN74130, SN74LS122, SN74LS123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS SDLS043 – DECEMBER 1983 – REVISED MARCH 1988

schematics of inputs and outputs

'122, '123, '130 CIRCUITS

'LS122, 'LS123 CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	Supply voltage, VCC (see Note 1)	v
	nput voltage: '122, '123, '130	
	'I S122 'I S123 5.5	V
		V
	-55° c to 125°	'n
	Storage temperature result. 0°C to 70°	'nC
	-65°C to 150°	'nC
_		

NOTE 1: Voltage values are with respect to network ground terminal.

SN54122, SN54123, SN54130, SN74122, SN74123, SN74130 **RETRIGGERABLE MONOSTABLE MULTIVIBRATORS**

SDLS043 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

		SN54′			SN74'			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH			-800		_	800	μA	
Low-level output current, IOL			16			16	mA	
Pulse duration, t _w	40			40			ne	
External timing resistance, Rext	5		25	5		50	113	
External capacitance, C _{ext}	No	restrict	ion	No	restrict	ion	Ka4	
Wiring capacitance at R _{ext} /C _{ext} terminal			50			<u> </u>		
Operating free-air temperature, T _A	-55		125	0			°C	

electrical characteristics over recommended free-air operating temperature range (unless otherwise noted)

	PARAMETER		TEST CO	NOITIONST		′122			'123, '13	30	
			1201 00		MIN	TYP‡	MAX	MIN	TYP±	MAX	UNIT
VIH	High-level input voltage				2			2			V
_ VIL	Low-level input voltage						0.8			0.9	
VIK	Input clamp voltage		$V_{CC} = MIN$	$l_{1} = -12 \text{ mA}$			1.6			1.5	<u> </u>
VOH	High-level output voltage		V _{CC} = MIN, See Note 5	I _{OH} = -800 µA,	2.4	3.4	-1.5	2.4	3.4	-1.5	V
VOL	Low-level output voltage		V _{CC} = MIN, See Note 5	I _{OL} = 16 mA,		0.2	0,4		0.2	0.4	v
1	Input current at maximum i	nput voltage	$V_{CC} = MAX,$	VI = 5.5 V			1	<u> </u>		1	mA
ЧΗ	High-level input current	Data inputs Clear input	V _{CC} = MAX,	V _I = 2.4 V			40			40	μΑ
ΗL	Low-level input current	Data inputs Clear input	V _{CC} = MAX,	V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current	$V_{CC} = MAX$	See Note 5	-10		_40	_10		40		
1cc	Supply current (quiescent of	r triggered)	V _{CC} = MAX,	See Notes 6 and 7		23	36		46	66	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

§ Not more than one output should be shorted at a time.

- NOTES: 5. Ground C_{ext} to measure V_{OH} at Q, V_{OL} at Q, or I_{OS} at Q. C_{ext} is open to measure V_{OH} at Q, V_{OL} at Q, or I_{OS} at Q. 6. Quiescent I_{CC} is measured (after clearing) with 4.5 V applied to all clear and A inputs, B inputs grounded, all outputs open and
 - $R_{ext} = 25 \text{ k}\Omega$. R_{int} of '122 is open.
 - 7. ICC is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open, C_{ext} = 0.02 $\mu F,$ and R_{ext} = 25 k\Omega. R_{int} of '122 is open.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$, see note 8

DADAMETER	FROM	то		,	122, '1	30					
PARAMETER	(INPUT)	(OUTPUT)	TEST CON	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT	
^t PLH	A	Q				22	33		22	33	
	В		ļ			19	28		19	28	ns
1 TPHL	A	ā	$C_{avt} = 0$	$R_{ext} = 5 k\Omega,$		30	40		30	40	
	В		$C_{L} = 15 \text{ nE}$			27	36		27	36	ns
	Clear	<u> </u>		11L 400.32		18	27		18	27	
TPLH		Q				30	40		30	40	ns
twQ (min)	A or B	Q				45	65		45	76	ns
^t wQ	A or B	Q	C _{ext} = 1000 pF, C _L = 15 pF,	R _{ext} = 10 kΩ, R _L = 400 Ω	3.08	3.42	3.76	2.76	3.03	3.37	μs

¶tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

 t_{wQ} = duration of pulse at output Q.

NOTE 8: Load circuits and voltage waveforms are shown in Section 1.

SN54LS122, SN54LS123, SN74LS122, SN74LS123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

SDLS043 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

		SN54LS	5		SN74LS	5'	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			4			8	mA
Pulse duration, tw	40			40			ns
External timing resistance, R _{ext}	5		180	5		260	kΩ
External capacitance, C _{ext}	No	restrict	ion	No	restrict	ion	
Wiring capacitance at R _{ext} /C _{ext} terminal			50			50	pF
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEO	TCONDITIONS			SN54LS	if .		SN74LS		
	FARAMETER	1 5	T CONDITIONS'		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
_ VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage	$V_{CC} = MIN,$	I _I =18 mA				-1.5			-1.5	V
Vон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V, ^I OH [≈] −400 µA		2.5	3.5		2.7	3.5		V
Voi	Low-level output voltage	$V_{CC} = MIN,$	V _{IH} = 2 V,	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	V
		VIL = VILmax		I _{OL} ≈ 8 mA					0.35	0.5	
-lj	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
ЦΗ	High-level input current	$V_{CC} = MAX,$	V ₁ = 2.7 V				20			20	μA
L IL	Low-level input current	$V_{CC} = MAX,$	V = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output current§	V _{CC} = MAX			20		-100	-20		-100	mA
lcc	Supply current	Vcc = MAX	See Note 13	'LS122		6	11		6	11	
	(quiescent or triggered)		000 10010 15	'LS123	1	12	20		12	20	- mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§]Not more than one output should be shorte<u>d</u> at a time and duration of the short-circuit should not exceed one second.

- NOTES: 12. To measure VOH at Q, VOL at Q, or IOS at Q, ground Rext/Cext, apply 2 V to B and clear, and pulse A from 2 V to 0 V.
 - With all outputs open and 4.5 V applied to all data and clear inputs. I_{CC} is measured after a momentary ground, then 4.5 V, is applied to A or B inputs.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 8)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	ТҮР	MAX	UNIT
touu	A	0				23	33	
PLH	В	- ā - ā				23	44	ns
touu	A		C = 0	R - Eko		32	45	
PHL	В		$C_{ext} = 0,$	$n_{ext} = 5 k_{32}$		34	56	ns
TPHL	Clear		CL - 15 pF,	∩L → 2 κ ₂ 2		20	27	
^t PLH	Clear	ā				28	45	1 ns
t _{wQ} (min)	A or B	Q				116	200	ns
twQ	A or B	۵	C _{ext} = 1000 pF, C _L = 15 pF,	R _{ext} = 10 kΩ, R _L = 2 kΩ	4	4.5	5	μs

¶tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

 t_{WQ} = duration of pulse at output Q.

NOTE 8: Load circuits and voltage waveforms are shown in Section 1.

SN54122, SN54123, SN54130, SN74122, SN74123, SN74130 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

SDLS043 – DECEMBER 1983 – REVISED MARCH 1988

TYPICAL APPLICATION DATA FOR '122, '123, '130

ns

t_w-Output Pulse Duration-

For pulse durations when C_{ext} \leq 1000 pF, see Figure 4.

The output pulse duration is primarily a function of the external capacitor and resistor. For $C_{ext} > 1000 \text{ pF}$, the output pulse duration (t_w) is defined as:

$$t_{W} = K \cdot R_{T} \cdot C_{ext} \left(1 + \frac{0.7}{R_{T}} \right)$$

where

K is 0.32 for '122, 0.28 for '123 and '130

 R_T is in $k\Omega$ (internal or external timing resistance.)

Cext is in pF

tw is in ns

To prevent reverse voltage across C_{ext} , it is recommended that the method shown in Figure 2 be employed when using electrolytic capacitors and in applications utilizing the clear function. In all applications using the diode, the pulse duration is:

$$t_{W} = K_{D} \cdot R_{T} \cdot C_{ext} \left(1 + \frac{0.7}{R_{T}} \right)$$

K_D is 0.28 for '122, 0.25 for '123 and '130

Applications requiring more precise pulse durations (up to 28 seconds) and not requiring the clear feature can best be satisfied with the '121.

FIGURE 4

[†]These values of resistance exceed the maximum recommended for use over the full temperature range of the SN54' circuits.

SN54LS122, SN54LS123, SN74LS122, SN74LS123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

SDLS043 – DECEMBER 1983 – REVISED MARCH 1988

TYPICAL APPLICATION DATA FOR 'LS122, 'LS123

The basic output pulse duration is essentially determined by the values of external capacitance and timing resistance. For pulse durations when $C_{ext} \le 1000 \text{ pF}$, use Figure 6, or use Figure 7 where the pulse duration may be defined as:

 $t_W = K \cdot R_T \cdot C_{ext}$

When $C_{ext} \ge 1 \ \mu F$, the output pulse width is defined as:

 $t_W = 0.33 \cdot R_T \cdot C_{ext}$

For the above two equations, as applicable;

K is multiplier factor, see Figure 7 RT is in k Ω (internal or external timing resistance) C_{ext} is in pF t_w is in ns

For maximum noise immunity, system ground should be applied to the C_{ext} node, even though the C_{ext} node is already tied to the ground lead internally. Due to the timing scheme used by the 'LS122 and 'LS123, a switching diode is not required to prevent reverse biasing when using electolytic capacitors.

TIMING COMPONENT CONNECTIONS FIGURE 5

SN54LS122, SN54LS123, SN74LS122, SN74LS123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

SDLS043 – DECEMBER 1983 – REVISED MARCH 1988

TYPICAL APPLICATION DATA FOR 'LS122, 'LS123[†]

NOTE 14: For the 'LS122, the internal timing resistor, R_{int} was used. For the 'LS122/123, an external timing resistor was used for R_T. [†]Data for temperatures below 0°C and above 70°C and for suply voltages below 4.75 V and above 5.25 V are applicable for SN54LS122 and SN54LS123 only.

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-7603901VEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-7603901VE A SNV54LS123J	Samples
5962-7603901VFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-7603901VF A SNV54LS123W	Samples
7603901EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7603901EA SNJ54LS123J	Samples
7603901FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7603901FA SNJ54LS123W	Samples
JM38510/01203BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 01203BEA	Samples
JM38510/31401B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 31401B2A	Samples
JM38510/31401BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 31401BEA	Samples
JM38510/31401BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 31401BFA	Samples
M38510/01203BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 01203BEA	Samples
M38510/31401B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 31401B2A	Samples
M38510/31401BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 31401BEA	Samples
M38510/31401BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 31401BFA	Samples
SN54123J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54123J	Samples
SN54LS123J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS123J	Samples
SN74122N	OBSOLET	e pdip	Ν	14		TBD	Call TI	Call TI	0 to 70		
SN74123N	NRND	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74123N	
SN74LS122D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS122	Samples

PACKAGE OPTION ADDENDUM

17-Mar-2017

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)	•	Drawing		Qty	(2)	(6)	(3)	• • • • •	(4/5)	•
SN74LS122DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS122	Samples
SN74LS122DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS122	Samples
SN74LS122DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS122	Samples
SN74LS122N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS122N	Samples
SN74LS122NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS122N	Samples
SN74LS122NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS122	Samples
SN74LS123D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS123	Samples
SN74LS123DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS123	Samples
SN74LS123DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS123	Samples
SN74LS123DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS123	Samples
SN74LS123DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS123	Samples
SN74LS123DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS123	Samples
SN74LS123N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS123N	Samples
SN74LS123NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS123N	Samples
SN74LS123NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS123	Samples
SN74LS123NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS123	Samples
SNJ54123J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54123J	Samples
SNJ54123W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54123W	Samples

17-Mar-2017

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	-
SNJ54LS123FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54LS 123FK	Samples
SNJ54LS123J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7603901EA SNJ54LS123J	Samples
SNJ54LS123W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7603901FA SNJ54LS123W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

17-Mar-2017

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54123, SN54LS123, SN54LS123-SP, SN74123, SN74LS123 :

- Catalog: SN74123, SN74LS123, SN54LS123
- Military: SN54123, SN54LS123
- Space: SN54LS123-SP

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS122DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS122NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LS123DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-Apr-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS122DR	SOIC	D	14	2500	367.0	367.0	38.0
SN74LS122NSR	SO	NS	14	2000	367.0	367.0	38.0
SN74LS123DR	SOIC	D	16	2500	333.2	345.9	28.6

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

