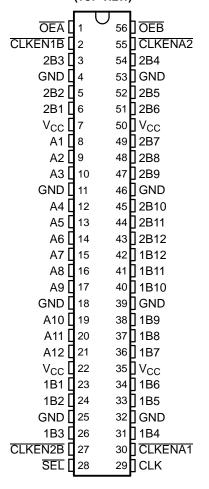
SCES018L-AUGUST 1995-REVISED SEPTEMBER 2004

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- Operates From 1.65 V to 3.6 V
- Max t_{pd} of 4.8 ns at 3.3 V
- ±24-mA Output Drive at 3.3 V
- B-Port Outputs Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)


DESCRIPTION/ORDERING INFORMATION

This 12-bit to 24-bit registered bus exchanger is designed for 1.65-V to 3.6-V $\rm V_{\rm CC}$ operation.

The SN74ALVCH162268 is used for applications in which data must be transferred from a narrow high-speed bus to a wide, lower-frequency bus.

The device provides synchronous data exchange between the two ports. Data is stored in the internal registers on the low-to-high transition of the clock (CLK) input when the appropriate clock-enable (CLKEN) inputs are low. The select (SEL) line is synchronous with CLK and selects 1B or 2B input data for the A outputs.

DGG OR DL PACKAGE (TOP VIEW)

For data transfer in the A-to-B direction, a two-stage pipeline is provided in the A-to-1B path, with a single storage register in the A-to-2B path. Proper control of these inputs allows two sequential 12-bit words to be presented synchronously as a 24-bit word on the B port. Data flow is controlled by the active-low output enables (OEA, OEB). These control terminals are registered, so bus direction changes are synchronous with CLK.

The B outputs, which are designed to sink up to 12 mA, include equivalent 26- Ω resistors to reduce overshoot and undershoot.

ORDERING INFORMATION

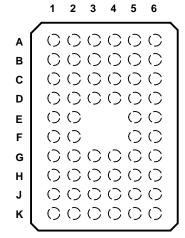
T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	SSOP - DL	Tube	SN74ALVCH162268DL	ALVCH162268	
	330F - DL	Tape and reel	SN74ALVCH162268DLR	ALVCH102200	
-40°C to 85°C	TSSOP - DGG	Tape and reel	SN74ALVCH162268GR	ALVCH162268	
	VFBGA - GQL	Tana and real	SN74ALVCH162268KR	- VH2268	
	VFBGA - ZQL (Pb-free)	Tape and reel	74ALVCH162268ZQLR		

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

SCES018L-AUGUST 1995-REVISED SEPTEMBER 2004



DESCRIPTION/ORDERING INFORMATION (CONTINUED)

To ensure the high-impedance state during power up or power down, a clock pulse should be applied as soon as possible, and \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Due to \overline{OE} being routed through a register, the active state of the outputs cannot be determined prior to the arrival of the first clock pulse.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

GQL OR ZQL PACKAGE (TOP VIEW)

TERMINAL ASSIGNMENTS

	1	2	3	4	5	6
Α	2B3	CLKEN1B	OEA	OEB	CLKENA2	2B4
В	2B1	2B2	GND	GND	2B5	2B6
С	A2	A1	V_{CC}	V _{CC}	2B7	2B8
D	A4	A3	GND	GND	2B9	2B10
Е	A6	A5			2B11	2B12
F	A7	A8			1B11	1B12
G	A9	A10	GND	GND	1B9	1B10
Н	A11	A12	V_{CC}	V _{CC}	1B7	1B8
J	1B1	1B2	GND	GND	1B5	1B6
K	1B3	CLKEN2B	SEL	CLK	CLKENA1	1B4

SCES018L-AUGUST 1995-REVISED SEPTEMBER 2004

FUNCTION TABLES

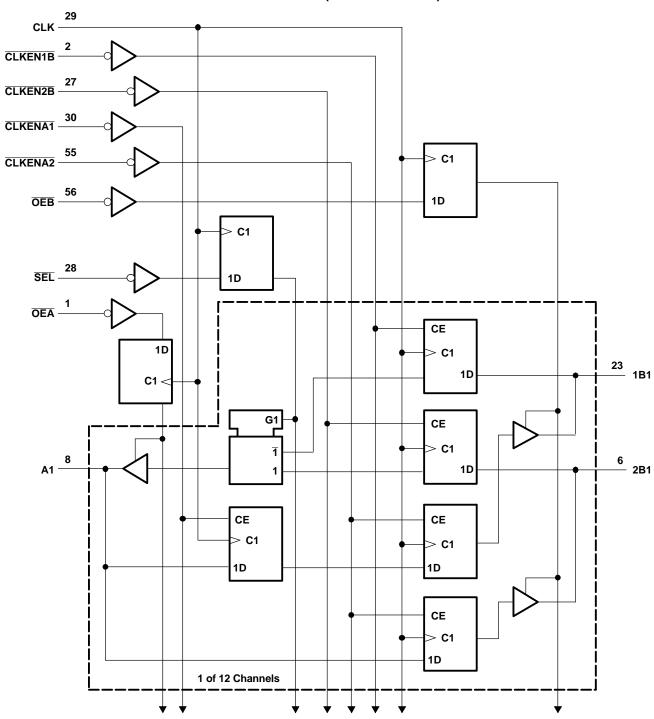
OUTPUT ENABLE

ı	NPUTS	3	OUTPUTS		
CLK OEA OEB			Α	1B, 2B	
↑	Н	Н	Z	Z	
\uparrow	Н	L	Z	Active	
\uparrow	L	Н	Active	Z	
\uparrow	L	L	Active	Active	

A-TO-B STORAGE ($\overline{OEB} = L$)

	INPUTS	OUTPUTS			
CLKENA1	CLKENA2	CLK	Α	1B	2B
Н	Н	Х	Х	1B ₀ ⁽¹⁾	2B ₀ ⁽¹⁾
L	L	\uparrow	L	L ⁽²⁾	Χ
L	L	\uparrow	Н	H ⁽²⁾	Χ
X	L	\uparrow	L	X	L
X	L	\uparrow	Н	X	Н

- (1) Output level before the indicated steady-state input conditions were established
- (2) Two CLK edges are needed to propagate data.


B-TO-A STORAGE $(\overline{OEA} = L)$

	INPUTS					
CLKEN1B	CLKEN2B	CLKEN2B CLK SEL 1B 2B		Α		
Н	Χ	Х	Н	Χ	X	A ₀ ⁽¹⁾
X	Н	X	L	Χ	X	A ₀ ⁽¹⁾
L	L	\uparrow	Н	L	X	L
L	L	\uparrow	Н	Н	X	Н
X	L	\uparrow	L	Χ	L	L
X	L	1	L	Χ	Н	Н

(1) Output level before the indicated steady-state input conditions were established

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DGG and DL packages.

SCES018L-AUGUST 1995-REVISED SEPTEMBER 2004

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
	land to alternative	Except I/O ports (2)		4.6	
VI	Input voltage range	I/O ports ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GN	ND		±100	mA
		DGG package		64	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DL package		56	°C/W
		GQL/ZQL package		42	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 4.6 V, maximum.

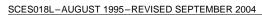
⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS(1)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
VI	Input voltage		0	V_{CC}	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 1.65 V		-4		
	High lovel output current (A port)	V _{CC} = 2.3 V		-12		
	High-level output current (A port)	V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
I _{OH}		V _{CC} = 1.65 V		-2		
	High-level output current (B port)	V _{CC} = 2.3 V		-6		
		V _{CC} = 2.7 V		-8		
		V _{CC} = 3 V		-12		
		V _{CC} = 1.65 V		4		
	Low lovel output ourrent (A nort)	V _{CC} = 2.3 V		12		
	Low-level output current (A port)	V _{CC} = 2.7 V		12 24		
		V _{CC} = 3 V				
I _{OL}		V _{CC} = 1.65 V		2	mA	
	Low lovel output ourrent (P. nort)	V _{CC} = 2.3 V		6		
	Low-level output current (B port)	V _{CC} = 2.7 V	8		†	
		V _{CC} = 3 V		12		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES018L-AUGUST 1995-REVISED SEPTEMBER 2004


ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT	
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2				
		I _{OH} = -4 mA	1.65 V	1.2				
	A port	I _{OH} = -6 mA	2.3 V	2				
			2.3 V	1.7				
		I _{OH} = -12 mA	2.7 V	2.2				
			3 V	2.4				
.,		I _{OH} = -24 mA	3 V	2			.,	
V_{OH}		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2			V	
		I _{OH} = -2 mA	1.65 V	1.2				
		I _{OH} = -4 mA	2.3 V	1.9				
	B port		2.3 V	1.7				
		I _{OH} = -6 mA	3 V	2.4				
		I _{OH} = -8 mA	2.7 V	2				
		I _{OH} = -12 mA	3 V	2				
		I _{OL} = 100 μA	1.65 V to 3.6 V			0.2		
		I _{OL} = 4 mA	1.65 V			0.45		
		I _{OL} = 6 mA	2.3 V			0.4		
	A port		2.3 V			0.7		
		I _{OL} = 12 mA	2.7 V			0.4		
		I _{OL} = 24 mA	3 V			0.55		
V_{OL}		I _{OL} = 100 μA	1.65 V to 3.6 V			0.2	V	
	B port	I _{OL} = 2 mA	1.65 V			0.45		
		I _{OL} = 4 mA	2.3 V			0.4		
			2.3 V			0.55		
		I _{OL} = 6 mA	3 V			0.55		
		I _{OL} = 8 mA	2.7 V			0.6	1	
		I _{OL} = 12 mA	3 V			0.8		
I _I	l	V _I = V _{CC} or GND	3.6 V			±5	μΑ	
		V _I = 0.58 V		25				
		V _I = 1.07 V	1.65 V	-25				
		V _I = 0.7 V		45				
I _{I(hold)}		V _I = 1.7 V	2.3 V	-45			μΑ	
(/		V _I = 0.8 V		75				
		V _I = 2 V	3 V	-75				
		V _I = 0 to 3.6 V ⁽²⁾	3.6 V			±500	1	
I _{OZ} (3)		V _O = V _{CC} or GND	3.6 V			±10	μΑ	
I _{CC}		$V_1 = V_{CC}$ or GND, $I_0 = 0$	3.6 V			40	μA	
ΔI_{CC}		One input at V _{CC} - 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μA	
C _i	Control inputs	V _I = V _{CC} or GND	3.3 V		3.5		pF	
C _{io}	A or B ports	$V_O = V_{CC}$ or GND	3.3 V		9		pF	

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to

⁽³⁾ For I/O ports, the parameter I_{OZ} includes the input leakage current.

TIMING REQUIREMENTS

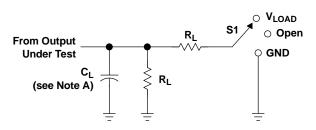
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			$V_{CC} = 2.5 \text{ V} \\ \pm 0.2 \text{ V}$ $V_{CC} = 2.7 \text{ V}$		V_{CC} = 3.3 V \pm 0.3 V		UNIT		
			MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			120		125		150	MHz
t_{w}	Pulse duration, CLK	high or low	3.3		3.3		3.3		ns
		A data before CLK↑	4.5		4		3.4		
	Setup time	B data before CLK↑	0.8		1.2		1		ns
		SEL before CLK↑	1.4		1.6		1.3		
t _{su}		CLKENA1 or CLKENA2 before CLK↑	3.6		3.4		2.8		
		CLKEN1B or CLKEN2B before CLK↑	3.2		3		2.5		
		OE before CLK↑	4.2		3.9		3.2		
		A data after CLK↑	0		0		0.2		
		B data after CLK↑	1.3		1.2		1.3		
	Hold time	SEL after CLK↑	1		1		1		20
t _h	Hold time	CLKENA1 or CLKENA2 after CLK↑	0.1		0.1		0.4		ns
		CLKEN1B or CLKEN2B after CLK↑	0.1		0		0.5		
		OE after CLK↑	0		0		0.2		

SWITCHING CHARACTERISTICS

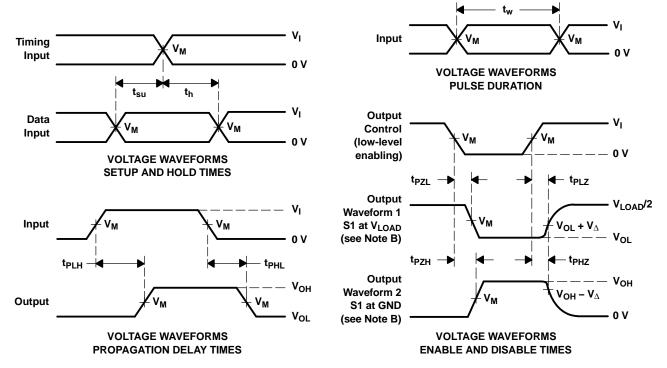
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V	V _{CC} = 2.5 V ± 0.2 V		$c_{C} = 2.5 \text{ V} \pm 0.2 \text{ V} $ $V_{CC} = 2.7 \text{ V}$		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INFOT)	(OUTPUT)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}				120		125		150		MHz
		В	8	1.6	6.1		5.9	1.8	5.4	
4	CLK	A (1B)	8	1.6	5.8		5.4	1.7	4.8	ns
t _{pd}		A (2B)	8	1.6	5.8		5.3	1.8	4.8	115
		A (SEL)	11	2.5	7.3		6.5	2.4	5.8	
	CLK	В	12	2.7	7.2		6.8	2.6	6.1	
t _{en}	CLK	Α	9	2	6.2		5.6	1.8	5.1	ns
	CLK	В	10	2.8	7.2		6.1	2.5	5.9	no
t _{dis}		Α	9	2	6.5		5.4	2.1	5	ns


OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
_	Power dissipation capacitance	Outputs enabled	C _L = 50 pF, f = 10 MHz	87	120	pF
C _{pc}	Fower dissipation capacitance	Outputs disabled	C _L = 50 pr, τ = 10 MH2	80.5	118	þΓ


PARAMETER MEASUREMENT INFORMATION

TEST	S 1
t _{pd}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

V	IN	PUT	V	v		ь	V
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	$V_{\!\scriptscriptstyle \Delta}$
1.8 V ± 0.15 V	V _{CC}	≤ 2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Ω} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ALVCH162268DL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH162268	Samples
SN74ALVCH162268GR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH162268	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

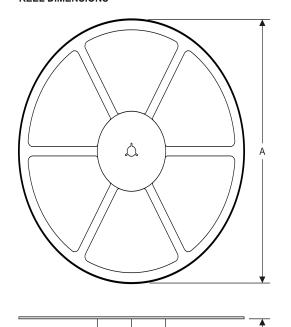
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

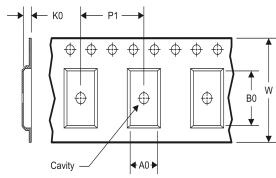
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

17-Mar-2017


n no event shall TI's liability arising out of such inform	ation exceed the total purchase price of the TI part(s) at issue	in this document sold by TI to Customer on an annual basis.

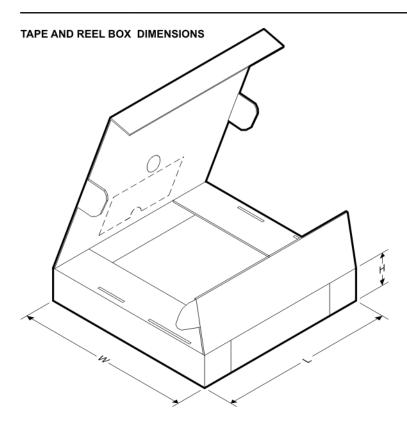
PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

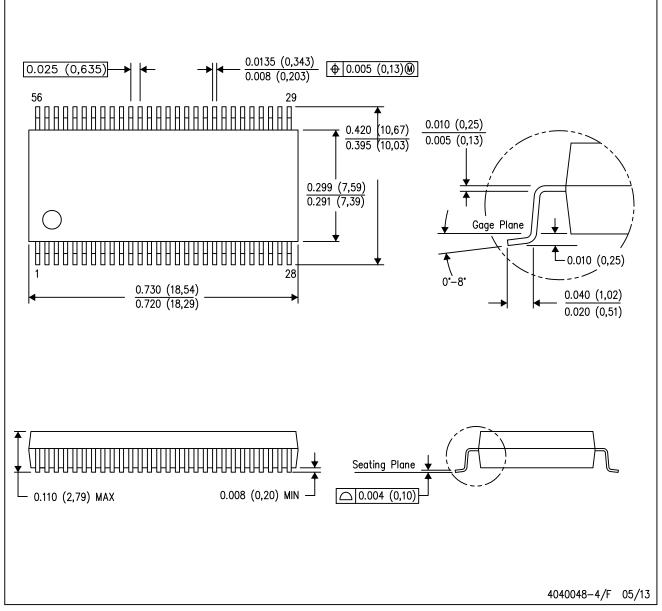

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVCH162268GR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012



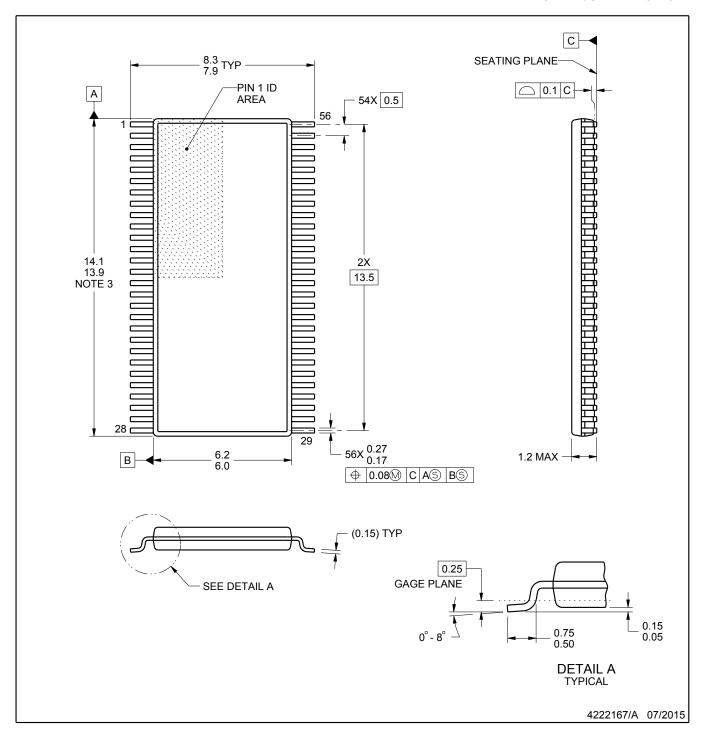
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVCH162268GR	TSSOP	DGG	56	2000	367.0	367.0	45.0

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

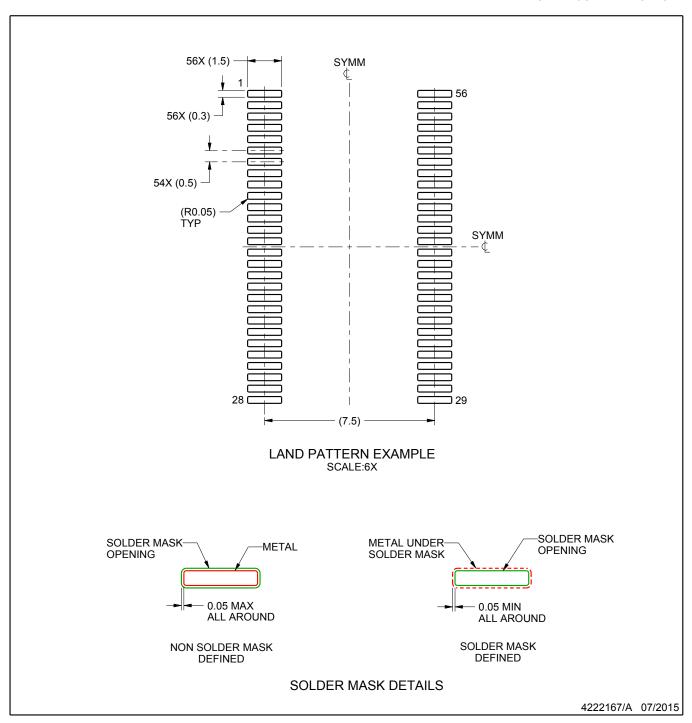
NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

SMALL OUTLINE PACKAGE

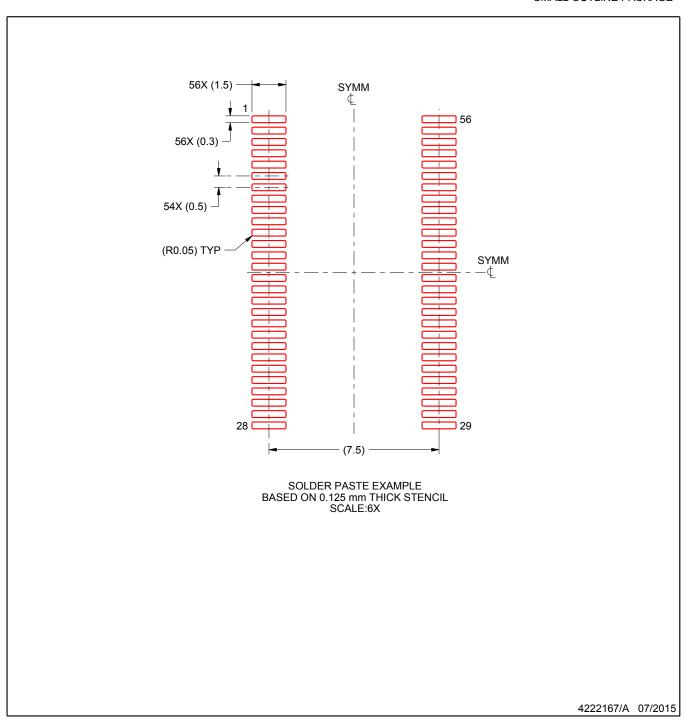
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

