

DGG OR DL PACKAGE

SCES583A-JULY 2004-REVISED OCTOBER 2004

#### **FEATURES**

- Member of the Texas Instruments Widebus™ Family
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Output Ports Have Equivalent 26- $\Omega$  Series **Resistors, So No External Resistors Are** Required
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
  - 2000-V Human-Body Model (A114-A)
  - 200-V Machine Model (A115-A)

#### **DESCRIPTION/ORDERING INFORMATION**

This 16-bit transparent D-type latch is designed for 1.65-V to 3.6-V V<sub>CC</sub> operation.

The SN74ALVCH162373 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. This device can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load drive the bus lines significantly. nor The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components. OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

| The outputs, which are designed to sink up to 12 mA, | , include equivalent 26- $\Omega$ resistors to reduce overshoot and |
|------------------------------------------------------|---------------------------------------------------------------------|
| undershoot.                                          |                                                                     |

#### **ORDERING INFORMATION**

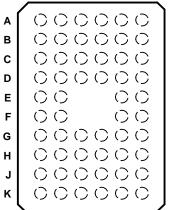
| T <sub>A</sub> | PACKAGE <sup>(1)</sup> |               | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
|----------------|------------------------|---------------|-----------------------|------------------|
|                | SSOP - DL              |               | SN74ALVCH162373DL     | ALVCH162373      |
| 4000 to 0500   | 550P - DL              | Tape and reel | SN74ALVCH162373LR     | ALVUN102373      |
| -40°C to 85°C  | TSSOP - DGG            | Tape and reel | SN74ALVCH162373GR     | ALVCH162373      |
|                | VFBGA - GQL            | Tape and reel | SN74ALVCH162373KR     | VH2373           |

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at (1) www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

| (TOP VIEW)        |    |    |       |  |  |
|-------------------|----|----|-------|--|--|
|                   |    |    | 1     |  |  |
| 1 <u>0</u> [      | 1  | 48 | ] 1LE |  |  |
| 1Q1 [             | 2  | 47 | ] 1D1 |  |  |
| 1Q2 [             | 3  | 46 | 1D2   |  |  |
| GND [             | 4  | 45 | ] GND |  |  |
| 1Q3 [             | 5  | 44 | ] 1D3 |  |  |
| 1Q4 [             | 6  | 43 | ] 1D4 |  |  |
| V <sub>CC</sub> [ | 7  | 42 | Vcc   |  |  |
| 1Q5 [             | 8  | 41 | ] 1D5 |  |  |
| 1Q6 [             | 9  | 40 | 1D6   |  |  |
| GND [             | 10 | 39 | GND   |  |  |
| 1Q7 [             | 11 | 38 | ] 1D7 |  |  |
| 1Q8 [             | 12 | 37 | ] 1D8 |  |  |
| 2Q1 [             | 13 | 36 | 2D1   |  |  |
| 2Q2 [             | 14 | 35 | 2D2   |  |  |
| GND [             | 15 | 34 | GND   |  |  |
| 2Q3 [             | 16 | 33 | 2D3   |  |  |
| 2Q4 [             | 17 | 32 | 2D4   |  |  |
| V <sub>CC</sub>   | 18 | 31 | Vcc   |  |  |
| 2Q5               | 19 | 30 | 2D5   |  |  |
| 2Q6 [             | 20 | 29 | 2D6   |  |  |
| GND               | 21 | 28 | GND   |  |  |
| 2Q7 [             | 22 | 27 | 2D7   |  |  |
| 2Q8 [             | 23 | 26 | 2D8   |  |  |
| 2 <u>0e</u> [     | 24 | 25 | 2LE   |  |  |
|                   |    |    | I     |  |  |


SCES583A-JULY 2004-REVISED OCTOBER 2004

### **DESCRIPTION/ORDERING INFORMATION (CONTINUED)**

To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

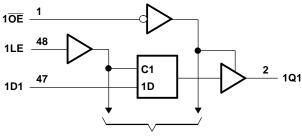
Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

# GQL PACKAGE (TOP VIEW) 1 2 3 4 5 6 () () () () () ()

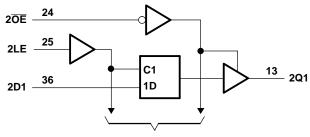


|   | TERMINAL ASSIGNMENTS <sup>(1)</sup> |     |                 |                 |     |     |  |
|---|-------------------------------------|-----|-----------------|-----------------|-----|-----|--|
|   | 1                                   | 2   | 3               | 4               | 5   | 6   |  |
| Α | 1 <del>0E</del>                     | NC  | NC              | NC              | NC  | 1LE |  |
| в | 1Q2                                 | 1Q1 | GND             | GND             | 1D1 | 1D2 |  |
| С | 1Q4                                 | 1Q3 | V <sub>CC</sub> | V <sub>CC</sub> | 1D3 | 1D4 |  |
| D | 1Q6                                 | 1Q5 | GND             | GND             | 1D5 | 1D6 |  |
| Е | 1Q8                                 | 1Q7 |                 |                 | 1D7 | 1D8 |  |
| F | 2Q1                                 | 2Q2 |                 |                 | 2D2 | 2D1 |  |
| G | 2Q3                                 | 2Q4 | GND             | GND             | 2D4 | 2D3 |  |
| Н | 2Q5                                 | 2Q6 | V <sub>CC</sub> | V <sub>CC</sub> | 2D6 | 2D5 |  |
| J | 2Q7                                 | 2Q8 | GND             | GND             | 2D8 | 2D7 |  |
| Κ | 2 <mark>0E</mark>                   | NC  | NC              | NC              | NC  | 2LE |  |

TEXAS IRUMENTS


www.ti.com

(1) NC - No internal connection


## FUNCTION TABLE (each 8-bit section)

|    | INPUTS |   | OUTPUT         |
|----|--------|---|----------------|
| OE | LE     | D | Q              |
| L  | Н      | Н | Н              |
| L  | Н      | L | L              |
| L  | L      | Х | Q <sub>0</sub> |
| Н  | Х      | Х | Z              |

### LOGIC DIAGRAM (POSITIVE LOGIC)



To Seven Other Channels



**To Seven Other Channels** 

Pin numbers shown are for the DGG and DL packages.



SCES583A-JULY 2004-REVISED OCTOBER 2004

#### **ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>**

over operating free-air temperature range (unless otherwise noted)

|                  |                                                |                    | MIN  | MAX                   | UNIT |
|------------------|------------------------------------------------|--------------------|------|-----------------------|------|
| V <sub>CC</sub>  | Supply voltage range                           |                    | -0.5 | 4.6                   | V    |
| VI               | Input voltage range <sup>(2)</sup>             |                    | -0.5 | 4.6                   | V    |
| Vo               | Output voltage range <sup>(2)(3)</sup>         |                    | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>  | Input clamp current                            | V <sub>1</sub> < 0 |      | -50                   | mA   |
| I <sub>OK</sub>  | Output clamp current                           | V <sub>O</sub> < 0 |      | -50                   | mA   |
| I <sub>O</sub>   | Continuous output current                      |                    |      | ±50                   | mA   |
|                  | Continuous current through each $V_{CC}$ or GI | ND                 |      | ±100                  | mA   |
|                  |                                                | DGG package        |      | 70                    |      |
| $\theta_{JA}$    | Package thermal impedance <sup>(4)</sup>       | DL package         |      | 63                    | °C/W |
|                  |                                                | GQL package        |      | 42                    |      |
| T <sub>stg</sub> | Storage temperature range                      |                    | -65  | 150                   | °C   |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 4.6 V maximum.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

### **RECOMMENDED OPERATING CONDITIONS**<sup>(1)</sup>

|                     |                                    |                                    | MIN                 | MAX                  | UNIT |
|---------------------|------------------------------------|------------------------------------|---------------------|----------------------|------|
| V <sub>CC</sub>     | Supply voltage                     |                                    | 1.65                | 3.6                  | V    |
|                     |                                    | V <sub>CC</sub> = 1.65 V to 1.95 V | $0.65 	imes V_{CC}$ | V <sub>CC</sub>      |      |
| VIH                 | High-level input voltage           | $V_{CC}$ = 2.3 V to 2.7 V          | 1.7                 | V <sub>CC</sub>      | V    |
|                     |                                    | $V_{CC}$ = 2.7 V to 3.6 V          | 2                   | V <sub>CC</sub>      |      |
|                     |                                    | $V_{CC}$ = 1.65 V to 1.95 V        | 0                   | $0.35 \times V_{CC}$ |      |
| V <sub>IL</sub>     | Low-level input voltage            | $V_{CC}$ = 2.3 V to 2.7 V          | 0                   | 0.7                  | V    |
|                     |                                    | $V_{CC}$ = 2.7 V to 3.6 V          | 0                   | 0.8                  |      |
| Vo                  | Output voltage                     |                                    | 0                   | V <sub>CC</sub>      | V    |
|                     |                                    | V <sub>CC</sub> = 1.65 V           |                     | -2                   |      |
|                     | High-level output current          | $V_{CC} = 2.3 V$                   |                     | -6                   | mA   |
| I <sub>OH</sub>     | righ-level output current          | $V_{CC} = 2.7 V$                   |                     | -8                   | IIIA |
|                     |                                    | $V_{CC} = 3 V$                     |                     | -12                  |      |
|                     |                                    | V <sub>CC</sub> = 1.65 V           |                     | 2                    |      |
|                     | Low-level output current           | $V_{CC} = 2.3 V$                   |                     | 6                    | mA   |
| I <sub>OL</sub> Lo  | Low-level output current           | $V_{CC} = 2.7 V$                   |                     | 8                    | IIIA |
|                     |                                    | $V_{CC} = 3 V$                     |                     | 12                   |      |
| $\Delta t/\Delta v$ | Input transition rise or fall rate |                                    |                     | 10                   | ns/V |
| T <sub>A</sub>      | Operating free-air temperature     |                                    | -40                 | 85                   | °C   |

 All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES583A-JULY 2004-REVISED OCTOBER 2004

#### **ELECTRICAL CHARACTERISTICS**

over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER                  | TEST CONDITIONS                                                | V <sub>cc</sub> | MIN                   | TYP <sup>(1)</sup> MAX | UNIT       |  |
|----------------------------|----------------------------------------------------------------|-----------------|-----------------------|------------------------|------------|--|
|                            | I <sub>OH</sub> = -100 μA                                      | 1.65 V to 3.6 V | V <sub>CC</sub> - 0.2 |                        |            |  |
|                            | I <sub>OH</sub> = -2 mA                                        | 1.65 V          | 1.2                   |                        |            |  |
|                            | I <sub>OH</sub> = -4 mA                                        | 2.3 V           | 1.9                   |                        |            |  |
| V <sub>OH</sub>            |                                                                | 2.3 V           | 1.7                   |                        | V          |  |
|                            | I <sub>OH</sub> = -6 mA                                        | 3 V             | 2.4                   |                        |            |  |
|                            | I <sub>OH</sub> = -8 mA                                        | 2.7 V           | 2                     |                        |            |  |
|                            | I <sub>OH</sub> = -12 mA                                       | 3 V             | 2                     |                        |            |  |
|                            | I <sub>OL</sub> = 100 μA                                       | 1.65 V to 3.6 V |                       | 0.2                    |            |  |
|                            | I <sub>OL</sub> = 2 mA                                         | 1.65 V          |                       | 0.45                   |            |  |
|                            | I <sub>OL</sub> = 4 mA                                         | 2.3 V           |                       | 0.4                    |            |  |
| V <sub>OL</sub>            |                                                                | 2.3 V           |                       | 0.55                   | V          |  |
|                            | I <sub>OL</sub> = 6 mA                                         | 3 V             |                       | 0.55                   |            |  |
|                            | I <sub>OL</sub> = 8 mA                                         | 2.7 V           |                       | 0.6                    |            |  |
|                            | I <sub>OL</sub> = 12 mA                                        | 3 V             |                       | 0.8                    |            |  |
| l <sub>l</sub>             | V <sub>I</sub> = V <sub>CC</sub> or GND                        | 3.6 V           |                       | ±5                     | μA         |  |
|                            | V <sub>I</sub> = 0.58 V                                        | 1.65 V          | 25                    |                        |            |  |
|                            | V <sub>I</sub> = 1.07 V                                        | 1.65 V          | -25                   |                        |            |  |
|                            | V <sub>I</sub> = 0.7 V                                         | 2.3 V           | 45                    |                        |            |  |
| I <sub>I(hold)</sub>       | V <sub>I</sub> = 1.7 V                                         | 2.3 V           | -45                   |                        | μA         |  |
|                            | V <sub>I</sub> = 0.8 V                                         | 3 V             | 75                    |                        |            |  |
|                            | V <sub>I</sub> = 2 V                                           | 3 V             | -75                   |                        |            |  |
|                            | V <sub>I</sub> = 0 to 3.6 V <sup>(2)</sup>                     | 3.6 V           |                       | ±500                   |            |  |
| I <sub>OZ</sub>            | $V_{O} = V_{CC}$ or GND                                        | 3.6 V           |                       | ±10                    | μA         |  |
| I <sub>CC</sub>            | $V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$              | 3.6 V           |                       | 40                     | μA         |  |
| $\Delta I_{CC}$            | One input at $V_{CC}$ - 0.6 V, Other inputs at $V_{CC}$ or GND | 3 V to 3.6 V    |                       | 750                    | μA         |  |
| Control inputs             |                                                                | 221             |                       | 3                      | - <b>C</b> |  |
| C <sub>i</sub> Data inputs | $-V_{I} = V_{CC} \text{ or } GND$                              | 3.3 V           |                       | pF                     |            |  |
| C <sub>o</sub> Outputs     | $V_0 = V_{CC}$ or GND                                          | 3.3 V           |                       | 7                      | pF         |  |

Texas

TRUMENTS www.ti.com

(1) All typical values are at  $V_{CC} = 3.3 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ . (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

### **TIMING REQUIREMENTS**

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

|                 |                                         | V <sub>CC</sub> = 1.8 V<br>± 0.15 V |        |           | $V_{CC}$ = 3.3 V<br>± 0.3 V | UNIT |
|-----------------|-----------------------------------------|-------------------------------------|--------|-----------|-----------------------------|------|
|                 |                                         | MIN MAX                             | MIN MA | X MIN MAX | MIN MAX                     |      |
| tw              | Pulse duration, LE high or low          | 3.3                                 | 3.3    | 3.3       | 3.3                         | ns   |
| t <sub>su</sub> | Setup time, data before LE $\downarrow$ | 1.1                                 | 1.1    | 1.1       | 1.1                         | ns   |
| t <sub>h</sub>  | Hold time, data after LE $\downarrow$   | 1.1                                 | 1.1    | 1.1       | 1.1                         | ns   |



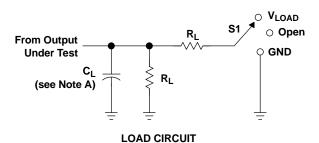
SCES583A-JULY 2004-REVISED OCTOBER 2004

#### SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

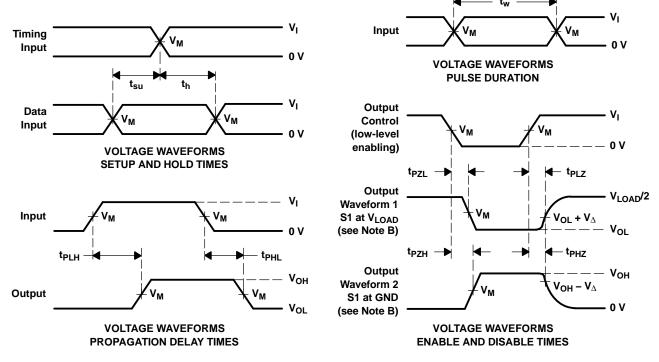
| PARAMETER          |    | TO<br>(OUTPUT) | V <sub>CC</sub> =<br>± 0.1 |     | V <sub>CC</sub> = 1<br>± 0.2 | 2.5 V<br>2 V | V <sub>CC</sub> = | 2.7 V | V <sub>CC</sub> =<br>± 0. | 3.3 V<br>3 V | UNIT |
|--------------------|----|----------------|----------------------------|-----|------------------------------|--------------|-------------------|-------|---------------------------|--------------|------|
| (INPUT)            |    | (001201)       | MIN                        | MAX | MIN                          | MAX          | MIN               | MAX   | MIN                       | MAX          |      |
|                    | D  | 0              | 1                          | 6.3 | 1                            | 5.3          | 1                 | 4.5   | 1.1                       | 4            |      |
| ۲pd                | LE | Q              | 1                          | 6.6 | 1                            | 5.6          | 1                 | 5     | 1                         | 4.2          | ns   |
| t <sub>en</sub>    | ŌĒ | Q              | 1                          | 7.2 | 1                            | 6.5          | 1.5               | 6     | 1                         | 5            | ns   |
| t <sub>dis</sub>   | ŌĒ | Q              | 1                          | 6.5 | 1                            | 5.6          | 1.5               | 5.5   | 1.4                       | 4.5          | ns   |
| t <sub>sk(o)</sub> |    |                |                            | 1   |                              | 0.5          |                   | 0.5   |                           | 0.5          | ns   |

### **OPERATING CHARACTERISTICS**


T<sub>A</sub> = 25°C

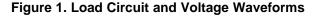
| PARAMETER                                     |                  | TEST CONDITIONS                              | V <sub>CC</sub> = 1.8 V<br>TYP | V <sub>CC</sub> = 2.5 V<br>TYP | V <sub>CC</sub> = 3.3 V<br>TYP | UNIT |
|-----------------------------------------------|------------------|----------------------------------------------|--------------------------------|--------------------------------|--------------------------------|------|
| C Bower dissipation expectioner               | Outputs enabled  | C <sub>1</sub> = 50 pF. f = 10 MHz           | 20                             | 22                             | 26                             | ٥F   |
| C <sub>pd</sub> Power dissipation capacitance | Outputs disabled | $C_{L} = 50 \text{ pF},  f = 10 \text{ MHz}$ | 6                              | 6.5                            | 8                              | рг   |




SCES583A-JULY 2004-REVISED OCTOBER 2004






| TEST                               | S1                |
|------------------------------------|-------------------|
| t <sub>pd</sub>                    | Open              |
| t <sub>PLZ</sub> /t <sub>PZL</sub> | V <sub>LOAD</sub> |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND               |

| V                 | IN              | PUT                            | V                  | v                 | <u>^</u> | Б            | v            |  |
|-------------------|-----------------|--------------------------------|--------------------|-------------------|----------|--------------|--------------|--|
| V <sub>CC</sub>   | VI              | t <sub>r</sub> /t <sub>f</sub> | V <sub>M</sub>     | V <sub>LOAD</sub> | CL       | RL           | $V_{\Delta}$ |  |
| 1.8 V             | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | $2 \times V_{CC}$ | 30 pF    | <b>1 k</b> Ω | 0.15 V       |  |
| 2.5 V $\pm$ 0.2 V | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | $2 \times V_{CC}$ | 30 pF    | <b>500</b> Ω | 0.15 V       |  |
| 2.7 V             | 2.7 V           | ≤2.5 ns                        | 1.5 V              | 6 V               | 50 pF    | <b>500</b> Ω | 0.3 V        |  |
| 3.3 V $\pm$ 0.3 V | 2.7 V           | ≤2.5 ns                        | 1.5 V              | 6 V               | 50 pF    | <b>500</b> Ω | 0.3 V        |  |



NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F. t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
- H. All parameters and waveforms are not applicable to all devices.





17-Mar-2017

### PACKAGING INFORMATION

| Orderable Device  | Status | Package Type               | Package | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking | Samples |
|-------------------|--------|----------------------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|----------------|---------|
|                   | (1)    |                            | Drawing |      | Qty     | (2)                        | (6)              | (3)                |              | (4/5)          |         |
| 74ALVCH162373DLG4 | ACTIVE | SSOP                       | DL      | 48   | 25      | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ALVCH162373    | Samples |
| 74ALVCH162373GRE4 | ACTIVE | TSSOP                      | DGG     | 48   | 2000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ALVCH162373    | Samples |
| 74ALVCH162373GRG4 | ACTIVE | TSSOP                      | DGG     | 48   | 2000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ALVCH162373    | Samples |
| 74ALVCH162373ZQLR | ACTIVE | BGA<br>MICROSTAR<br>JUNIOR | ZQL     | 56   | 1000    | Green (RoHS<br>& no Sb/Br) | SNAGCU           | Level-1-260C-UNLIM | -40 to 85    | VH2373         | Samples |
| SN74ALVCH162373DL | ACTIVE | SSOP                       | DL      | 48   | 25      | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ALVCH162373    | Samples |
| SN74ALVCH162373GR | ACTIVE | TSSOP                      | DGG     | 48   | 2000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ALVCH162373    | Samples |
| SN74ALVCH162373LR | ACTIVE | SSOP                       | DL      | 48   | 1000    | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ALVCH162373    | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.



www.ti.com

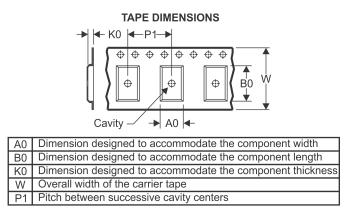
17-Mar-2017

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

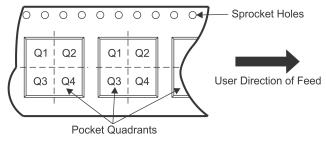
<sup>(6)</sup> Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


### PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

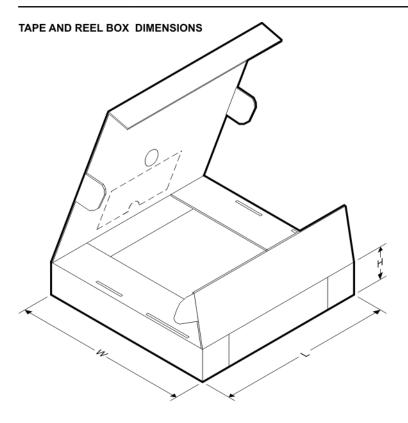
### TAPE AND REEL INFORMATION





### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| Device            | Package<br>Type                  | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------|----------------------------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| 74ALVCH162373ZQLR | BGA MI<br>CROSTA<br>R JUNI<br>OR | ZQL                | 56 | 1000 | 330.0                    | 16.4                     | 4.8        | 7.3        | 1.5        | 8.0        | 16.0      | Q1               |
| SN74ALVCH162373GR | TSSOP                            | DGG                | 48 | 2000 | 330.0                    | 24.4                     | 8.6        | 13.0       | 1.8        | 12.0       | 24.0      | Q1               |
| SN74ALVCH162373LR | SSOP                             | DL                 | 48 | 1000 | 330.0                    | 32.4                     | 11.35      | 16.2       | 3.1        | 16.0       | 32.0      | Q1               |

TEXAS INSTRUMENTS

www.ti.com

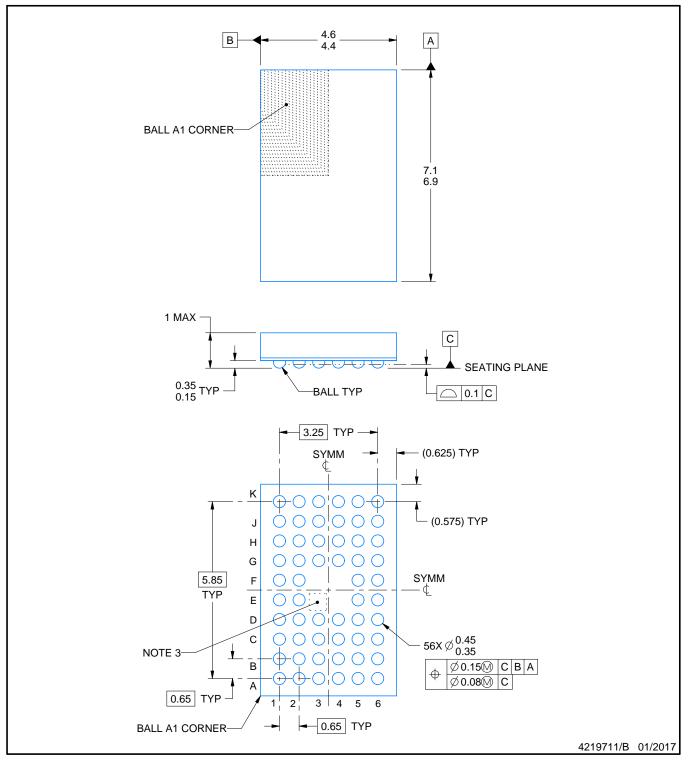
### PACKAGE MATERIALS INFORMATION

11-Mar-2017



\*All dimensions are nominal

| Device            | Package Type            | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|-------------------------|-----------------|------|------|-------------|------------|-------------|
| 74ALVCH162373ZQLR | BGA MICROSTAR<br>JUNIOR | ZQL             | 56   | 1000 | 336.6       | 336.6      | 28.6        |
| SN74ALVCH162373GR | TSSOP                   | DGG             | 48   | 2000 | 367.0       | 367.0      | 45.0        |
| SN74ALVCH162373LR | SSOP                    | DL              | 48   | 1000 | 367.0       | 367.0      | 55.0        |


### **ZQL0056A**



### **PACKAGE OUTLINE**

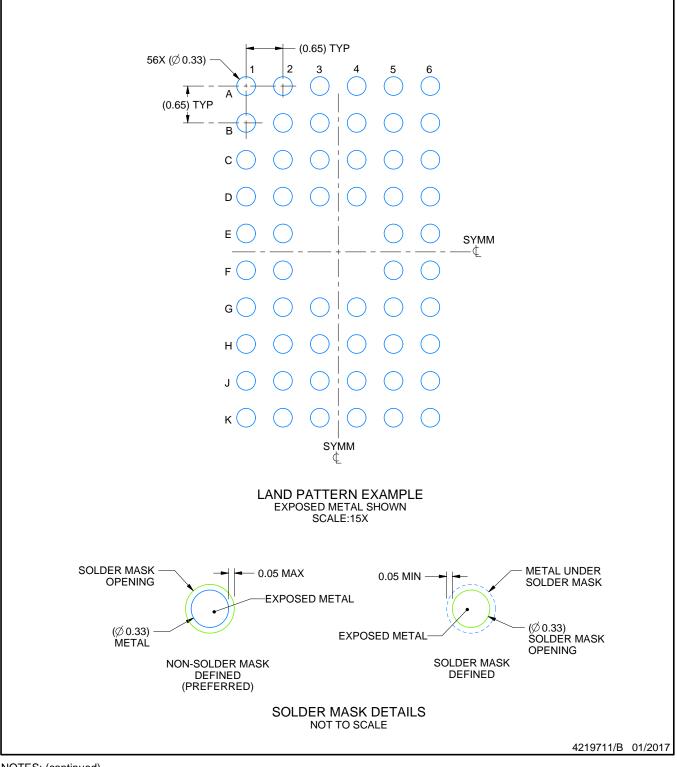
### JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. No metal in this area, indicates orientation.




### ZQL0056A

### **EXAMPLE BOARD LAYOUT**

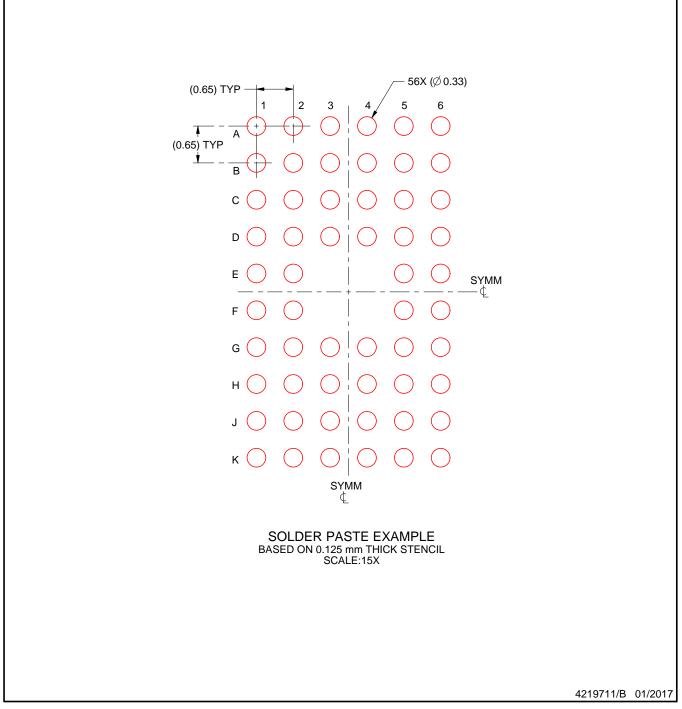
### JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).



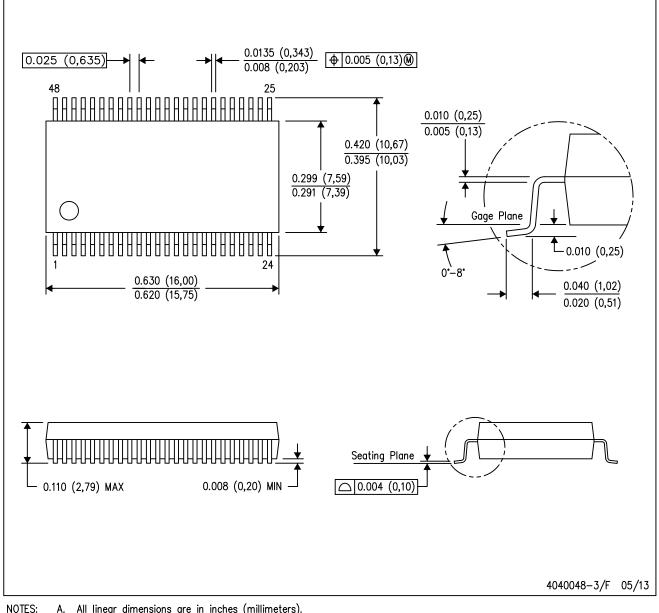

### ZQL0056A

### **EXAMPLE STENCIL DESIGN**

### JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY




NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



DL (R-PDSO-G48)

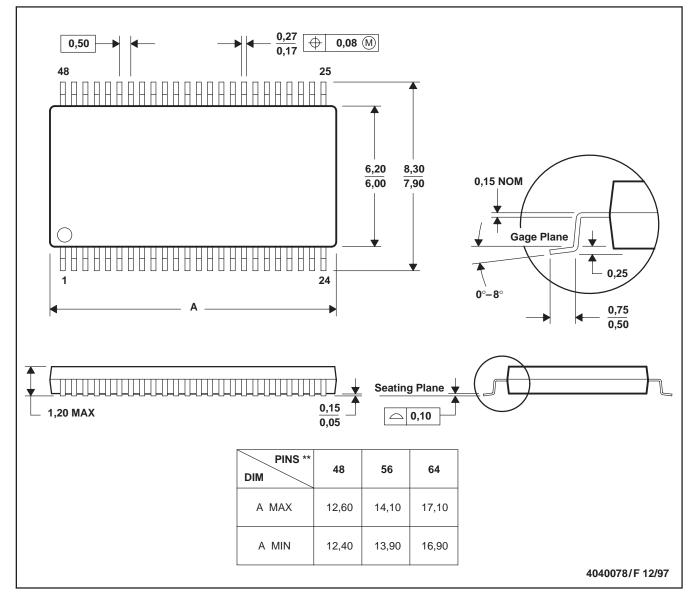
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.




### **MECHANICAL DATA**

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

#### DGG (R-PDSO-G\*\*)

#### PLASTIC SMALL-OUTLINE PACKAGE

**48 PINS SHOWN** 



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

