

DGG OR DL PACKAGE (TOP VIEW)

SCES024J-JULY 1995-REVISED OCTOBER 2004

FEAT	URES
------	------

•	Member of the Texas Instruments Widebus™
	Family

- UBT[™] Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Modes
- Operates From 1.65 V to 3.6 V
- Max t_{pd} of 3.9 ns at 3.3 V
- ±24-mA Output Drive at 3.3 V
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

DESCRIPTION/ORDERING INFORMATION

This 18-bit universal bus transceiver is designed for 1.65-V to 3.6-V $V_{\rm CC}$ operation.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

				,		
OEAB	\mathbf{h}	1	J	56	h	GND
LEAB		2			K	CLKAB
LEAD A1		3		55 54		
	_				г.	B1
GND					K	GND
A2		5		52	R	B2
A3		6				B3
V_{CC}	Ц	7		50	Ц	V _{CC}
A4					ĥ	B4
A5		9		48	Ц	B5
A6				47	-	-
GND						GND
A7						B7
A8	Ц	13		44		
A9	Π	14				B9
A10	Π	15		42	þ	B10
A11	Ц	16		41	þ	B11
A12	D	17		40	þ	B12
GND	٥	18		39	b	GND
A13	٥	19		38	b	B13
A14	٥	20		37	b	B14
A15	٥	21		36	6	B15
V _{CC}	٥	22		35	Б	V _{CC}
A16	_	23		34		B16
A17	Π	24		33		B17
GND	П	25		32		GND
A18		26		31		B18
OEBA		27		30		CLKBA
LEBA	Ы	28		29	Б	GND
	ч				۲	

Data flow for B to A is similar to that of A to B, but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high, and OEBA is active low).

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	SSOP - DL	Tube	SN74ALVCH16501DL	ALVCH16501	
	550F - DL	Tape and reel	SN74ALVCH16501DLR		
-40°C to 85°C	TSSOP - DGG	Tape and reel	SN74ALVCH16501DGGR	ALVCH16501	
	VFBGA - GQL	Tono and real	SN74ALVCH16501KR	1/1/504	
	VFBGA - ZQL (Pb-free)	Tape and reel	74ALVCH16501ZQLR	VH501	

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, UBT are trademarks of Texas Instruments.

SCES024J-JULY 1995-REVISED OCTOBER 2004

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

To ensure the high-impedance state during power up or power down, \overline{OEBA} should be tied to V_{CC} through a pullup resistor, and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

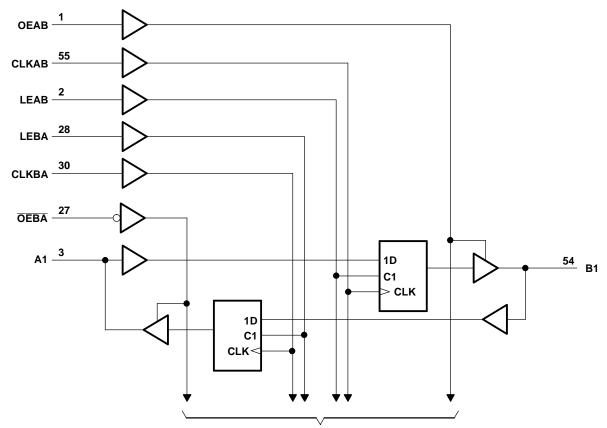
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

		GQL OR ZQL PACKAGE (TOP VIEW)							
		1	2	3	4	5	6		
A	$\left(\right)$	С	С	С	С	О	0		
в		С	\bigcirc	\bigcirc	С	С	С		
с		С	С	С	\bigcirc	С	С		
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С		
Е		\bigcirc	\bigcirc			\bigcirc	С		
F		\bigcirc	\bigcirc			\bigcirc	С		
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С		
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С		
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С		
κ		С	С	С	С	С	С		
	~								

TERMINAL ASSIGNMENTS

	1	2	3	4	5	6
Α	A1	LEAB	OEAB	GND	CLKAB	B1
В	A3	A2	GND	GND	B2	B3
С	A5	A4	V _{CC}	V _{CC}	B4	B5
D	A7	A6	GND	GND	B6	B7
Е	A9	A8			B8	B9
F	A10	A11			B11	B10
G	A12	A13	GND	GND	B13	B12
н	A14	A15	V _{CC}	V _{CC}	B15	B14
J	A16	A17	GND	GND	B17	B16
к	A18	OEBA	LEBA	GND	CLKBA	B18

SCES024J-JULY 1995-REVISED OCTOBER 2004


DUTPUT B Z
7
Z
L
Н
L
Н
B ₀ ⁽²⁾
B ₀ ⁽²⁾ B ₀ ⁽³⁾

FUNCTION TABLE⁽¹⁾

(1) A-to-B data flow is shown; B-to-A flow is similar, but uses OEBA, LEBA, and CLKBA.

(2) Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

(3) Output level before the indicated steady-state input conditions were established

LOGIC DIAGRAM (POSITIVE LOGIC)

To 17 Other Channels

Pin numbers shown are for the DGG and DL packages.

SCES024J-JULY 1995-REVISED OCTOBER 2004

Supply voltage range

 V_{CC}

Vı

Vo

 I_{IK}

lok

Ιo

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

Input voltage renge	Except I/O ports ⁽²⁾	
Input voltage range	I/O ports ⁽²⁾⁽³⁾	-0.5
Output voltage range ⁽²⁾⁽³⁾		-0.5
Input clamp current	V ₁ < 0	
Output clamp current	V _O < 0	
Continuous output current		
Continuous current through each V_{CC} or GND		
	DGG package	

Except I/O ports⁽²⁾

 θ_{JA} Package thermal impedance⁽⁴⁾ DL package 56 °C/W GQL/ZQL package 42 T_{stg} Storage temperature range -65 150 °C

IEXAS **TRUMENTS**

www.ti.com

UNIT

V

V

٧

mΑ

mΑ

mΑ

mΑ

MAX

4.6

4.6

-50

-50

±50

±100

64

 $V_{CC} + 0.5$

 $V_{CC} + 0.5$

MIN

-0.5

-0.5

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2)

The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 4.6 V maximum.

The package thermal impedance is calculated in accordance with JESD 51-7. (4)

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.65	3.6	V
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	$0.65 imes V_{CC}$		
V _{IH}	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35\times V_{CC}$	
VIL	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
VI	Input voltage		0	V _{CC}	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
	High-level output current	V _{CC} = 2.3 V		-12	
I _{OH}		$V_{CC} = 2.7 V$		-12	mA
		$V_{CC} = 3 V$		-24	
		V _{CC} = 1.65 V		4	
	Level and a devide some of	V _{CC} = 2.3 V		12	
I _{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA
		$V_{CC} = 3 V$		24	
$\Delta t/\Delta v$	Input transition rise or fall rate	· · · · · ·		10	ns/V
T _A	Operating free-air temperature		-40	85	°C

(1) All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES024J-JULY 1995-REVISED OCTOBER 2004

ELECTRICAL CHARACTERISTICS

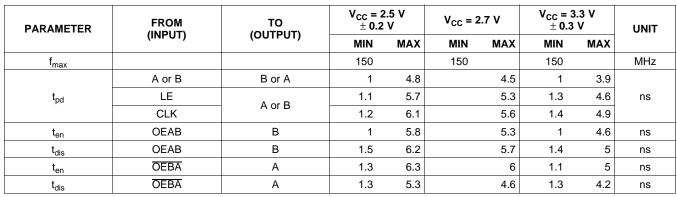
over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾ MAX	UNIT
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2		
	I _{OH} = -4 mA	1.65 V	1.2		
	I _{OH} = -6 mA	2.3 V	2		
V _{OH}		2.3 V	1.7		V
	I _{OH} = -12 mA	2.7 V	2.2		
		3 V	2.4		
	I _{OH} = -24 mA	3 V	2		
	I _{OL} = 100 μA	1.65 V to 3.6 V		0.2	
	I _{OL} = 4 mA	1.65 V		0.45	
	I _{OL} = 6 mA	2.3 V		0.4	
V _{OL}	40	2.3 V		0.7	V
	$I_{OL} = 12 \text{ mA}$	2.7 V		0.4	
	I _{OL} = 24 mA	3 V		0.55	
l _l	$V_{I} = V_{CC} \text{ or } GND$	3.6 V		±5	μΑ
	V _I = 0.58 V	1.65 V	25		
	V _I = 1.07 V	1.65 V	-25		
	V ₁ = 0.7 V	2.3 V	45		
I _{I(hold)}	V _I = 1.7 V	2.3 V	-45		μA
	V _I = 0.8 V	3 V	75		
	V ₁ = 2 V	3 V	-75		
	$V_{I} = 0 V \text{ to } 3.6 V^{(2)}$	3.6 V		±500	
I _{OZ} ⁽³⁾	$V_{O} = V_{CC} \text{ or } GND$	3.6 V		±10	μΑ
I _{CC}	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	3.6 V		40	μΑ
ΔI _{CC}	One input at V_{CC} - 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V		750	μΑ
Ci Control inpu	its $V_1 = V_{CC}$ or GND	3.3 V		4	pF
C _{io} A or B ports		3.3 V		8	pF

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

For I/O ports, the parameter I_{OZ} includes the input leakage current. (3)

TIMING REQUIREMENTS


over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

				V_{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT		
				MIN	MAX	MIN	MAX	MIN	MAX			
f _{clock}	Clock frequency				150		150		150	MHz		
	LE high		3.3		3.3		3.3		ns			
t _w	Pulse duration	CLK high or low		3.3		3.3		3.3				
		Data before CLK↑		2.2		2.1		1.7				
t _{su}	Setup time	Data before LE↓	CLK high	1.9		1.6		1.5		ns		
			CLK low	1.3		1.1		1				
	Hold time	Data after CLK1		0.6		0.6		0.7				
t _h		Hold time	Hold time Data after LE↓ 0	CLK high or low	1.4		1.7		1.4		ns	

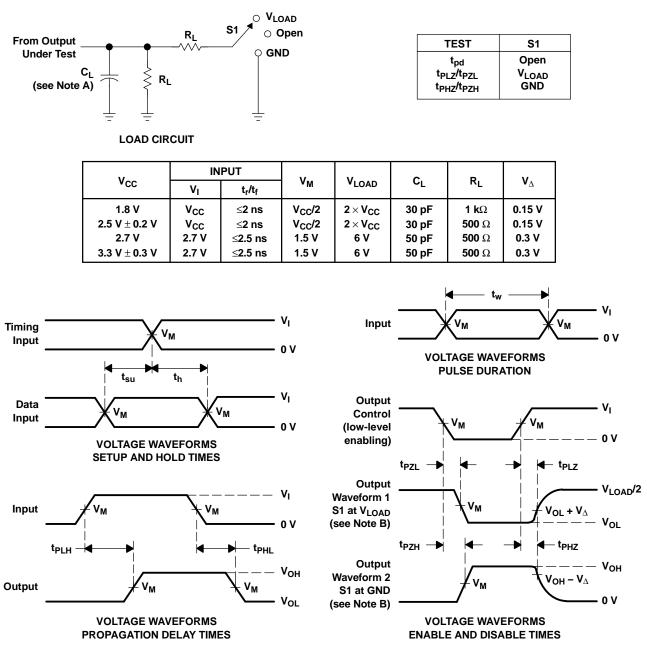
SCES024J-JULY 1995-REVISED OCTOBER 2004

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

Texas

STRUMENTS www.ti.com


OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
<u> </u>	C _{pd} Power dissipation capacitance	Outputs enabled		44	54		
		Outputs disabled	C _L = 50 pF, f = 10 MHz	6	6	pF	

SCES024J-JULY 1995-REVISED OCTOBER 2004

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Ω = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
74ALVCH16501DGGRG4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16501	Samples
74ALVCH16501DLRG4	ACTIVE	SSOP	DL	56		TBD	Call TI	Call TI	-40 to 85		Samples
74ALVCH16501ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	VH501	Samples
SN74ALVCH16501DGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16501	Samples
SN74ALVCH16501DL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16501	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

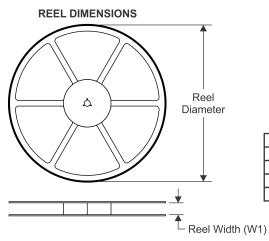
www.ti.com

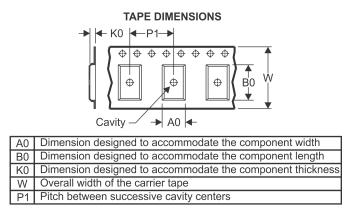
PACKAGE OPTION ADDENDUM

17-Mar-2017

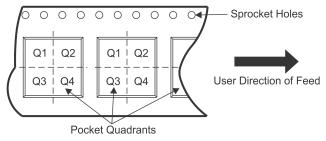
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

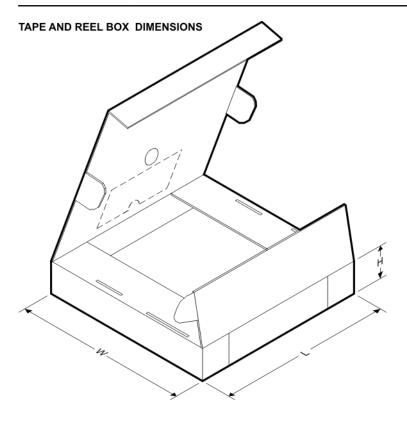

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

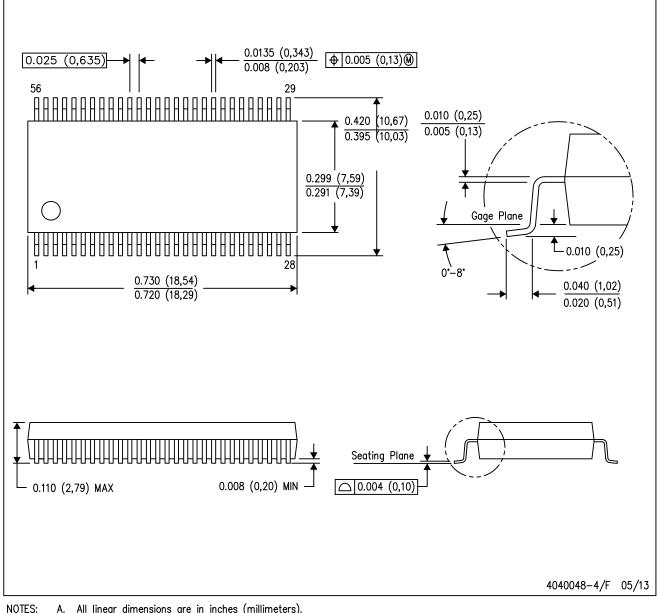

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74ALVCH16501ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
SN74ALVCH16501DGGF	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

10-Oct-2012



*All dimensions are nominal

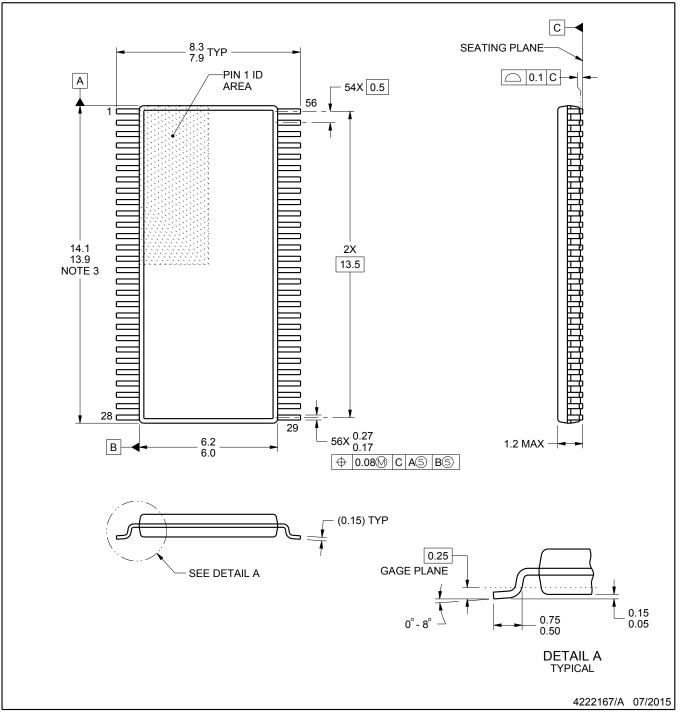
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74ALVCH16501ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	333.2	345.9	28.6
SN74ALVCH16501DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
 - This drawing is subject to change without notice. В.
 - Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). C.
 - D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.



PACKAGE OUTLINE

DGG0056A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.

DGG0056A

EXAMPLE BOARD LAYOUT

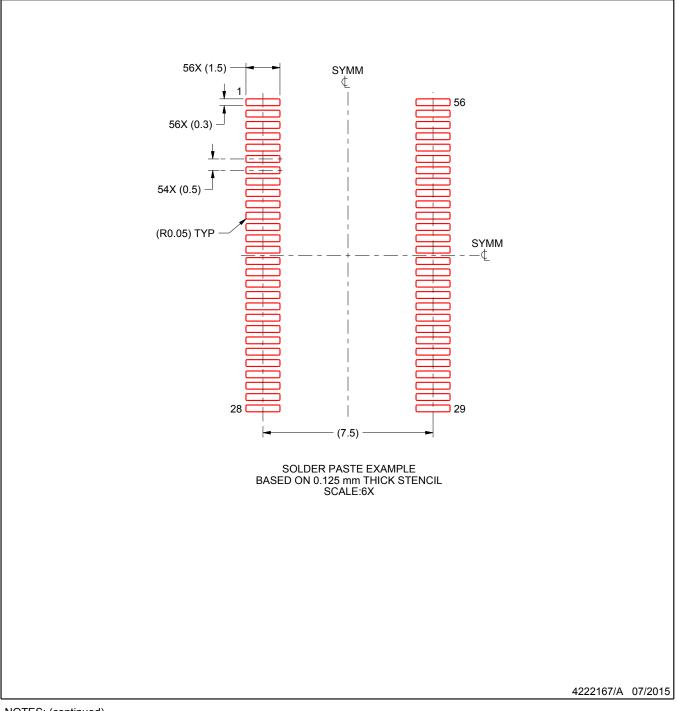
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0056A

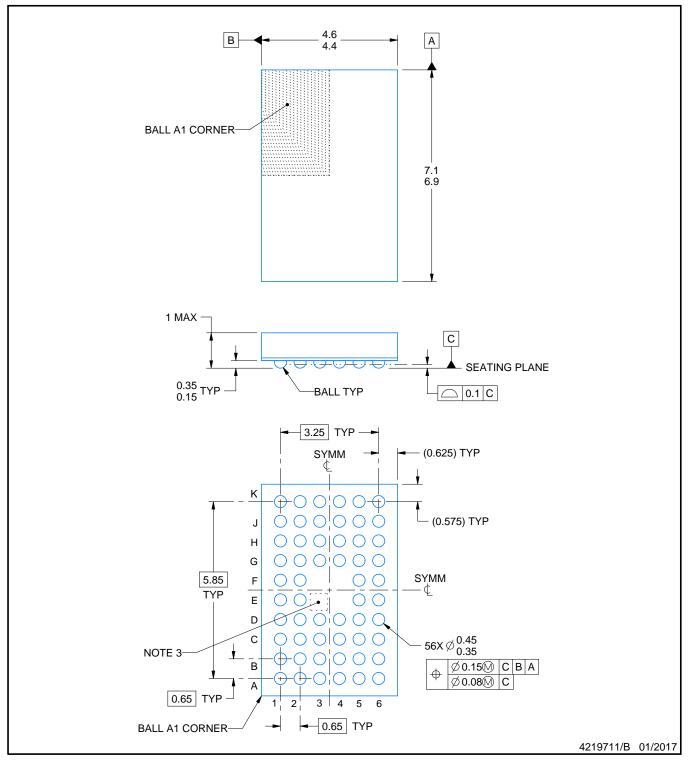
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.


ZQL0056A

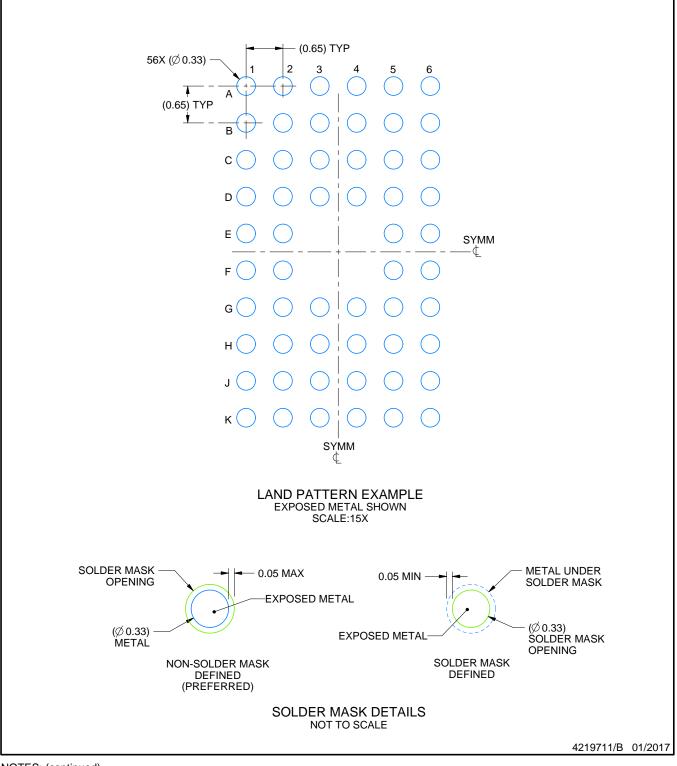
PACKAGE OUTLINE

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. No metal in this area, indicates orientation.



ZQL0056A

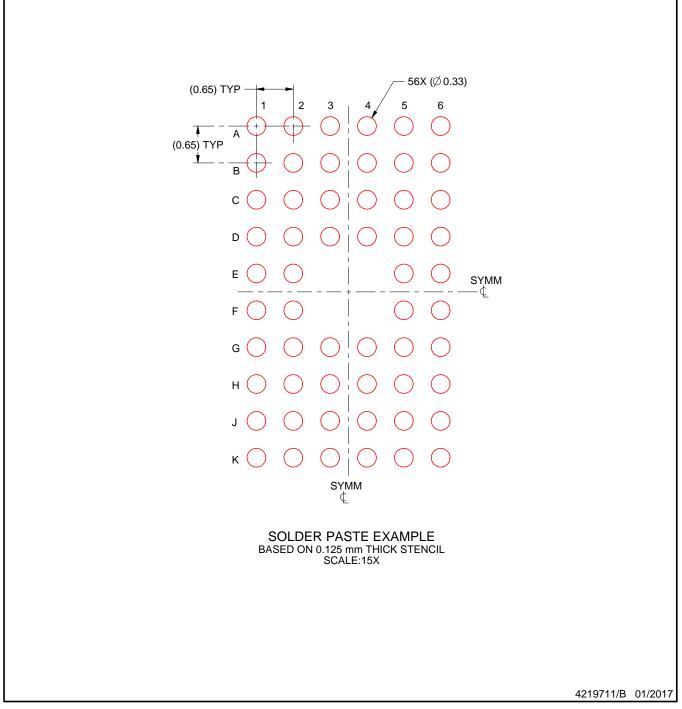
EXAMPLE BOARD LAYOUT

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).



ZQL0056A

EXAMPLE STENCIL DESIGN

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

