SCES283D-OCTOBER 1999-REVISED AUGUST 2004

FEATURES

- Member of the Texas Instruments Widebus+™
 Family
- Operates From 1.65 V to 3.6 V
- Max t_{pd} of 4.2 ns at 3.3 V
- ±24-mA Output Drive at 3.3 V
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

This 32-bit edge-triggered D-type flip-flop is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74ALVCH32374 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as four 8-bit flip-flops, two 16-bit flip-flops, or one 32-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels at the data (D) inputs. The output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

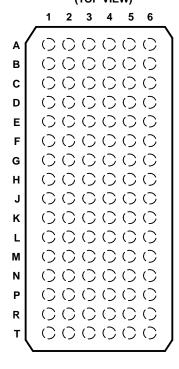
ORDERING INFORMATION

T _A	PACKAGE	(1)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	LFBGA - GKE	Tone and real	SN74ALVCH32374KR	ACU274
	LFBGA - ZKE (Pb-free)	Tape and reel	74ALVCH32374ZKER	ACH374

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

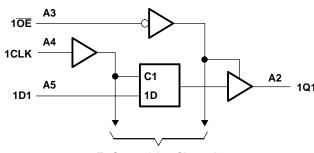
FUNCTION TABLE (each flip-flop)

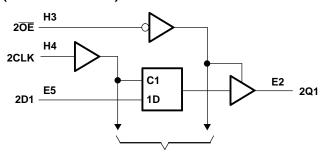
	INPUTS		OUTPUT
ŌĒ	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q_0
Н	X	Χ	z


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

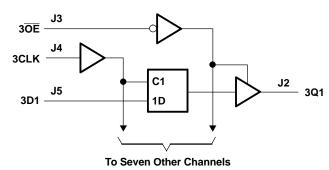
Widebus+ is a trademark of Texas Instruments.

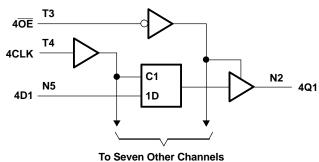
SCES283D-OCTOBER 1999-REVISED AUGUST 2004


GKE OR ZKE PACKAGE (TOP VIEW)


TERMINAL ASSIGNMENTS

	1	2	3	4	5	6
Α	1Q2	1Q1	1 OE	1CLK	1D1	1D2
В	1Q4	1Q3	GND	GND	1D3	1D4
С	1Q6	1Q5	V_{CC}	V_{CC}	1D5	1D6
D	1Q8	1Q7	GND	GND	1D7	1D8
Ε	2Q2	2Q1	GND	GND	2D1	2D2
F	2Q4	2Q3	V_{CC}	V_{CC}	2D3	2D4
G	2Q6	2Q5 GND GND		2D5	2D6	
Н	2Q7	2Q8	2OE	2CLK	2D8	2D7
J	3Q2	3Q1	3 OE	3CLK	3D1	3D2
K	3Q4	3Q3	GND	GND	3D3	3D4
L	3Q6	3Q5	V_{CC}	V_{CC}	3D5	3D6
М	3Q8	3Q7	GND	GND	3D7	3D8
N	4Q2	4Q1	GND	GND	4D1	4D2
Р	4Q4	4Q3	V_{CC}	V_{CC}	4D3	4D4
R	4Q6	4Q5	GND	GND	4D5	4D6
Т	4Q7	4Q8	4OE	4CLK	4D8	4D7


LOGIC DIAGRAM (POSITIVE LOGIC)



To Seven Other Channels

To Seven Other Channels

-

SCES283D-OCTOBER 1999-REVISED AUGUST 2004

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CC}	Supply voltage range			-0.5	4.6	V
VI	Input voltage range (2)			-0.5	4.6	V
Vo	Output voltage range (2)(3)			-0.5	V _{CC} + 0.5	٧
I _{IK}	Input clamp current			-50	mA	
I _{OK}	Output clamp current	Output clamp current V _O < 0				mA
Io	Continuous output current				±50	mA
	Continuous current through each V _{CC}	or GND			±100	mA
θ_{JA}	Package thermal impedance ⁽⁴⁾ GKE/ZKE package				40	°C/W
T _{stg}	Storage temperature range					

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 4.6 V maximum.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS(1)

			MIN	MAX	UNIT
V	Cupply voltage	Operating	1.65	3.6	V
V _{CC}	Supply voltage	Data retention only	1.5		V
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	$0.65 \times V_{CC}$		
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		V _{CC} = 2.7 V to 3.6 V	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V
		V _{CC} = 2.7 V to 3.6 V		0.8	
V _I	Input voltage		0	V _{CC}	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
	High level output ourrent	V _{CC} = 2.3 V		-8	mA
I _{OH}	nigri-level output current	V _{CC} = 2.7 V		-12	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
	Lavidaval autout avenue	V _{CC} = 2.3 V		8	^
I _{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate			10	ns/V
T _A	Operating free-air temperature		-40	85	°C

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES283D-OCTOBER 1999-REVISED AUGUST 2004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾ MAX	UNIT		
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2				
		I _{OH} = -4 mA	1.65 V	1.2				
,,		$I_{OH} = -8 \text{ mA}$	2.3 V	1.7		V		
V _{OH}		_ 12 mA	2.7 V	2.2		V		
		I _{OH} = -12 mA	3 V	2.4				
		I _{OH} = -24 mA	3 V	2.2				
		$I_{OL} = 100 \mu A$	1.65 V to 3.6 V		0.2			
		I _{OL} = 4 mA	1.65 V		0.45			
V _{OL}		I _{OL} = 8 mA	2.3 V		0.7	V		
		I _{OL} = 12 mA	2.7 V		0.4			
		I _{OL} = 24 mA	3 V		0.55			
I		$V_I = V_{CC}$ or GND	3.6 V		±5	μΑ		
		V _I = 0.58 V	1.65 V	25				
		V _I = 1.07 V	1.65 V	-25				
		V _I = 0.7 V	2.3 V	45				
I _{I(hold)}		V _I = 1.7 V	2.3 V	-45		μΑ		
		V _I = 0.8 V	3 V	75				
		V _I = 2 V	3 V	-75				
		V _I = 0 to 3.6 V ⁽²⁾	3.6 V		±500			
I _{OZ}		$V_O = V_{CC}$ or GND	3.6 V		±10	μА		
I _{CC}		$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V		80	μА		
ΔI_{CC}		One input at V_{CC} - 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V		750	μΑ		
	Control inputs	V V or CND	221/		3	~F		
C _i	Data inputs	$V_I = V_{CC}$ or GND	3.3 V		6	pF pF		
C _o	Outputs	$V_O = V_{CC}$ or GND	3.3 V		7	pF		

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 1.8 V ± 0.15 V		V_{CC} = 2.5 V \pm 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency		(1)		150		150		150	MHz
t _w	Pulse duration, CLK high or low	(1)		3.3		3.3		3.3		ns
t _{su}	Setup time, data before CLK↑	(1)		2.1		2.2		1.9		ns
t _h	Hold time, data after CLK↑	(1)		0.6		0.5		0.5		ns

⁽¹⁾ This information was not available at the time of publication.

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to

SCES283D-OCTOBER 1999-REVISED AUGUST 2004

SWITCHING CHARACTERISTICS

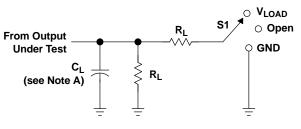
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V_{CC} = 2.5 V \pm 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INPOT)	(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			(1)		150		150		150		MHz
t _{pd}	CLK	Q	(1)	(1)	1	5.3		4.9	1	4.2	ns
t _{en}	ŌĒ	Q	(1)	(1)	1	6.2		5.9	1	4.8	ns
t _{dis}	ŌĒ	Q	(1)	(1)	1	5.3		4.7	1.2	4.3	ns

⁽¹⁾ This information was not available at the time of publication.

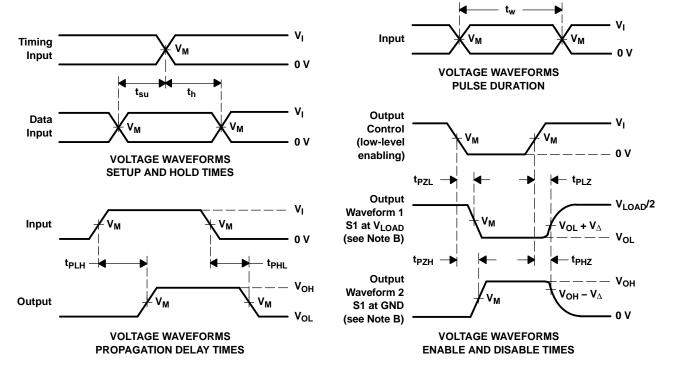
OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$


	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
	Power dissipation	Outputs enabled	C 50 pF f 40 MHz	(1)	31	30	~F	
C _{pd}	capacitance	Outputs disabled	$C_L = 50 \text{ pF}, f = 10 \text{ MHz}$	(1)	16	18	pF	

⁽¹⁾ This information was not available at the time of publication.

SCES283D-OCTOBER 1999-REVISED AUGUST 2004


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	V _{LOAD} GND

LOAD CIRCUIT

V	IN	PUT	V	V	•	В	V	
VCC	V _{CC} V _I		V _M	V _{LOAD}	CL	R _L	V_{Δ}	
1.8 V ± 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V	
2.5 V \pm 0.2 V	V _{CC}	≤ 2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V	
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V	
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V	

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Ω} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
74ALVCH32374ZKER	ACTIVE	LFBGA	ZKE	96	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	ACH374	Samples
SN74ALVCH32374KR	NRND	LFBGA	GKE	96	1000	TBD	SNPB	Level-2-235C-1 YEAR	-40 to 85	ACH374	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

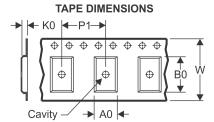
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

17-Mar-2017

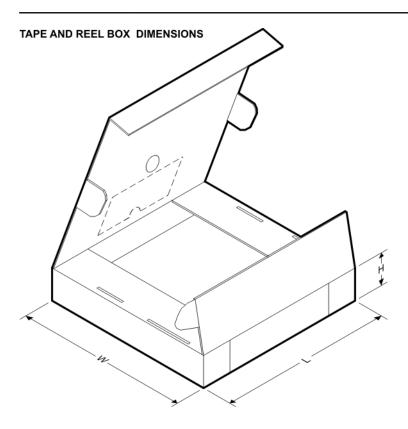

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 27-Jun-2013

TAPE AND REEL INFORMATION

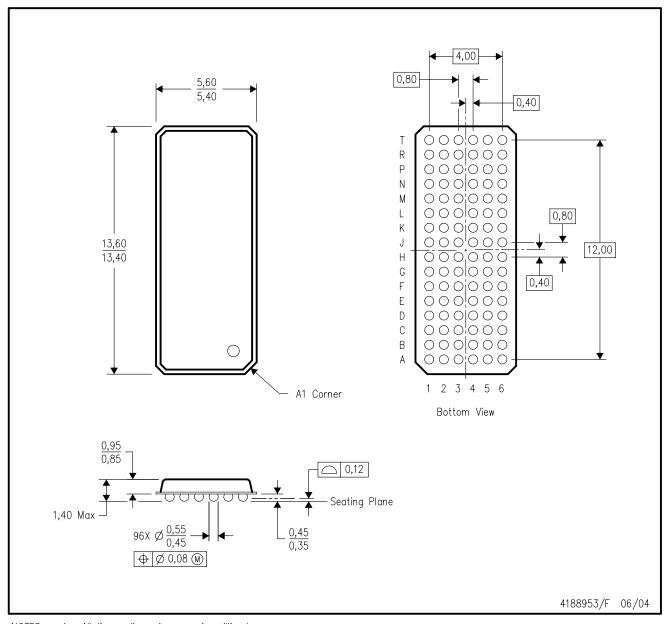
_		
		Dimension designed to accommodate the component width
	B0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ı	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74ALVCH32374ZKER	LFBGA	ZKE	96	1000	330.0	24.4	5.7	13.7	2.0	8.0	24.0	Q1
SN74ALVCH32374KR	LFBGA	GKE	96	1000	330.0	24.4	5.7	13.7	2.0	8.0	24.0	Q1

www.ti.com 27-Jun-2013

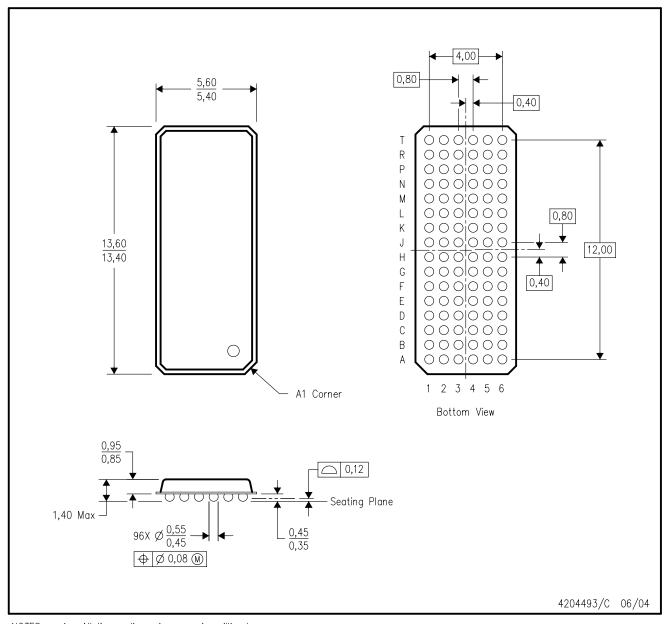


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74ALVCH32374ZKER	LFBGA	ZKE	96	1000	336.6	336.6	41.3
SN74ALVCH32374KR	LFBGA	GKE	96	1000	336.6	336.6	41.3

GKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-205 variation CC.
- D. This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-205 variation CC.
- D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

