SN54ALVTH16374, SN74ALVTH16374

www.ti.com

RUMENTS

2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SN54ALVTH16374...WD PACKAGE

SN74ALVTH16374...DGG, DGV, OR DL PACKAGE

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

FEATURES

- State-of-the-Art Advanced BiCMOS Technology (ABT) Widebus[™] Design for 2.5-V and 3.3-V Operation and Low Static Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{cc})
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- High Drive (-24/24 mA at 2.5-V V_{cc} and -32/64 mA at 3.3-V)
- Power Off Disables Outputs, Permitting Live Insertion
- High-Impedance State During Power Up and **Power Down Prevents Driver Conflict**
- Uses Bus Hold on Data Inputs in Place of **External Pullup/Pulldown Resistors to Prevent** the Bus From Floating
- Auto3-State Eliminates Bus Current Loading When Output Exceeds V_{CC} + 0.5 V
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- ESD Protection
 - Exceeds 2000 V Per MIL-STD-883, Method 3015
 - Exceeds 200 V Using Machine Model
 - Exceeds 1000 V Using Charged-Device Model, Robotic Method
- Flow-Through Architecture Facilitates Printed **Circuit Board Layout**
- Distributed V_{cc} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

DESCRIPTION/ORDERING INFORMATION

The 'ALVTH16374 devices are 16-bit edge-triggered D-type flip-flops with 3-state outputs designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK), the flip-flops store the logic levels set up at the data (D) inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

	(TOP VI	EW)	(TOP VIEW)										
1													
1 <u>0</u> E [1	48] 1CLK										
1Q1 [2	47] 1D1										
1Q2 [3	46] 1D2										
GND [4	45	GND										
1Q3 [5	44] 1D3										
1Q4 [6	43] 1D4										
V _{cc} [7	42] V _{cc}										
1Q5 [8	41] 1D5										
1Q6 [9	40] 1D6										
GND [10	39	GND										
1Q7 [11	38] 1D7										
1Q8 [12	37] 1D8										
2Q1 [13	36] 2D1										
2Q2 [14	35] 2D2										
GND [15	34	GND										
2Q3 [16	33] 2D3										
2Q4 [17	32] 2D4										
V _{cc} [18	31] V _{cc}										
2Q5 [19	30	2D5										
2Q6 [20	29] 2D6										
GND [21	28	GND										
2Q7 [22	27] 2D7										
2Q8 [23	26] 2D8										
20E	24	25	2CLK										

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ALVTH16374 is characterized for operation over the full military temperature range of -55°C to 125°C.

The SN74ALVTH16374 is characterized for operation from -40°C to 85°C.

T _A	PA	CKAGE	ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Real of 2000	74ALVTH16374GRE4	
	1330F - DGG	Reel 01 2000	SN74ALVTH16374GR	
		Deal of 2000	74ALVTH16374VRE4	
4000 to 0500	TVSOP - DGV	Reel of 2000	SN74ALVTH16374VR	
-40°C to 85°C		Tube of 05	74ALVTH16374DL	
		Tube of 25	SN74ALVTH16374DLG4	
	SSOP – DL	Deal of 1000	SN74ALVTH16374DLR	
		Reel of 1000	SN74ALVTH16374DLRG4	

ORDERING INFORMATION

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ZQL PACKAGE (TOP VIEW)								
$\begin{array}{c c} A & O & O & O & O & O & O \\ B & O & O & O & O & O & O \\ C & O & O & O & O & O & O \\ \hline C & O & O & O & O & O & O \\ F & O & O & O & O & O & O \\ F & O & O & O & O & O & O \\ F & O & O & O & O & O & O \\ H & O & O & O & O & O & O \\ F & O & O & O & O &$		_	1	2	3	4	5	6			
B 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 p 0 0 0 0 0 0 F 0 0 0 0 0 0 G 0 0 0 0 0 0 H 0 0 0 0 0 J 0 0 0 0 K 0 0 0	A	$\left(\right)$	С	\bigcirc	С	\bigcirc	\bigcirc	\circ			
c 0	в		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
□ ((((((((((((((((((((((((((((((((((((С		С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
E 00 00 F 00 00 G 000000 H 000000 J 000000 K 000000	D		С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
F 00 00 G 000000 H 000000 J 000000 K 000000	Е		С	\bigcirc			\bigcirc	С			
G 000000 H 000000 J 000000	F		С	\bigcirc			\bigcirc	\bigcirc			
K 000000 J 0000000	G		С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
J 000000	н		С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
K COCOCO	J		С	\bigcirc	\bigcirc	\bigcirc	С	\bigcirc			
	κ	l	С	С	С	С	С	\bigcirc			

TERMINAL ASSIGNMENTS⁽¹⁾

	1	2	3	4	5	6
Α	1 0E	NC	NC	NC	NC	1CLK
В	1Q2	1Q1	GND	GND	1D1	1D2
С	1Q4	1Q3	V _{CC}	V _{CC}	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
E	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
н	2Q5	2Q6	V _{CC}	V _{CC}	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
к	2 0E	NC	NC	NC	NC	2CLK

(1) NC – No internal connection

FUNCTION TABLE (each 8-bit section)

	INPUTS		OUTPUT
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	H or L	Х	Q ₀
н	Х	Х	Z

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

To Seven Other Channels

Pin numbers shown are for the DGG, DL, and WD packages.

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
V_{I}	Input voltage range ⁽²⁾		-0.5	7	V
V_{O}	Voltage range applied to any output in the high-impedance or p	ower-off state ⁽²⁾	-0.5	7	V
Vo	Voltage range applied to any output in the high state ⁽²⁾		-0.5	7	V
		SN54ALVTH16374 ⁽³⁾		96	4
1 ₀	Output current in the low state		128	mA	
	Outrast compared in the birth state	SN54ALVTH16374 ⁽³⁾		-48	0
ю	Output current in the high state	SN74ALVTH16374		-64	mA
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
		DGG package		89	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DGV package		93	°C/W
		DL package		94	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

Product preview (3)

The package thermal impedance is calculated in accordance with JESD 51. (4)

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

Recommended Operating Conditions⁽¹⁾

 $V_{\rm CC}$ = 2.5 V ± 0.2 V

			SN54A	LVTH16	6374 ⁽²⁾	SN74AL	VTH16	374	
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage		2.3		2.7	2.3		2.7	V
V _{IH}	High-level input voltage		1.7			1.7			V
VIL	Low-level input voltage				0.7			0.7	V
VI	Input voltage		0	V_{CC}	5.5	0	V_{CC}	5.5	V
I _{OH}	High-level output current				-6			-8	mA
,	Low-level output current				6			8	~ ^
OL	Low-level output current; current duty cycle	≤ 50%; f ≥ 1 kHz			18			24	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate	•	200			200			μs/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

(1) All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

(2) Product preview

Recommended Operating Conditions⁽¹⁾

 $V_{\rm CC}$ = 3.3 V ± 0.3 V

			SN54AI	_VTH163	374 ⁽²⁾	SN74A	LVTH16	374	
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage		2			2			V
V _{IL}	Low-level input voltage				0.8			0.8	V
VI	Input voltage		0	V_{CC}	5.5	0	V_{CC}	5.5	V
I _{OH}	High-level output current				-24			-32	mA
	Low-level output current				24			32	٣Å
OL	Low-level output current; current duty cy	cle ≤ 50%; f ≥ 1 kHz			48			64	ША
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200			200			μs/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

 All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

(2) Product preview

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

Electrical Characteristics

over operating free-air temperature range V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

DADAMETED				SN54AL	VTH1637	4 ⁽¹⁾	SN74ALV	/TH16374	ļ.	
	PARAMETER	TEST CO	ONDITIONS	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNIT
V _{IK}		V _{CC} = 2.3 V,	I _I = -18 mA			-1.2			-1.2	V
		V _{CC} = 2.3 V to 2.7	V, I _{OH} = −100 μA	V _{CC} - 0.2			V _{CC} – 0.2			
V _{OH}			I _{OH} = –6 mA	1.8						V
		$V_{CC} = 2.3 V$	I _{OH} = -8 mA				1.8			
		V _{CC} = 2.3 V to 2.7	V, I _{OL} = 100 μA			0.2			0.2	
			$I_{OL} = 6 \text{ mA}$			0.4				
V _{OL}			$I_{OL} = 8 \text{ mA}$						0.4	V
		$V_{CC} = 2.3 V$	I _{OL} = 18 mA			0.5				
			I _{OL} = 24 mA						0.5	
		V _{CC} = 2.7 V,	$V_{I} = V_{CC}$ or GND			±1			±1	
	Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V			10			10	
կ			V _I = 5.5 V			10			10	μA
ч	Data inputs	$V_{CC} = 2.7 V$	$V_I = V_{CC}$			1			1	
			$V_{I} = 0$			-5			-5	
I _{off}		$V_{CC} = 0,$ V ₁ or V ₀ = 0 to 4.5	V						±100	μΑ
I _{BHL} (3)	V _{CC} = 2.3 V,	V ₁ = 0.7 V		115			115		μA
I _{BHH} ⁽⁴	•)	V _{CC} = 2.3 V,	V _I = 1.7 V		-10			-10		μA
I _{BHLO}	(5)	V _{CC} = 2.7 V,	$V_{I} = 0$ to V_{CC}	300			300			μA
I _{BHHO}	(6)	$V_{CC} = 2.7 V,$	$V_1 = 0$ to V_{CC}	-300			-300			μA
I _{EX} ⁽⁷⁾		V _{CC} = 2.3 V,	V _O = 5.5 V			125			125	μA
I _{OZ(PU}	//PD) ⁽⁸⁾	$V_{CC} \le 1.2 \text{ V}, \text{ V}_{O} =$ V _I = GND or V _{CC} ,	$0.5 \text{ V to V}_{CC},$ $\overline{OE} = \text{don't care}$			±100			±100	μΑ
I _{OZH}		$V_{CC} = 2.7 \text{ V}, V_{O} = V_{I} = 0.7 \text{ V} \text{ or } 1.7 \text{ V}$	2.3 V,			5			5	μΑ
I _{OZL}		$V_{CC} = 2.7 V, V_{O} = V_{I} = 0.7 V \text{ or } 1.7 V$	0.5 V,			-5			-5	μΑ
		$V_{aa} = 2.7 V$	Outputs high		0.04	0.1			0.1	
I _{CC}		$I_0 = 0,$	Outputs low		2.3	4.5			4.5	mA
		$V_{I} = V_{CC}$ or GND	Outputs disabled		0.04	0.1			0.1	
Ci		V _{CC} = 2.5 V,	$V_{I} = 2.5 V \text{ or } 0$		3.5					pF
Co		V _{CC} = 2.5 V,	$V_0 = 2.5 \text{ V or } 0$		6					pF

(1) Product preview

(2) All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (3) The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to (4) V_{CC} and then lowering it to V_{IH} min.

(5) An external driver must source at least I_{BHLO} to switch this node from low to high. (6) An external driver must sink at least I_{BHHO} to switch this node from high to low. (7) Current into an output in the high state when $V_O > V_{CC}$

(8) High-impedance state during power up or power down

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

Electrical Characteristics

over recommended operating free-air temperature range V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

		7507.001		SN54AL	VTH1637	' 4 (1)	SN74	ALVTH163	374	LINUT
	PARAMETER	TEST CON	IDITIONS	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNIT
V _{IK}		V _{CC} = 3 V,	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 3 V \text{ to } 3.6 V,$	I _{OH} = −100 μA	V _{CC} - 0.2			$V_{CC} - 0.2$			
V _{OH}			I _{OH} = -24 mA	2						V
		$V_{CC} = 3 V$	I _{OH} = -32 mA				2			
		$V_{CC} = 3 V \text{ to } 3.6 V,$	I _{OL} = 100 μA			0.2			0.2	
			I _{OL} = 16 mA						0.4	
V			I _{OL} = 24 mA			0.5				N/
VOL		$V_{CC} = 3 V$	I _{OL} = 32 mA						0.5	v
			I _{OL} = 48 mA			0.55				
			I _{OL} = 64 mA						0.55	
	Control inputs	$V_{CC} = 3.6 \text{ V}, \text{ V}_{I} = V_{CC}$; or GND			±1			±1	
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V}, \text{ V}_{I} =$	= 5.5 V			10			10	
h.			V _I = 5.5 V			10			10	μΑ
	Data inputs	$V_{CC} = 3.6 V$	$V_I = V_{CC}$			1			1	
			$V_I = 0$			-5			-5	
I_{off}		$V_{CC} = 0$, V_{I} or $V_{O} = 0$	to 4.5 V						±100	μΑ
I _{BHL} (3)	$V_{CC} = 3 V,$	V _I = 0.8 V	75			75			μΑ
I _{BHH} ((4)	$V_{CC} = 3 V,$	V _I = 2 V	-75			-75			μΑ
I _{BHLC}) ⁽⁵⁾	$V_{CC} = 3.6 V,$	$V_I = 0$ to V_{CC}	500			500			μΑ
I _{BHHC}	D ⁽⁶⁾	$V_{CC} = 3.6 V,$	$V_I = 0$ to V_{CC}	-500			-500			μΑ
$I_{EX}^{(7)}$		$V_{CC} = 3 V,$	$V_0 = 5.5 V$			125			125	μΑ
I _{OZ(P}	U/PD) ⁽⁸⁾	$V_{CC} \le 1.2 \text{ V}, \text{ V}_{O} = 0.5 \text{ V}_{I} = \text{GND or V}_{CC}, \overline{\text{OE}}$	V to V _{CC} , = don't care			±100			±100	μΑ
I _{OZH}		$V_{CC} = 3.6 \text{ V}, V_{O} = 3 \text{ V}$ V _I = 0.8 V or 27 V	Λ,			5			5	μA
I _{OZL}		$V_{CC} = 3.6 \text{ V}, V_{O} = 0.5 \text{ V}$ V _I = 0.8 V or 2 V	5 V,			-5			-5	μΑ
		$V_{22} = 3.6 V$	Outputs high		0.07	0.1		0.07	0.1	
I _{CC}		$I_{\rm O} = 0,$	Outputs low		3.2	5		3.2	5	mA
		$V_I = V_{CC}$ or GND	Outputs disabled		0.07	0.1			0.1	
ΔI _{CC}	(9)	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 3 \ V \ \text{to} \ 3.6 \ V, \\ \text{One input at } V_{CC} - 0.0 \\ \text{Other inputs at } V_{CC} \ \text{c} \end{array}$	6 V, or GND			0.4			0.4	mA
Ci		$V_{CC} = 3.3 V,$	$V_1 = 3.3 \text{ V or } 0$		3.5			3.5		pF
Co		V _{CC} = 3.3 V,	$V_0 = 3.3 \text{ V or } 0$		6			6		pF

(1) Product preview

All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2)

(3) The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to $V_{\text{IL}}\xspace$ max.

The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to (4) V_{CC} and then lowering it to V_{IH} min. An external driver must source at least I_{BHLO} to switch this node from low to high.

(5)

An external driver must sink at least I_{BHHO} to switch this node from high to low. Current into an output in the high state when $V_O > V_{CC}$ (6)

(7)

(8) High-impedance state during power up or power down
(9) This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

Timing Requirements

over recommended operating free-air temperature range V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			SN54ALVTH16374 ⁽¹⁾		SN74ALVTH16374		
			MIN	MAX	MIN	MAX	UNIT
f_{clock}	Clock frequency			150		150	MHz
t _w	Pulse duration, CLK high or low		1.5		1.5		ns
+	Satur time, data bafara CLK [↑]	Data high	1.1		1		20
i _{su} Setup time	Setup time, data before CLK	Data low	1.4		1.3		115
	t Hold time, data after CLK [↑]	Data high	0.6		0.5		20
t _h	Hold lime, data alter CLK	Data low	0.9		0.8		ns

(1) Product preview

Timing Requirements

over recommended operating free-air temperature range V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

			SNS	SN54ALVTH16374 ⁽¹⁾		SN74ALVTH16374		
				MIN	MAX	MIN	MAX	UNIT
f_{clock}	Clock frequency				25		250	MHz
t _w	Pulse duration, CLK high or low			1.5		1.5		ns
÷	t _{su} Setup time, data before CLK [↑]	Data high		1.1		1		20
ι _{su}		Data low		1.6		1.5		ns
÷		Data high		0.6		0.5		20
чh		Data low		1.1		1		115

(1) Product preview

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

Switching Characteristics

over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	SN54ALVTH1	6374 ⁽¹⁾	SN74ALVTH				
	(INPUT)		MIN	MAX	MIN	MAX			
f _{max}			150		150		MHz		
t _{PLH}	CLK	0	1.4	3.9	1.5	3.8	20		
t _{PHL}		Q	1.4	3.9	1.5	3.8	115		
t _{PZH}		0	1	4.2	1	4.1	20		
t _{PZL}	UE	Q	1	3.8	1	3.7	ns		
t _{PHZ}			1.7	4.3	1.8	4.2			
t _{PLZ}	UE	UE	UE	Q	1	3.5	1	3.4	ns

(1) Product preview

Switching Characteristics

over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVTH1	6374 ⁽¹⁾	SN74ALVTH	16374		
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT	
f _{max}			250		250		MHz	
t _{PLH}		Q	1	3.4	1	3.2	20	
t _{PHL}	CLK		1	3.3	1	3.2	115	
t _{PZH}		0	1	3.9	1	3.8	20	
t _{PZL}	ÛE	ÛE	Q	1	3.4	1	3.3	115
t _{PHZ}	ŌĒ	0	1	4.7	1	4.6	20	
t _{PLZ}		UE	UE	Q	1	4.4	1	4.2

(1) Product preview

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

Texas

INSTRUMENTS www.ti.com

- NOTES: A. C_{L} includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_o = 50 Ω, t, ≤ 2 ns,
 - t ≤ 2 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

TEXAS INSTRUMENTS www.ti.com

SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

PARAMETER MEASUREMENT INFORMATION $V_{cc} = 3.3 V \pm 0.3 V$ 0 6 V TEST **S**1 S1 🛪 O Open **500** Ω From Output Open t_{PLH}/t_{PHL} **Under Test** O GND 6 V t_{PLZ}/t_{PZL} t_{PHZ}/t_{PZH} GND $C_{1} = 50 \text{ pF}$ ≳ **500** Ω (see Note A) LOAD CIRCUIT 3 V 3 V Timing 1.5 V Input 1.5 V 1.5 V Input 0 V 0 V **VOLTAGE WAVEFORMS** t_{su} t_h PULSE DURATION 3 V Data 1.5 V 1.5 V Input Output 3 V 0 V Control 1.5 V 1.5 V **VOLTAGE WAVEFORMS** 0 V SETUP AND HOLD TIMES - t_{PLZ} t_{PZL} Input Output 3 V 3 V Waveform 1 1.5 V 1.5 V 1.5 V S1 at 6 V + 0.3 V 0 V V_{ol} (see Note B) t_{phl} t_{PH7} Vor Output V_{OH} $\overline{V}_{OH}^{-} - \overline{0.3} \overline{V}$. 1.5 V 1.5 V Output Waveform 2 1.5 V Vol S1 at GND ≈0 V (see Note B) VOLTAGE WAVEFORMS **VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES ENABLE AND DISABLE TIMES**

- NOTES: A. C_{L} includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_o = 50 Ω, t_r ≤ 2.5 ns, t_r ≤ 2.5 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74ALVTH16374ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	VT374	Samples
SN74ALVTH16374DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVTH16374	Samples
SN74ALVTH16374DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVTH16374	Samples
SN74ALVTH16374GR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVTH16374	Samples
SN74ALVTH16374VR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	VT374	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

www.ti.com

PACKAGE OPTION ADDENDUM

17-Mar-2017

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74ALVTH16374ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
SN74ALVTH16374DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
SN74ALVTH16374GR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74ALVTH16374VR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Mar-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74ALVTH16374ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	336.6	336.6	28.6
SN74ALVTH16374DLR	SSOP	DL	48	1000	367.0	367.0	55.0
SN74ALVTH16374GR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74ALVTH16374VR	TVSOP	DGV	48	2000	367.0	367.0	38.0

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

ZQL0056A

PACKAGE OUTLINE

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. No metal in this area, indicates orientation.

ZQL0056A

EXAMPLE BOARD LAYOUT

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

ZQL0056A

EXAMPLE STENCIL DESIGN

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

