

SN74AVC16T245-Q1

SCES778A - SEPTEMBER 2008-REVISED JUNE 2016

SN74AVC16T245-Q1 16-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and 3-State Outputs

Features

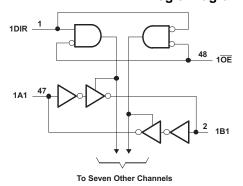
- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: –40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H3B (JESD 22 A114-A)
 - Device CDM ESD Classification Level C5 (JESD 22 C101)
- Control Inputs V_{IH}/V_{IL} Levels Are Referenced to V_{CCA} Voltage
- V_{CC} Isolation Feature If Either V_{CC} Input is at GND, Both Ports Are in the High-Impedance State
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range
- I_{off} Supports Partial-Power-Down Mode Operation
- I/Os Are 4.6-V Tolerant
- Maximum Data Rates
 - 380 Mbps (1.8-V to 3.3-V Translation)
 - 200 Mbps (<1.8-V to 3.3-V Translation)
 - 200 Mbps (Translate to 2.5 V or 1.8 V)
 - 150 Mbps (Translate to 1.5 V)
 - 100 Mbps (Translate to 1.2 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

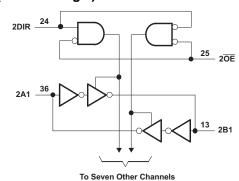
2 Applications

- **Telematics**
- Clusters
- **Head Units**
- **Navigation Systems**

3 Description

The SN74AVC16T245-Q1 is a 16-bit noninverting bus transceiver that uses two separate configurable power-supply rails. The SN74AVC16T245-Q1 is optimized to operate with V_{CCA} or V_{CCB} set at 1.4 V to 3.6 V. It is operational with V_{CCA} or V_{CCB} as low as 1.2 V. The \dot{A} port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.


SN74AVC16T245-Q1 The designed asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses effectively are isolated.


Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)				
SN74AVC16T245-Q1	TVSOP (48)	9.70 mm × 4.40 mm				

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1	9	Detailed Description	. 1
2	Applications 1		9.1 Overview	1
3	Description 1		9.2 Functional Block Diagram	1
4	Revision History2		9.3 Feature Description	1
5	Description (continued)3		9.4 Device Functional Modes	1
6	Pin Configuration and Functions 4	10	Application and Implementation	. 16
7	Specifications6		10.1 Application Information	16
'	-		10.2 Typical Application	17
		11	Power Supply Recommendations	. 18
	· · · · · · · · · · · · · · · ·	12		
	7.3 Recommended Operating Conditions		12.1 Layout Guidelines	
			12.2 Layout Example	
	7.5 Electrical Characteristics	13	•	
	7.7 Switching Characteristics: V _{CCA} = 1.5 V ± 0.1 V 9		13.1 Documentation Support	
	7.8 Switching Characteristics: V _{CCA} = 1.8 V ± 0.15 V 10		13.2 Receiving Notification of Documentation Updates	
	7.9 Switching Characteristics: V _{CCA} = 2.5 V ± 0.2 V 10		13.3 Community Resource	20
	7.10 Switching Characteristics: V_{CCA} = 2.3 V ± 0.3 V 11		13.4 Trademarks	
	7.11 Operating Characteristics		13.5 Electrostatic Discharge Caution	
	7.12 Typical Characteristics		13.6 Glossary	
0	**	14		
8	Parameter Measurement Information 14	14	Information	. 20

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (September 2008) to Revision A

Page

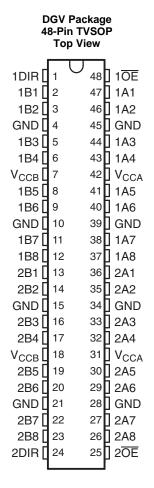
•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendationssection, Layout section, Device and Documentation Supportsection, and Mechanical, Packaging, and Orderable Information section
•	Deleted Ordering Information table; see the POA at the end of the data sheet
•	Deleted Overvoltage-Tolerant Inputs/Outputs Allow Mixed- Voltage-Mode Data Communications bullet from Features
•	Deleted ESD Protection Exceeds JESD 22 from Features
•	Changed the <i>Thermal Information</i> table

Product Folder Links: SN74AVC16T245-Q1

ubinit Documentation Feedback

5 Description (continued)

The SN74AVC16T245-Q1 is designed so that the control pins (1DIR, 2DIR, $1\overline{OE}$, and $2\overline{OE}$) are supplied by V_{CCA} .


This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ must be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION						
NAME	NO.	I/O	DESCRIPTION						
1A1	47								
1A2	46								
1A3	44								
1A4	43	I/O	Input and output. Referenced to V _{CCA}						
1A5	41	1/0	Imput and output. Referenced to V _{CCA}						
1A6	40								
1A7	38								
1A8	37								
1B1	2								
1B2	3								
1B3	5								
1B4	6	I/O	Input and output Deferenced to V						
1B5	8] 1/0	Input and output. Referenced to V _{CCB}						
1B6	9								
1B7	11								
1B8	12								

Submit Documentation Feedback

Copyright © 2008–2016, Texas Instruments Incorporated

Pin Functions (continued)

PIN			DECODINE						
NAME	NO.	I/O	DESCRIPTION						
2A1	36								
2A2	35								
2A3	33								
2A4	32		hand and artest Defense and to M						
2A5	30	I/O	Input and output. Referenced to V _{CCA}						
2A6	29								
2A7	27								
2A8	26								
2B1	13								
2B2	14								
2B3	16		Input and output Deformed to V						
2B4	17								
2B5	19	I/O	Input and output. Referenced to V _{CCB}						
2B6	20								
2B7	22								
2B8	23								
1DIR	1		Disasting control signal						
2DIR	24	I	Direction-control signal						
1 OE	48		Tri-State output-mode enables. Pull $\overline{\text{OE}}$ high to place all outputs in Tri-State mode.						
2 OE	25	_	Referenced to V _{CCA}						
GND	4, 10, 15, 21, 45, 39, 34, 28	_	Ground						
V_{CCA}	42, 31	_	A-port supply voltage. 1.2 V ≤ V _{CCB} ≤ 3.6 V						
V _{CCB}	7, 18	_	B-port supply voltage. 1.2 V ≤ V _{CCB} ≤ 3.6 V						

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT	
V_{CCA}	Supply voltage		-0.5	4.6	V	
		I/O ports (A port)	-0.5	4.6		
V_{I}	Input voltage (2)	I/O ports (B port)	-0.5	4.6	V	
		Control inputs	-0.5	4.6		
.,	Voltage applied to any output	A port	-0.5	4.6	V	
Vo	in the high-impedance or power-off state (2)	B port	-0.5	4.6	V	
	Valtana and india and activities that high an law state (2)(3)	A port	-0.5	V _{CCA} + 0.5		
Vo	Voltage applied to any output in the high or low state (2)(3)	B port	-0.5	V _{CCB} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
Io	Continuous output current	<u>.</u>		±50	mA	
	Continuous current through each V _{CCA} , V _{CCB} , and GND		±100	mA		
T _{stg}	Storage temperature		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±8000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101	±1000	V
		Machine model (MM), per JEDEC specification JESD22-A115-A	±200	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

⁽²⁾ The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) (1)(2)(3)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT	
V_{CCA} , V_{CCB}	Supply voltage				1.2	3.6	V	
			1.2 V to 1.95 V		V _{CCI} × 0.65			
V_{IH}	High-level input voltage	Data inputs ⁽⁴⁾	1.95 V to 2.7 V		1.6		V	
	input voltage		2.7 V to 3.6 V		2			
			1.2 V to 1.95 V			$V_{CCI} \times 0.35$		
V_{IL}	Low-level input voltage	Data inputs ⁽⁴⁾	1.95 V to 2.7 V			0.7	V	
	input voltage		2.7 V to 3.6 V			0.8		
			1.2 V to 1.95 V		V _{CCA} × 0.65			
V_{IH}	High-level input voltage	DIR (referenced to V _{CCA}) ⁽⁵⁾	1.95 V to 2.7 V		1.6		V	
	input voltage	(referenced to V _{CCA})	2.7 V to 3.6 V		2			
			1.2 V to 1.95 V			$V_{CCA} \times 0.35$		
V_{IL}	Low-level input voltage	DIR (referenced to V _{CCA}) ⁽⁵⁾	1.95 V to 2.7 V			0.7	V	
	input voltage	(referenced to V _{CCA})	2.7 V to 3.6 V			0.8		
VI	Input voltage				0	3.6	V	
.,	Outrout walts as	Active state			0	V _{cco}	V	
Vo	Output voltage	3-state			0	3.6	V	
				1.2 V		-3		
				1.4 V to 1.6 V		-6		
I_{OH}	High-level output cur	rent		1.65 V to 1.95 V		-8	mA	
				2.3 V to 2.7 V		-9		
				3 V to 3.6 V		-12		
				1.2 V		3		
				1.4 V to 1.6 V		6		
I_{OL}	Low-level output curr	rent		1.65 V to 1.95 V		8	mA	
			2.3 V to 2.7 V		9			
				3 V to 3.6 V		12		
Δt/Δν	Input transition rise o	or fall rate				5	ns/V	
T _A	Operating free-air ter	mperature			-40	125	°C	

- V_{CCI} is the V_{CC} associated with the data input port.
- V_{CCO} is the V_{CC} associated with the output port. All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. See *Implications of Slow or* Floating CMOS Inputs.
- For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCI} \times 0.7$ V, V_{IL} max = $V_{CCI} \times 0.3$ V. For V_{CCA} values not specified in the data sheet, V_{IH} min = $V_{CCA} \times 0.7$ V, V_{IL} max = $V_{CCA} \times 0.3$ V.

7.4 Thermal Information

		SN74AVC16T245-Q1		
	THERMAL METRIC ⁽¹⁾	DGV (TVSOP)	UNIT	
		48 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	77.2	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	31.4	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	39.5	°C/W	
ΨЈТ	Junction-to-top characterization parameter	3.5	°C/W	
ΨЈВ	Junction-to-board characterization parameter	39	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

PAR	AMETER	TEST CONDI	TIONS	V _{CCA}	V _{CCB}	T _A	MIN	TYP	MAX	UNIT
		I _{OH} = -100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C	V _{CCO} - 0.2			
		$I_{OH} = -3 \text{ mA}$		1.2 V	1.2 V	T _A = 25°C		0.95		
		I _{OH} = -6 mA		1.4 V	1.4 V	T _A = -40°C to 125°C	1			
V _{OH}		$I_{OH} = -8 \text{ mA}$	V _I = V _{IH}	1.65 V	1.65 V	T _A = -40°C to 125°C	1.15			V
		$I_{OH} = -9 \text{ mA}$		2.3 V	2.3 V	T _A = -40°C to 125°C	1.75			
		I _{OH} = -12 mA		3 V	3 V	T _A = -40°C to 125°C	2.3			
		I _{OL} = 100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			0.2	
		I _{OL} = 3 mA		1.2 V	1.2 V	T _A = 25°C		0.15		
		I _{OL} = 6 mA		1.4 V	1.4 V	T _A = -40°C to 125°C			0.4	
		I _{OL} = 8 mA	$V_I = V_{IL}$	1.65 V	1.65 V	T _A = -40°C to 125°C			0.45	V
		I _{OL} = 9 mA		2.3 V	2.3 V	T _A = -40°C to 125°C			0.55	
		I _{OL} = 12 mA		3 V	3 V	T _A = -40°C to 125°C				
	Control					T _A = 25°C		±0.025	±0.25	
l _i	inputs	$V_I = V_{CCA}$ or GND		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			±2	μA
						T _A = 25°C		±0.1	±2.5	
1	A or B port	V _I or V _O = 0 to 3.6 V		0 V	0 to 3.6 V	T _A = -40°C to 125°C			±10	μA
l _{off}		V ₁ OI V ₀ = 0 to 3.6 V				T _A = 25°C		±0.5	±2.5	μА
	A or B port			0 to 3.6 V	0 V	T _A = -40°C to 125°C			±10	
		$V_O = V_{CCO}$ or GND,				T _A = 25°C		±0.5	±2.5	
l _{OZ} ⁽³⁾	A or B port	$\frac{V_{I}=}{OE}$ V _{CCI} or GND, $\frac{V_{I}=}{OE}$ V _{IH}		3.6 V	3.6 V	T _A = -40°C to 125°C			±10	μA
				1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			30	
I _{CCA}		$V_I = V_{CCI}$ or GND, $I_O = 0$		0 V	3.6 V	T _A = -40°C to 125°C			-40	μΑ
				3.6 V	0 V	T _A = -40°C to 125°C			30	
				1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			30	
Іссв		$V_I = V_{CCI}$ or GND, $I_O = 0$		0 V	3.6 V	T _A = -40°C to 125°C			30	μΑ
				3.6 V	0 V	T _A = -40°C to 125°C			-40	
I _{CCA} + I _{CCE}	3	$V_I = V_{CCI}$ or GND, $I_O = 0$		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			60	μА
C _i	Control inputs	V _I = 3.3 V or GND		3.3 V	3.3 V	T _A = 25°C		3.5		pF
C _{io}	A or B port	$V_O = 3.3 \text{ V or GND}$		3.3 V	3.3 V	T _A = 25°C		7		pF

 V_{CCO} is the V_{CC} associated with the output port.

Submit Documentation Feedback

Copyright © 2008–2016, Texas Instruments Incorporated

⁽²⁾ (3)

 V_{CCI} is the V_{CC} associated with the input port. For I/O ports, the parameter I_{OZ} includes the input leakage current.

7.6 Switching Characteristics: V_{CCA}= 1.2 V

over recommended operating free-air temperature range, $V_{CCA} = 1.2 \text{ V}$ (see Figure 11)

DADAMETED	FROM	то	V _{CCB} = 1.2	٧	Vo	_{CCB} = 1.5 V		Vc	_{CB} = 1.8 V	T	V _{cc}	_{:B} = 2.5 \	/	V _{cci}	_B = 3.3	3 V	UNIT			
PARAMETER	(INPUT)	(OUTPUT)	MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII			
t _{PLH}	Α	В	4.1			3.3			3			2.8			3.2		ns			
t _{PHL}	Α	Ь	4.1			3.3			3			2.8			3.2		115			
t _{PLH}	В	Α	4.4			4			3.8			3.6			3.5		ns			
t _{PHL}	Ь	A	4.4			4			3.8			3.6			3.5		115			
t _{PZH}	ŌĒ	А	6.4			6.4			6.4			6.4			6.4		ns			
t _{PZL}	b		6.4			6.4			6.4			6.4			6.4		115			
t _{PZH}	ŌĒ	В	6			4.6			4			3.4			3.2		ns			
t _{PZL}	OE	OE	OE	OL	Ь	6			4.6			4			3.4			3.2		115
t _{PHZ}	ŌĒ	Α	6.6			6.6			6.6			6.6			6.8		ns			
t _{PLZ}	5	Α	6.6			6.6			6.6			6.6			6.8		115			
t _{PHZ}	ŌĒ	В	6			4.9			4.9			4.2			5.3		ns			
t _{PLZ}	OE	ם	6			4.9			4.9			4.2			5.3		115			

7.7 Switching Characteristics: V_{CCA} = 1.5 V ± 0.1 V

over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (see Figure 11)

PARAMETER	FROM	то	V _{CCB} =	1.2 V		V _{CCB} :	= 1.5 V ±	0.1 V	$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$			V _{CCB} = 2	2.5 V ± 0).2 V	V _{CCB} =	3.3 V ± 0	.3 V	UNIT														
PARAMETER	(INPUT)	(OUTPUT)	MIN T	ΥP	MAX	MIN	TYP	MAX	MIN	TYP I	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII														
t _{PLH}	А	В	;	3.6		0.5		9.2	0.5		8.2	0.5		7.1	0.5		6.7	ns														
t _{PHL}	A	ь	;	3.6		0.5		9.2	0.5		8.2	0.5		7.1	0.5		6.7	115														
t _{PLH}	В	Α	;	3.3		0.5		9.2	0.5		8.9	0.5		8.6	0.5		8.5	ns														
t _{PHL}	В	В	A	;	3.3		0.5		9.2	0.5		8.9	0.5		8.6	0.5		8.5	115													
t _{PZH}	OF	OF.	ŌĒ	Α		4.3		0.5		13.1	0.5		13.1	0.5		13.1	0.5		13.1	ns												
t _{PZL}	OE	A		4.3		0.5		13.1	0.5		13.1	0.5		13.1	0.5		13.1	115														
t _{PZH}	ŌĒ	В	;	5.6		0.5		13.1	0.5		11.1	0.5		8.9	0.5		8.2	ns														
t _{PZL}	OE	OE	OE	ь	;	5.6		0.5		13.1	0.5		11.1	0.5		8.9	0.5		8.2	115												
t _{PHZ}	ŌĒ	ŌĒ	OF.	OE	OE.	OE	Œ	OE.	OE.	OE	OE		^	^	^	A		4.5		0.5		12.1	0.5		12.1	0.5		12.1	0.5		12.1	ns
t _{PLZ}			^	-	4.5		0.5		12.1	0.5		12.1	0.5		12.1	0.5		12.1	115													
t _{PHZ}	ŌĒ	В	;	5.5		0.5		11.7	0.5		10.5	0.5		9.5	0.5		9.3	ns														
t _{PLZ}	OE	D D		5.5		0.5		11.7	0.5		10.5	0.5		9.5	0.5		9.3															

7.8 Switching Characteristics: V_{CCA} = 1.8 V ± 0.15 V

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (see Figure 11)

			0 1 0 OOA (0)																		
PARAMETER	FROM	то	V _{CCB} =	1.2 V		V _{CCB} =	1.5 V ± 0.	1 V	V _{CCB} =	1.8 V ± 0.	15 V	V _{CCB} = 2	2.5 V ± 0	.2 V	V _{CCB} = 3	3.3 V ±	0.3 V	UNIT			
PARAMETER	(INPUT)	(OUTPUT)	MIN T	YP N	IAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT			
t _{PLH}	А	В		3.4		0.5		8.9	0.5		7.8	0.5		6.7	0.5		6.3				
t _{PHL}	A	ь		3.4		0.5		8.9	0.5		7.8	0.5		6.7	0.5		6.3	ns			
t _{PLH}		٨		3		0.5		8.2	0.5		7.8	0.5		7.5	0.5		7.4				
t _{PHL}	В	Α		3		0.5		8.2	0.5		7.8	0.5		7.5	0.5		7.4	ns			
t _{PZH}		۸		3.4		0.5		10.8	0.5		10.8	0.5		10.8	0.5		10.8				
t _{PZL}	ŌĒ	OE A	A		3.4		0.5		10.8	0.5		10.8	0.5		10.8	0.5		10.8	ns		
t _{PZH}	ŌĒ	В		5.4		0.5		12.2	0.5		10.4	0.5		8.3	0.5		7.5				
t _{PZL}	OE	В		5.4		0.5		12.2	0.5		10.4	0.5		8.3	0.5		7.5	ns			
t _{PHZ}	ŌĒ			4.2		0.5		10.7	0.5		10.7	0.5		10.7	0.5		10.7				
t _{PLZ}	OE.	Α		4.2		0.5		10.7	0.5		10.7	0.5		10.7	0.5		10.7	ns			
t _{PHZ}	0 -	В		5.2		0.5		11.4	0.5		8.9	0.5		8.9	0.5		8.7				
t _{PLZ}	ŌĒ	ŌĒ	ŌĒ	ŌĒ	В		5.2		0.5		11.4	0.5		8.9	0.5		8.9	0.5		8.7	ns

7.9 Switching Characteristics: V_{CCA} = 2.5 V ± 0.2 V

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (see Figure 11)

PARAMETER	FROM	то	V _{CCB} = 1.2 V	1	V _{CCB} = 1	1.5 V ± 0.1 V	٧	/ _{CCB} = '	1.8 V ± 0	.15 V	V _{CCB} = 2	2.5 V ± 0.2 V	V _{CCB} =	3.3 V ± 0.3 V	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN TYP	MAX	MIN	TYP MA	X	MIN	TYP	MAX	MIN	TYP MA	K MIN	TYP MAX	CINIT	
t _{PLH}	А	В	3.2		0.5	9	.6	0.5		7.5	0.5	6.	3 0.5	5.		
t _{PHL}	A	В	3.2		0.5	8	.6	0.5		7.5	0.5	6.	3 0.5	5.	ns	
t _{PLH}	В	А	2.6		0.5	7	.1	0.5		6.7	0.5	6.	3 0.5	6.3		
t _{PHL}	ь	A	2.6		0.5	7	.1	0.5		6.7	0.5	6.	3 0.5	6.3	ns ?	
t _{PZH}	C	Α	2.5		0.5	8	.3	0.5		8.3	0.5	8.	3 0.5	8.3		
t _{PZL}	ŌĒ	A	2.5		0.5	8	.3	0.5		8.3	0.5	8.	3 0.5	8.3	ns 3	
t _{PZH}	ŌĒ	ŌĒ	В	5.2		0.5	12	.4	0.5		10.3	0.5	8.	1 0.5	7.	ns
t _{PZL}	OE	ь	5.2		0.5	12	.4	0.5		10.3	0.5	8.	1 0.5	7.		
t_{PHZ}	ŌĒ	Α	3		0.5	9	.1	0.5		9.1	0.5	9.	1 0.5	9.	ns	
t_{PLZ}	OE	A	3		0.5	9	.1	0.5		9.1	0.5	9.	1 0.5	9.	115	
t_{PHZ}	ŌĒ	- OE	В	5		0.5	10	.9	0.5		9.6	0.5	9.	1 0.5	8.:	
t _{PLZ}			В	5		0.5	10	.9	0.5		9.6	0.5	9.	1 0.5	8.:	ns ?

7.10 Switching Characteristics: V_{CCA} = 3.3 V ± 0.3 V

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (see Figure 11)

	FROM	то	V _{CCB} =	1.2 V		V _{CCB} =	1.5 V ± 0.		V _{CCB} = 1	.8 V ± 0.	15 V	V _{CCB} = 2	2.5 V ± ().2 V	V _{CCB} = 3	3.3 V ±	0.3 V							
PARAMETER	(INPUT)	(OUTPUT)	MIN T	ΥP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT						
t _{PLH}	Α	В	;	3.2		0.5		8.5	0.5		7.4	0.5		6.2	0.5		5.7	ns						
t _{PHL}	Α	Б		3.2		0.5		8.5	0.5		7.4	0.5		6.2	0.5		5.7	115						
t _{PLH}	В	А		2.8		0.5		6.7	0.5		6.3	0.5		5.8	0.5		5.7							
t _{PHL}	Б	A		2.8		0.5		6.7	0.5		6.3	0.5		5.8	0.5		5.7	ns						
t _{PZH}	ŌĒ	^		2.2		0.5		7.3	0.5		7.2	0.5		7.1	0.5		7	ns						
t _{PZL}	OE	Α	^		2.2		0.5		7.3	0.5		7.2	0.5		7.1	0.5		7	115					
t _{PZH}	ŌĒ	В		5.1		0.5		12.3	0.5		10.2	0.5		7.9	0.5		7	20						
t _{PZL}	OE	ь		5.1		0.5		12.3	0.5		10.2	0.5		7.9	0.5		7	ns						
t _{PHZ}	ŌĒ	А		3.4		0.5		8	0.5		8	0.5		8	0.5		8	ns						
t _{PLZ}	OL OL	A		3.4		0.5		8	0.5		8	0.5		8	0.5		8	115						
t _{PHZ}	ŌĒ	ŌĒ	OF	OE.	OE	OF.	В	D		4.9		0.5		10.7	0.5		9.5	0.5		8.2	0.5		8	ns
t _{PLZ}			ם		4.9		0.5		10.7	0.5		9.5	0.5		8.2	0.5		8	115					

7.11 Operating Characteristics

 $T_A = 25$ °C

	DADAMETE	·n	TEST	V _{CCA} =	V _{CCB} =	1.2 V	V _{CCA} =	V _{CCB} = 1.5	5 V	V _{CCA} =	V _{CCB} = 1	.8 V	V _{CCA}	= V _{CCB} =	2.5 V	V _{CCA} =	V _{CCB} = 3	3.3 V	LINUT
	PARAMETE	:K	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	2	TYP	MAX	UNIT
	A to B	Outputs enabled			1			1			1			1			2		
C _{pdA} ⁽¹⁾	AIUB	Outputs disabled	C _L = 0, f = 10 MHz,		1			1			1			1		X MIN TYP		pF	
PdA	B to A	Outputs enabled	$t_r = t_f = 1 \text{ ns}$		13		13			14			15			16			pi I
	BIOA	Outputs disabled			1			1			1			1			1		Ī
	A to B	Outputs enabled			13			13			14			15					
C _{pdB} ⁽¹⁾	AIUB	Outputs disabled	C _L = 0, f = 10 MHz,		1			1			1			1		2 1 16 1 16 16		pF	
O _{pdB} (B to A	Outputs enabled	$t_r = t_f = 1 \text{ ns}$		1			1			1			1				pΓ	
	BIOA	Outputs disabled			1			1			1			1		1			<u></u>

⁽¹⁾ Power dissipation capacitance per transceiver

TEXAS INSTRUMENTS

7.12 Typical Characteristics

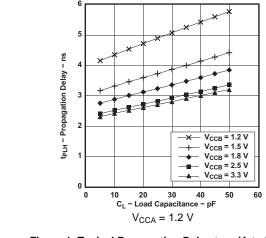


Figure 1. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

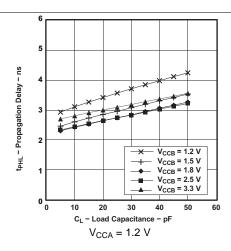


Figure 2. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

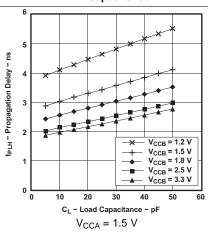


Figure 3. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

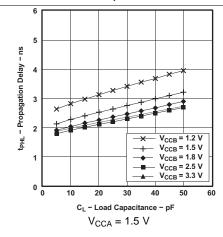


Figure 4. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

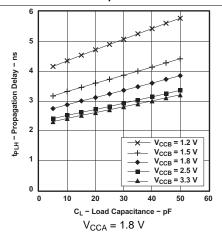


Figure 5. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

Figure 6. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

Submit Documentation Feedback

Copyright © 2008–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

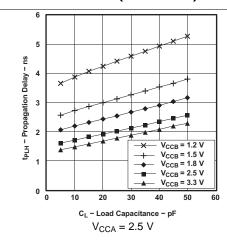


Figure 7. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

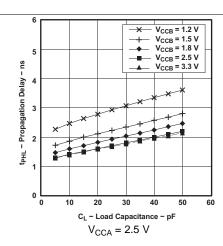


Figure 8. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

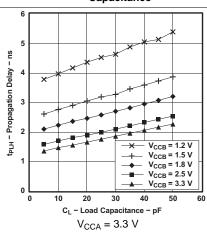
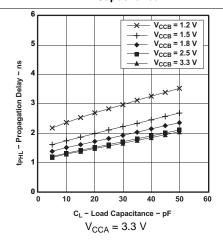
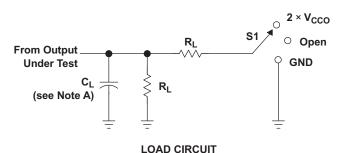


Figure 9. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

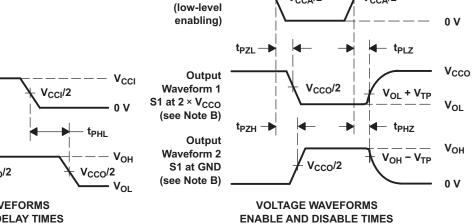



Figure 10. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

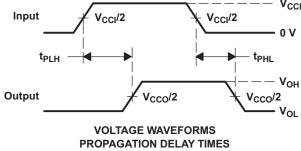
V_{CCA}

CCA/2

8 Parameter Measurement Information



TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	2 × V _{CCO}
t _{PHZ} /t _{PZH}	GND


V _{CCO}	CL	R_L	V _{TP}
1.2 V	15 pF	2 k Ω	0.1 V
1.5 V \pm 0.1 V	15 pF	2 k Ω	0.1 V
$1.8~V\pm0.15~V$	15 pF	2 k Ω	0.15 V
$2.5~V\pm0.2~V$	15 pF	2 k Ω	0.15 V
3.3 V \pm 0.3 V	15 pF	2 k Ω	0.3 V

V_{CCA}/2

Output Control

NOTES: A. C_I includes probe and jig capacitance.

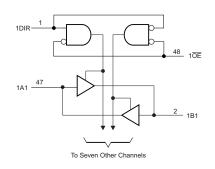
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $dv/dt \geq$ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. $\,t_{PZL}$ and t_{PZH} are the same as $t_{en}.$
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.

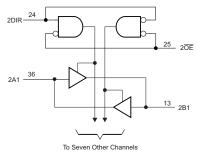
Figure 11. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2008–2016, Texas Instruments Incorporated

9 Detailed Description


9.1 Overview


The SN74AVC16T245-Q1 is a 16-bit, dual-supply, noninverting, bidirectional voltage level translation. Pins A and control pins (DIR and \overline{OE}) are supported by V_{CCA} and B pins are supported by V_{CCB} . The A port can accept I/O voltages ranging from 1.2 V to 3.6 V, while the B port can accept I/O voltages from 1.2 V to 3.6 V. A high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A when \overline{OE} is set to low. When \overline{OE} is set to high, both A and B are in the high-impedance state.

This device is fully specified for partial-power-down applications using off output current (Ioff).

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are put in a high-impedance state.

9.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

9.3 Feature Description

9.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage from 1.2 V to 3.6 V, making the device suitable for translating between any of the low voltage nodes (1.2 V, 1.8 V, 2.5 V, and 3.3 V).

9.3.2 Partial-Power-Down Mode Operation

This device is fully specified for partial-power-down applications using off output current (I_{off}). The I_{off} circuitry prevents backflow current by disabling I/O output circuits when device is in partial power-down mode.

9.3.3 V_{CC} Isolation

The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} are at GND, both ports are in a high-impedance state (I_{OZ} shown in *Electrical Characteristics*). This prevents false logic levels from being presented to either bus.

9.4 Device Functional Modes

The SN74AVC16T245-Q1 is a voltage level translator that can operate from 1.2 V to 3.6 V (V_{CCA}) and 1.2 V to 3.6 V (V_{CCB}). The signal translation between 1.2 V and 3.6 V requires direction control and output enable control. When \overline{OE} is low and DIR is high, data transmission is from A to B. When \overline{OE} is low and DIR is low, data transmission is from B to A. When \overline{OE} is high, both output ports will be high-impedance. Table 1 lists the functions.

Table 1. Function Table (Each 16-Bit Section)

CONTROL	. INPUTS	OUTPUT CII	RCUITS	OPERATION
ŌĒ	DIR	A PORT	B PORT	OPERATION
L	L	Enabled	Hi-Z	B data to A bus
L	Н	Hi-Z	Enabled	A data to B bus
Н	X	Hi-Z	Hi-Z	Isolation

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The SN74AVC16T245-Q1 device can be used in level-shifting applications for interfacing devices and addressing mixed voltage incompatibility. The SN74AVC16T245-Q1 device is ideal for data transmission where direction is different for each channel.

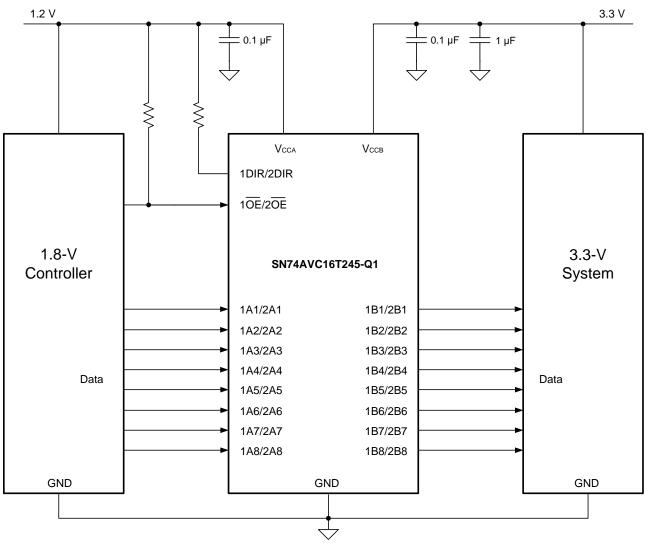
10.1.1 Enable Times

Calculate the enable times for the SN74AVC16T45 using the following formulas:

$$t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)$$

$$t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A)$$

$$(2)$$


$$t_{PZH}$$
 (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B) (3)

$$t_{PZL}$$
 (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B) (4)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74AVC16T245-Q1 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

10.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 12. Typical Application Schematic

10.2.1 Design Requirements

This device uses drivers which are enabled depending on the state of the DIR pin. The designer must know the intended flow of data and take care not to violate any of the high or low logic levels. Unused data inputs must not be floating, as this can cause excessive internal leakage on the input CMOS structure. Tie any unused input and output ports directly to ground.

For this design example, use the parameters listed in Table 2.

Table 2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	1.2 V
Output voltage range	3.3 V

10.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- · Input voltage range
 - Use the supply voltage of the device that is driving the SN74AVC16T245-Q1 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{II} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AVC16T245-Q1 device is driving to determine the output voltage range.

10.2.3 Application Curve



Figure 13. Translation Up (1.2 V to 3.3 V) at 2.5 MHz

11 Power Supply Recommendations

The SN74AVC16T245-Q1 device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB} . V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V and V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. The A port and B port are designed to track V_{CCA} and V_{CCB} , respectively, allowing for low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The output-enable \overline{OE} input circuit is designed so that it is supplied by V_{CCA} and when the \overline{OE} input is high, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the \overline{OE} input pin must be tied to V_{CCA} through a pullup resistor and must not be enabled until V_{CCA} and V_{CCB} are fully ramped and stable. The minimum value of the pullup resistor to V_{CCA} is determined by the current-sinking capability of the driver.

12 Layout

12.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended:

- Bypass capacitors must be used on power supplies.
- Short trace lengths must be used to avoid excessive loading.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements.

12.2 Layout Example

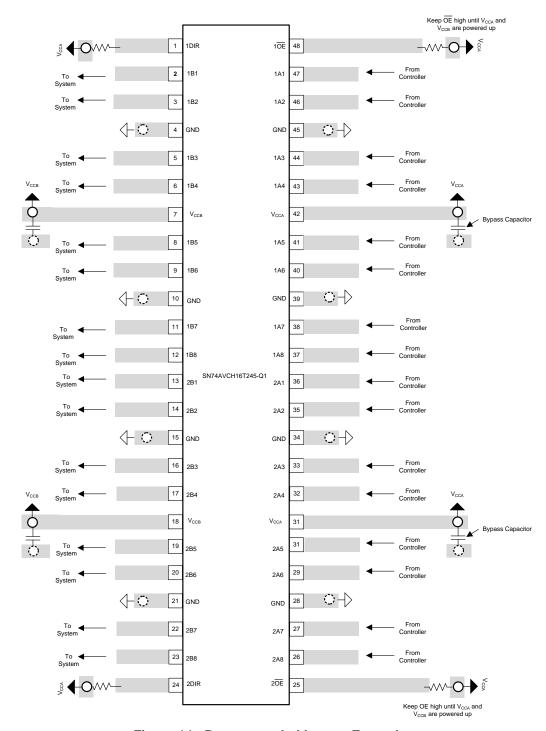


Figure 14. Recommended Layout Example

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

For related documentation see the following:

- CMOS Power Consumption and Cpd Calculation
- IC Package Thermal Metrics application report
- Implications of Slow or Floating CMOS Inputs

13.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.3 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status					Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
CAVC16T245QDGVRQ1	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	WF245Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AVC16T245-Q1:

Catalog: SN74AVC16T245

11-Apr-2013

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 13-May-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CAVC16T245QDGVRQ1	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

www.ti.com 13-May-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CAVC16T245QDGVRQ1	TVSOP	DGV	48	2000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity