

16-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS

Check for Samples: SN74AVCB164245-EP

FEATURES

- Member of the Texas Instruments Widebus™ Family
- DOC[™] Circuitry Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}
- Control Inputs V_{IH} and V_{IL} Levels Are Referenced to V_{CCB} Voltage
- If Either V_{CC} Input Is at GND, Both Ports Are in the High-Impedance State
- **Overvoltage-Tolerant Inputs and Outputs** Allow Mixed-Voltage-Mode Data Communications
- Ioff Supports Partial-Power-Down Mode Operation
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over Full 1.4-V to 3.6-V **Power-Supply Range**

- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 750-V Charged-Device Model (C101)

SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- **Controlled Baseline**
- One Assembly and Test Site
- **One Fabrication Site** •
- Available in Military (-55°C to 125°C) Temperature Ranges ⁽¹⁾
- **Extended Product Life Cycle**
- **Extended Product-Change Notification** •
- **Product Traceability**
- (1) Custom temperature ranges available

DESCRIPTION

This 16-bit (dual-octal) noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.4 V to 3.6 V. The B port is designed to track V_{CCB}. V_{CCB} accepts any supply voltage from 1.4 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVCB164245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the directioncontrol (DIR) input. The output-enable $\overline{(OE)}$ input can be used to disable the outputs so the buses are effectively isolated.

The SN74AVCB164245 is designed so that the control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by V_{CCB}.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CCB} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. If either V_{CC} input is at GND, both ports are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus, DOC are trademarks of Texas Instruments.

SN74AVCB164245-EP

website at www.ti.com.

 $\mathbf{T}_{\mathbf{A}}$

-55°C to 125°C

(1)

SCES845A – JANUARY 2013 – REVISED FEBRUARY 2013

TSSOP-DGG

PACKAGE

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI

Reel of 2000

Tube of 40

TERMINAL ASSIGNMENTS

Table 1. ORDERING INFORMATION⁽¹⁾

ORDERABLE PART NUMBER

CAVCB164245MDGGREP

CAVCB164245MDGGEP

FUNCTION TABLE (EACH 8-BIT SECTION)

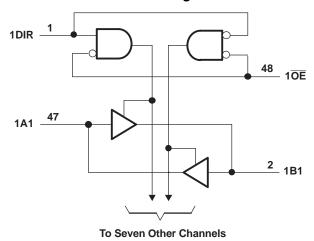
INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	Х	Isolation

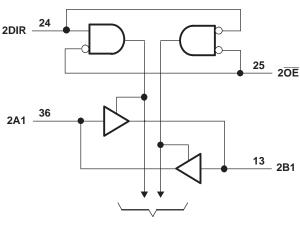
VID NUMBER

V62/13602-01XE

V62/13602-01XE-T

TOP-SIDE MARKING


AVCB164245M


www.ti.com

SCES845A – JANUARY 2013 – REVISED FEBRUARY 2013

Figure 1. LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

Pin numbers shown are for the DGG and DGV packages.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CCA} V _{CCB}	Supply voltage range		-0.5	4.6	V
		I/O ports (A port)	-0.5	4.6	
VI	Input voltage range ⁽²⁾	I/O ports (B port)	-0.5	4.6	V
		Control inputs	-0.5	4.6	
V	Voltage range applied to any output in the high-impedance or power-off	A port	-0.5	4.6	V
Vo	state ⁽²⁾	B port	-0.5	4.6	v
V	Voltage range applied to any extruct in the high or law state $\binom{2}{3}$	A port	-0.5	V _{CCA} + 0.5	V
Vo	Input voltage range (2) Voltage range applied to any output in the high-impedance or power-off state (2) Voltage range applied to any output in the high or low state (2) (3) Input clamp current Output clamp current Continuous output current Continuous current through V _{CCA} , V _{CCB} , or GND Maximum junction temperature	B port	-0.5	V _{CCB} + 0.5	v
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V _{CCA} , V _{CCB} , or GND			±100	mA
TJ	Maximum junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

SCES845A - JANUARY 2013 - REVISED FEBRUARY 2013

www.ti.com

THERMAL INFORMATION

		SN74AVCB164245	
	THERMAL METRIC ⁽¹⁾	DGG	UNITS
		48 PINS	
θ_{JA}	Junction-to-ambient thermal resistance ⁽²⁾	59.9	
θ _{JCtop}	Junction-to-case (top) thermal resistance ⁽³⁾	13.9	
θ _{JB}	Junction-to-board thermal resistance ⁽⁴⁾	27.1	80 AA/
ΨJT	Junction-to-top characterization parameter ⁽⁵⁾	0.5	°C/W
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁶⁾	26.8	
θ _{JCbot}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	N/A	

For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.
 The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as

specified in JESD51-7, in an environment described in JESD51-2a.
 (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-

standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

SCES845A - JANUARY 2013 - REVISED FEBRUARY 2013

RECOMMENDED OPERATING CONDITIONS⁽¹⁾⁽²⁾⁽³⁾

 $T_A = -55^{\circ}C$ to 125°C, over recommended input voltage range (unless otherwise noted)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT	
V _{CCA}	Supply voltage				1.4	3.6	V	
V _{CCB}	Supply voltage				1.4	3.6	V	
			1.4 V to 1.95 V		$V_{CCI} \times 0.65$			
V _{IH}	High-level input voltage	level input voltage Data inputs			1.7		V	
			2.7 V to 3.6 V		2			
			1.4 V to 1.95 V			$V_{CCI} \times 0.35$		
VIL	Low-level input voltage	input voltage Data inputs				0.7	V	
			2.7 V to 3.6 V			0.8		
		_	1.4 V to 1.95 V		$V_{CCB} \times 0.65$			
V _{IH}	High-level input voltage	Control inputs (referenced to V _{CCB})	1.95 V to 2.7 V		1.7		V	
		(Interestinged to ACCB)	2.7 V to 3.6 V		2			
		-	1.4 V to 1.95 V			$V_{CCB} \times 0.35$		
VIL	/ _{IL} Low-level input voltage	Control inputs (referenced to V _{CCB})	1.95 V to 2.7 V			0.7	V	
			2.7 V to 3.6 V			0.8		
VI	Input voltage				0	3.6	V	
Vo	Output voltage	Active state			0	V _{CCO}	V	
۷Ō	Oulput voltage	3-state			0	3.6	v	
				1.4 V to 1.6 V		-2		
	High-level output current			1.65 V to 1.95 V		-4		
I _{OH}	High-level output current	_		2.3 V to 2.7 V		-8	mA	
				3 V to 3.6 V		-12		
				1.4 V to 1.6 V		2		
	Low-level output current			1.65 V to 1.95 V		4		
I _{OL}				2.3 V to 2.7 V		8	mA	
				3 V to 3.6 V		12		
Δt/Δv	Input transition rise or fall	rate				5	ns/V	
T _A	Operating free-air tempera	ature			-55	125	°C	

V_{CCI} is the V_{CC} associated with the data input port.
 V_{CCO} is the V_{CC} associated with the data output port.
 All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES845A – JANUARY 2013 – REVISED FEBRUARY 2013

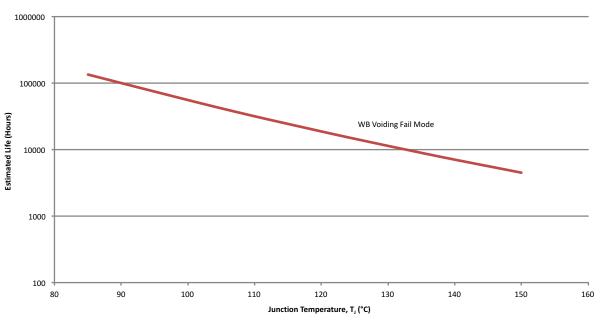
EXAS ISTRUMENTS

www.ti.com

ELECTRICAL CHARACTERISTICS⁽¹⁾⁽²⁾

$T_A = -55^{\circ}C$ to 125°C, over recommended input voltage range (unless otherwise noted)

PARAMETER		TEST CON	DITIONS	V _{CCA}	V _{CCB}	MIN	TYP ⁽³⁾	MAX	UNIT		
		I _{OH} = −100 μA	$V_{I} = V_{IH}$	1.4 V to 3.6 V	1.4 V to 3.6 V	$V_{CCO} - 0.2$					
		$I_{OH} = -2 \text{ mA}$	$V_{I} = V_{IH}$	1.4 V	1.4 V	1.05					
V _{OH}		$I_{OH} = -4 \text{ mA}$	$V_{I} = V_{IH}$	1.65 V	1.65 V	1.2			V		
		I _{OH} = -8 mA	$V_I = V_{IH}$	2.3 V	2.3 V	1.7					
		I _{OH} = -12 mA	$V_{I} = V_{IH}$	3 V	3 V	2.2					
		I _{OH} = 100 μA	$V_{I} = V_{IL}$	1.4 V to 3.6 V	1.4 V to 3.6 V			0.2			
		I _{OH} = 2 mA	$V_{I} = V_{IL}$	1.4 V	1.4 V			0.35			
V _{OL}		I _{OH} = 4 mA	$V_{I} = V_{IL}$	1.65 V	1.65 V			0.45	V		
		I _{OH} = 8 mA	$V_{I} = V_{IL}$	2.3 V	2.3 V			0.6			
		I _{OH} = 12 mA	$V_{I} = V_{IL}$	3 V	3 V			0.75			
lı –	Control inputs	$V_I = V_{CCB}$ or GND		1.4 V to 3.6 V	3.6 V			±2.5	μA		
	A port	V V 0 +- 0 0 V		0 V	0 to 3.6 V			±10			
l _{off}	B port	$V_1 \text{ or } V_0 = 0 \text{ to } 3.6 \text{ V}$		0 to 3.6 V	0 V			±10	μA		
	A or B ports		$\overline{OE} = V_{IH}$	3.6 V	3.6 V	±12.		±12.5			
I _{OZ} ⁽⁴⁾	DZ ⁽⁴⁾ B port	$V_0 = V_{CC0}$ or GND, $V_1 = V_{CC1}$ or GND	\overline{OE} = don't care	0 V	3.6 V			±12.5	μA		
A port		OE = don't care	3.6 V	0 V		±12.5					
	ii.			1.6 V	1.6 V			35			
				1.95 V	1.95 V			35			
				2.7 V	2.7 V			45	45 -50 μΑ		
I _{CCA}		$V_I = V_{CCI}$ or GND,	$I_{O} = 0$	0 V	3.6 V			-50			
				3.6 V	0 V			50			
				3.6 V	3.6 V			50			
				1.6 V	1.6 V			35			
				1.95 V	1.95 V			35			
				2.7 V	2.7 V			45			
I _{CCB}		$V_I = V_{CCI}$ or GND,	$I_{O} = 0$	0 V	3.6 V			50	μA		
				3.6 V	0 V			-50			
				3.6 V	3.6 V			50			
Ci	Control inputs	$V_1 = 3.3 \text{ V or GND}$		3.3 V	3.3 V		4		pF		
Cio	A or B ports	$V_{O} = 3.3 \text{ V or GND}$		3.3 V	3.3 V		5		pF		


(1)

(2) (3) (4)

 V_{CCO} is the V_{CC} associated with the output port. V_{CCI} is the V_{CC} associated with the input port. All typical values are at T_A = 25°C. For I/O ports, the parameter I_{OZ} includes the input leakage current.

SCES845A - JANUARY 2013 - REVISED FEBRUARY 2013

(1) See datasheet for absolute maximum and minimum recommended operating conditions.

Figure 2. SN74AVCB164245-EP Operating Life Derating Chart

TEXAS INSTRUMENTS

www.ti.com

SCES845A – JANUARY 2013 – REVISED FEBRUARY 2013

Switching Characteristics

 T_{A} = -40°C to 85°C, V_{CCA} = 1.5 V ± 0.1 V (see)

PARAMETER	FROM TO			V _{CCB} = 1.5 V ± 0.1 V		V _{CCB} = 1.8 V ± 0.15 V		V _{CCB} = 2.5 V ± 0.2 V		V _{CCB} = 3.3 V ± 0.3 V	
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	В	1.7	6.7	1.9	6.3	1.8	5.5	1.7	5.8	20
	В	А	1.8	6.8	2.2	7.4	2.1	7.6	2.1	7.3	ns
	OE	А	2.5	8.4	2.4	7.4	2.1	5.2	1.9	4.2	20
t _{en}	UE	В	2.1	9	2.9	9.8	3.2	10	3	9.8	ns
t _{dis}	OE	А	2.2	6.9	2.3	6.1	1.3	3.6	1.3	3	20
	UE	В	2.1	7.1	2.3	6.4	1.7	5.1	1.6	4.8	ns

SWITCHING CHARACTERISTICS

 $T_A = -55^{\circ}C$ to 125°C, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (see Figure 4)

PARAMETER	FROM	FROM (INPUT)	TO	V _{CCB} = 1.5 V ± 0.1 V	V _{CCB} = 1.8 V ± 0.15 V	V _{CCB} = 2.5 V ± 0.2 V	V _{CCB} = 3.3 V ± 0.3 V	UNIT
	(INPUT)	(OUTPUT)	MIN MAX	MIN MAX	MIN MAX	MIN MAX		
+	А	В	12.7	12.3	11.5	11.8	20	
t _{pd}	В	А	12.8	13.4	13.6	13.3	ns	
+	OE	А	14.8	13.9	12.4	11.9	20	
Len	ÛE	В	15	15.8	16	15.8	ns	
	OE	А	12.9	12.1	9.6	9	20	
t _{dis}	ÛE	В	13.1	12.4	11.1	10.8	ns	

Switching Characteristics

 $T_{\text{A}} = -40^{\circ}\text{C}$ to 85°C, $V_{\text{CCA}} = 1.8$ V \pm 0.15 V (see)

PARAMETER	FROM			V _{CCB} = 1.5 V ± 0.1 V		V _{CCB} = 1.8 V ± 0.15 V		V _{CCB} = 2.5 V ± 0.2 V		V _{CCB} = 3.3 V ± 0.3 V	
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	В	1.7	6.7	1.8	6	1.7	4.7	1.6	4.3	20
	В	А	1.4	5.5	1.8	6	1.8	5.8	1.8	5.5	ns
	OE	А	2.6	8.5	2.5	7.5	2.2	5.3	1.9	4.2	20
t _{en}	UE	В	1.8	7.6	2.6	7.7	2.6	7.6	2.6	7.4	ns
	OE	А	2.3	7	2.3	6.1	1.3	3.6	1.3	3	20
t _{dis}	UE	В	1.8	7	2.5	6.3	1.8	4.7	1.7	4.4	ns

SWITCHING CHARACTERISTICS

 $T_A = -55^{\circ}C$ to 125°C, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (see Figure 4)

PARAMETER	FROM	-	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.5 V ± 0.1 V	V _{CCB} = 1.8 V ± 0.15 V	V _{CCB} = 2.5 V ± 0.2 V	V _{CCB} = 3.3 V ± 0.3 V	UNIT
		(001201)	MIN MAX	MIN MAX	MIN MAX	MIN MAX			
	А	В	12.7	12 10.7 10.3					
t _{pd}	В	А	11.5	12	11.8	11.5	ns		
+	OE	А	14.5	13.5	12.1	11.9	20		
t _{en}	ÛE	В	13.6	13.7	13.6	13.4	ns		
	OE	А	13	12.1	9.6	9	20		
t _{dis}	UE	В	13	12.3	10.7	10.4	ns		

SCES845A – JANUARY 2013 – REVISED FEBRUARY 2013

www.ti.com

Switching Characteristics

 T_{A} = -40°C to 85°C, V_{CCA} = 2.5 V \pm 0.2 V (see)

PARAMETER	FROM	TO	V _{CCB} = ± 0.1	V _{CCB} = 1.5 V ± 0.1 V		V _{CCB} = 1.8 V ± 0.15 V		V _{CCB} = 2.5 V ± 0.2 V		V _{CCB} = 3.3 V ± 0.3 V	
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	А	В	1.6	6	1.8	5.6	1.5	4	1.4	3.4	20
t _{pd}	В	А	1.3	4.6	1.7	4.4	1.5	4	1.4	3.7	ns
	OE	А	3.1	8.5	2.5	7.5	2.2	5.3	1.9	4.2	20
t _{en}	ÛE	В	1.7	5.7	2.2	5.5	2.2	5.3	2.2	5.1	ns
t _{dis}	OE	А	2.4	7	3	6.1	1.4	3.6	1.2	3	20
	UE	В	1.2	5.8	1.9	5	1.4	3.6	1.3	3.3	ns

SWITCHING CHARACTERISTICS

 T_{A} = -55°C to 125°C, V_{CCA} = 2.5 V \pm 0.2 V (see Figure 4)

PARAMETER FROM		TO	V _{CCB} = 1.5 V ± 0.1 V	V _{CCB} = 1.8 V ± 0.15 V	V _{CCB} = 2.5 V ± 0.2 V	V _{CCB} = 3.3 V ± 0.3 V	UNIT
	(INPUT)	(OUTPUT)	MIN MAX	MIN MAX	MIN MAX	MIN MAX	
+	А	В	12	11.6	10	9.4	2
t _{pd} B	В	А	10.6	10.4	10	9.7	ns
	ŌĒ	А	14.5	13.5	11.3	10.2	20
t _{en} OE	В	11.7	11.5	11.3	11.1	ns	
t _{dis} DE		А	13	12.1	9.6	9	20
t _{dis}	UE	В	11.8	11	9.6	9.3	ns

Switching Characteristics

 $T_{\text{A}} = -40^{\circ}\text{C}$ to $85^{\circ}\text{C},~\text{V}_{\text{CCA}} = 3.3~\text{V} \pm 0.3~\text{V}$ (see)

PARAMETER	FROM	TO	V _{CCB} = ± 0.1		V _{ССВ} = ± 0.1		V _{ССВ} = ± 0.2		V _{ССВ} = ± 0.3		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
+	А	В	1.5	5.9	1.7	5.4	1.5	3.7	1.4	3.1	20
t _{pd}	В	А	1.3	4.5	1.6	3.8	1.5	3.3	1.4	3.1	ns
	t _{en} OE	А	2.6	8.3	2.5	7.4	2.2	5.2	1.9	4.1	20
t _{en}		В	1.6	4.9	2	4.5	2	4.3	1.9	4.1	ns
t _{dis}	ŌĒ	А	2.3	7	3	6	1.3	3.5	1.2	3.5	20
	UE	В	1.3	6.9	2.1	5.5	1.6	3.8	1.5	3.5	ns

SWITCHING CHARACTERISTICS

 $T_A = -55^{\circ}C$ to 125°C, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (see Figure 4)

PARAMETER FROM (INPUT)		TO (OUTPUT)	V _{CCB} = 1.5 V ± 0.1 V	V _{CCB} = 1.8 V ± 0.15 V	V _{CCB} = 2.5 V ± 0.2 V	V _{CCB} = 3.3 V ± 0.3 V	UNIT
	(INPOT)	(001201)	MIN MAX	MIN MAX	MIN MAX	MIN MAX	
	А	В	11.9	11.4	9.7	9.1	20
t _{pd}	В	А	10.5	9.8	9.3	9.1	ns
	OE	А	14.3	13.4	11.2	10.1	20
t _{en} OE	0E	В	11.3	10.5	10.3	10.1	ns
t _{dis}	OE	А	13	12	9.5	9.5	20
	0E	В	12.9	11.5	9.8	9.5	ns

SCES845A – JANUARY 2013 – REVISED FEBRUARY 2013

TEXAS INSTRUMENTS

www.ti.com

OPERATING CHARACTERISTICS

 V_{CCA} and $V_{CCB} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT		
	Power dissipation capacitance per transceiver,	Power dissipation capacitance per transceiver. Outputs enabled				
C _{pdA} (V _{CCA}) A-port input, B-port output Power dissipation capacita	A-port input, B-port output	Outputs disabled		7	~ [
	Power dissipation capacitance per transceiver,	Outputs enabled	$C_{L} = 0, f = 10 \text{ MHz}$	20	pF	
	B-port input, A-port output	Outputs disabled		7		
C _{pdB} A (V _{CCB}) P	Power dissipation capacitance per transceiver,	Outputs enabled		20		
	A-port input, B-port output	Outputs disabled		7	pF	
	Power dissipation capacitance per transceiver,	Outputs enabled	$C_L = 0, f = 10 \text{ MHz}$	14		
	B-port input, A-port output	Outputs disabled		7		

OUTPUT DESCRIPTION

The DOCTM circuitry is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOCTM) Circuitry Technology and Applications, literature number SCEA009.

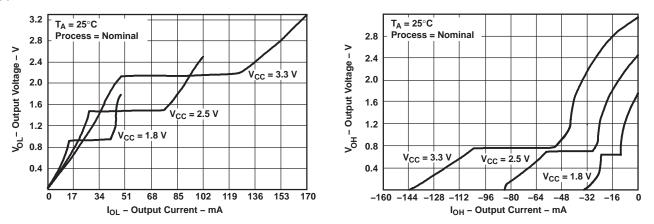
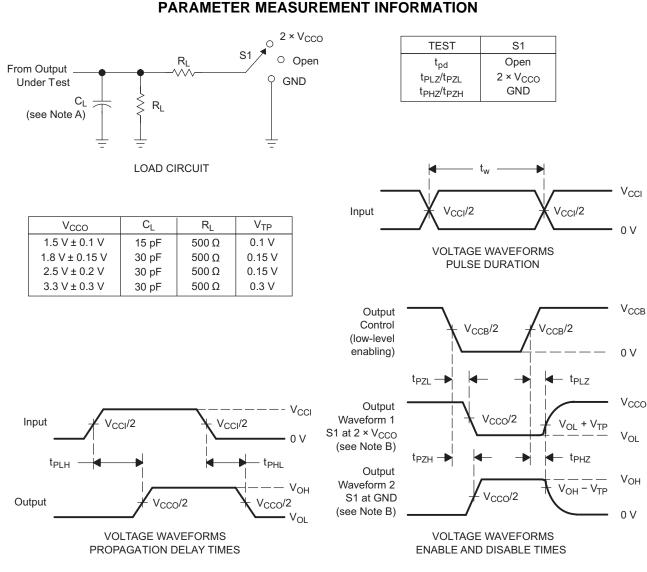



Figure 3. Typical Output Voltage vs Output Current

SN74AVCB164245-EP

SCES845A – JANUARY 2013 – REVISED FEBRUARY 2013

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z_0 = 50 Ω , dv/dt ≥ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. $t_{PLH} \, \text{and} \, t_{PHL} \, \text{are the same as} \, t_{pd} .$
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.

Figure 4. Load Circuit and Voltage Waveforms

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings (4)	Samples
CAVCB164245MDGGEP	ACTIVE	TSSOP	DGG	48	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AVCB164245M	Samples
CAVCB164245MDGGREP	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AVCB164245M	Samples
V62/13602-01XE	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AVCB164245M	Samples
V62/13602-01XE-T	ACTIVE	TSSOP	DGG	48	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AVCB164245M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

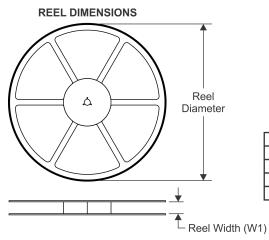
11-Apr-2013

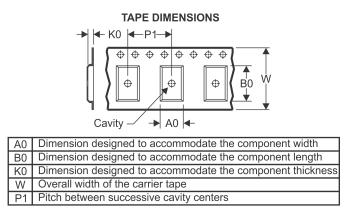
OTHER QUALIFIED VERSIONS OF SN74AVCB164245-EP :

Catalog: SN74AVCB164245

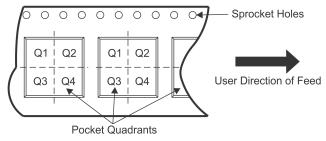
• Automotive: SN74AVCB164245-Q1

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects


PACKAGE MATERIALS INFORMATION

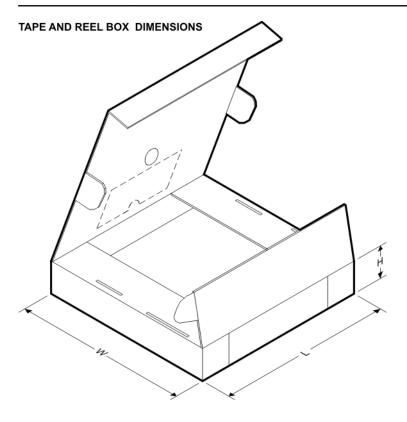
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are noming


Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CAVCB164245MDGGRE P	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1

TEXAS INSTRUMENTS

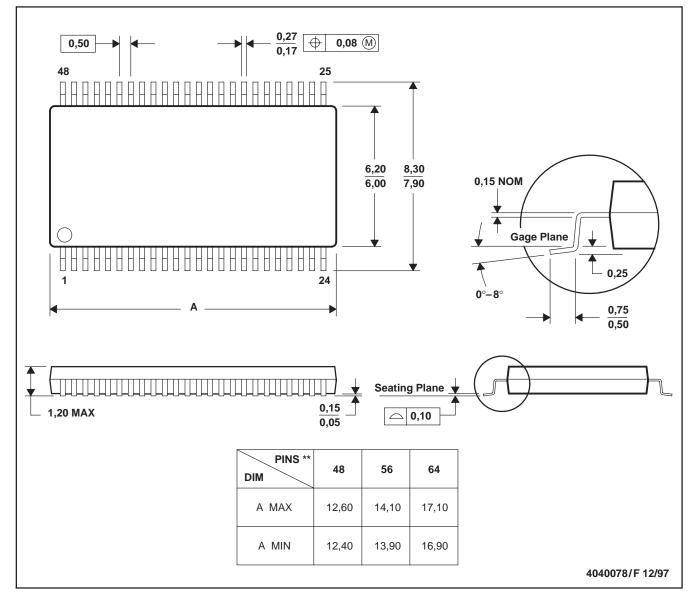
www.ti.com

PACKAGE MATERIALS INFORMATION

11-Mar-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CAVCB164245MDGGREP	TSSOP	DGG	48	2000	367.0	367.0	45.0


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated