SN74AVCBH164245 16-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS

SCES393B-JUNE 2002-REVISED MARCH 2008

FEATURES

- Member of the Texas Instruments Widebus™ Family
- Dynamic Output Control (DOC[™]) Circuitry Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}
- Control Inputs V_{IH}/V_{IL} Levels are Referenced to V_{CCB} Voltage
- If Either V_{CC} Input Is at GND, Both Ports Are in the High-Impedance State
- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications

- I_{off} Supports Partial-Power-Down Mode Operation
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.4-V to 3.6-V Power-Supply Range
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

This 16-bit (dual-octal) noninverting bus transceiver uses two separate configurable power-supply rails. The A-port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.4 V to 3.6 V. The B-port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.4 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVCBH164245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the outputs so the buses are effectively isolated.

The SN74AVCBH164245 is designed so that the control pins (1DIR, 2DIR, $1\overline{OE}$, and $2\overline{OE}$) are supplied by V_{CCB} .

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CCB} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. If either V_{CC} input is at GND, both ports are in the high-impedance state.

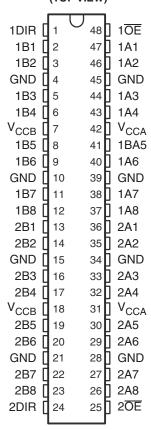
ORDERING INFORMATION

T _A	PACKAGE	(1)(2)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74AVCBH164245GR	AVCBH164245
40°C to 05°C	TVSOP - DGV	Tape and reel	SN74AVCBH164245VR	WBH4245
–40°C to 85°C	VFBGA – GQL	Tape and reel	SN74AVCBH164245KR	WBH4245
	VFBGA – ZQL (Pb-free)	Tape and reel	SN74AVCBH164245ZQLR	WBH4245

⁽¹⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

MA

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Widebus, DOC are trademarks of Texas Instruments.

⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

TERMINAL ASSIGNMENTS

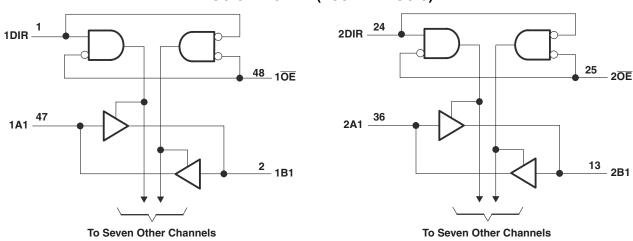
DGG OR DGV PACKAGE (TOP VIEW)

GQL/ZQL PACKAGE (TOP VIEW)

1 2 3 4 5 6 000000()()()()()()()В 000000С 000000D ()()()()Ε \bigcirc F ()()()()()()()()G ()()()()()()()Н ()()()()()()()J $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Κ

TERMINAL ASSIGNMENTS (56-Ball GQL/ZQL Package)⁽¹⁾

	1	2	3	4	5	6
Α	1DIR	NC	NC	NC	NC	1 OE
В	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	V _{CCB}	V_{CCA}	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
E	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
Н	2B5	2B6	V _{CCB}	V_{CCA}	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
K	2DIR	NC	NC	NC	NC	2 OE


(1) NC - No internal connection

SCES393B-JUNE 2002-REVISED MARCH 2008

FUNCTION TABLE (EACH 8-BIT SECTION)

INP	UTS	OPERATION
ŌĒ	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	X	Isolation

LOGIC DIAGRAM (POSITIVE LOGIC)

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$V_{CCA} \ V_{CCB}$	Supply voltage range		-0.5	4.6	V
		I/O ports (A port)	-0.5	4.6	
V_{I}	Input voltage range (2)	I/O ports (B port)	-0.5	4.6	V
		Control inputs	-0.5	4.6	
	Voltage range applied to any output in the high-impedance or	A port	-0.5	4.6	V
Vo	Voltage range applied to any output in the high-impedance or power-off state $^{(2)}$	B port	-0.5	4.6	V
	Valence and and the annual to the bink on law exercises (2)(3)	A port	-0.5	V _{CCA} + 0.5	V
Vo	Voltage range applied to any output in the high or low state (2)(3)	B port		V _{CCB} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	1		±50	mA
	Continuous current through V _{CCA} , V _{CCB} , or GND			±100	mA
		DGG package		70	
θ_{JA}	Package thermal impedance (4)	DGV package		58	°C/W
		GQL/ZQL package		28	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SN74AVCBH164245 16-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS

www.ti.com

SCES393B-JUNE 2002-REVISED MARCH 2008

RECOMMENDED OPERATING CONDITIONS(1)(2)(3)

over operating free-air temperature range (unless otherwise noted)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V_{CCA}	Supply voltage				1.4	3.6	V
V_{CCB}	Supply voltage				1.4	3.6	V
			1.4 V to 1.95 V		$V_{CCI} \times 0.65$		
V_{IH}	High-level input voltage	Data inputs	1.95 V to 2.7 V		1.7		V
			2.7 V to 3.6 V		2		
			1.4 V to 1.95 V			$V_{\text{CCI}} \times 0.35$	
V_{IL}	Low-level input voltage	Data inputs	1.95 V to 2.7 V			0.7	V
			2.7 V to 3.6 V			0.8	
			1.4 V to 1.95 V		$V_{CCB} \times 0.65$		
V_{IH}	High-level input voltage	Control inputs (referenced to V _{CCB})	1.95 V to 2.7 V		1.7		V
		(referenced to AGCB)	2.7 V to 3.6 V		2		
			1.4 V to 1.95 V			$V_{CCB} \times 0.35$	
V_{IL}	Low-level input voltage	Control inputs (referenced to V _{CCB})	1.95 V to 2.7 V			0.7	V
		(referenced to ACCB)	2.7 V to 3.6 V			0.8	
VI	Input voltage				0	3.6	٧
.,	Outrot valtana	Active state			0	V _{cco}	V
Vo	Output voltage	3-state			0	3.6	V
				1.4 V to 1.6 V		-2	
	High lavel autout august			1.65 V to 1.95 V		-4	A
I _{OH}	High-level output current			2.3 V to 2.7 V		-8	mA
				3 V to 3.6 V		-12	
				1.4 V to 1.6 V		2	
	Lavidaval avitavit avinaut			1.65 V to 1.95 V		4	A
l _{OL}	Low-level output current			2.3 V to 2.7 V		8	mA
				3 V to 3.6 V		12	
Δt/Δν	Input transition rise or fall	rate				5	ns/V
T _A	Operating free-air tempera	ature			-40	85	°C

 V_{CCI} is the V_{CC} associated with the data input port. V_{CCO} is the V_{CC} associated with the data output port. All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES393B-JUNE 2002-REVISED MARCH 2008

ELECTRICAL CHARACTERISTICS(1)(2)

over operating free-air temperature range (unless otherwise noted)

P.	ARAMETER	TEST COND	ITIONS	V _{CCA}	V _{CCB}	MIN	TYP ⁽³⁾	MAX	UNIT
		I _{OH} = -100 μA	$V_I = V_{IH}$	1.4 V to 3.6 V	1.4 V to 3.6 V	V _{CCO} - 0.2			
		$I_{OH} = -2 \text{ mA}$	$V_I = V_{IH}$	1.4 V	1.4 V	1.05			
V_{OH}		$I_{OH} = -4 \text{ mA}$	$V_I = V_{IH}$	1.65 V	1.65 V	1.2			V
		$I_{OH} = -8 \text{ mA}$	$V_I = V_{IH}$	2.3 V	2.3 V	1.75			
		I _{OH} = −12 mA	$V_I = V_{IH}$	3 V	3 V	2.3			
		I _{OH} = 100 μA	$V_I = V_{IL}$	1.4 V to 3.6 V	1.4 V to 3.6 V			0.2	
		I _{OH} = 2 mA	$V_I = V_{IL}$	1.4 V	1.4 V			0.35	
V_{OL}		I _{OH} = 4 mA	$V_I = V_{IL}$	1.65 V	1.65 V			0.45	V
		I _{OH} = 8 mA	$V_I = V_{IL}$	2.3 V	2.3 V			0.55	
		I _{OH} = 12 mA	$V_I = V_{IL}$	3 V	3 V			0.7	
I _I	Control inputs	$V_I = V_{CCB}$ or GND		1.4 V to 3.6 V	3.6 V			±2.5	μΑ
		V _I = 0.49 V		1.4 V	1.4 V		11		
. (4)		V _I = 0.57 V		1.65 V	1.65 V	25			
I _{BHL} ⁽⁴⁾		V _I = 0.7 V		2.3 V	2.3 V	45			μΑ
		V _I = 0.8 V		3 V	3 V	75			
		V _I = 0.49 V		1.4 V	1.4 V		-11		
· (E)		V _I = 0.57 V		1.65 V	1.65 V	-25			
I _{BHH} ⁽⁵⁾		V _I = 0.7 V		2.3 V	2.3 V	-45			μΑ
		V _I = 0.8 V		3 V	3 V	-75			
				1.6 V	1.6 V	100			
(C)				1.95 V	1.95 V	200			
I _{BHLO} ⁽⁶⁾		$V_I = 0$ to V_{CC}		2.7 V	2.7 V	300			μΑ
				3.6 V	3.6 V	525			
				1.6 V	1.6 V	-100			
. (7)				1.95 V	1.95 V	-200			
I _{BHHO} ⁽⁷⁾		$V_I = 0$ to V_{CC}		2.7 V	2.7 V	-300			μΑ
				3.6 V	3.6 V	-525			
	A port			0 V	0 to 3.6 V			±10	
l _{off}	B port	V_I or $V_O = 0$ to 3.6 V		0 to 3.6 V	0 V			±10	μΑ
	A or B ports		$\overline{OE} = V_{IH}$	3.6 V	3.6 V			±12.5	
I _{OZ} ⁽⁸⁾	B port	$V_O = V_{CCO}$ or GND,	OE = don't	0 V	3.6 V			±12.5	μΑ
02	A port	$V_I = V_{CCI}$ or GND	care	3.6 V	0 V			±12.5	·
	1 .		1	1.6 V	1.6 V			20	
				1.95 V	1.95 V			20	
				2.7 V	2.7 V			30	
I _{CCA}		$V_I = V_{CCI}$ or GND,	$I_{O} = 0$	0 V	3.6 V			-40	μΑ
				3.6 V	0 V			40	
				3.6 V	3.6 V			40	

 V_{CCO} is the V_{CC} associated with the output port. V_{CCI} is the V_{CC} associated with the input port. All typical values are at $T_A=25^{\circ}C.$

⁽³⁾

The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max.

The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

For I/O ports, the parameter I_{OZ} includes the input leakage current.

SN74AVCBH164245 16-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS

ATION AND 3-STATE OUTPUTS

ATION AND 3-STATE OUTPUTS

INSTRUMENTS

SCES393B-JUNE 2002-REVISED MARCH 2008

ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted)

F	ARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN TYP ⁽³⁾ MAX	UNIT
			1.6 V	1.6 V	20	
			1.95 V	1.95 V	20	
		V V or CND I O	2.7 V	2.7 V	30	^
ICCB		$V_I = V_{CCI}$ or GND, $I_O = 0$	0 V	3.6 V	40	μΑ
			3.6 V	0 V	-40	
			3.6 V	3.6 V	40	
Ci	Control inputs	V _I = 3.3 V or GND	3.3 V	3.3 V	4	pF
Cio	A or B ports	V _O = 3.3 V or GND	3.3 V	3.3 V	5	pF

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (see Figure 2)

PARAMETER	PARAMETER FROM		V _{CCB} = 1.5 V ± 0.1 V		V _{CCB} = 1.8 V ± 0.15 V		V _{CCB} = 2.5 V ± 0.2 V		V _{CCB} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Α	В	1.7	6.7	1.9	6.3	1.8	5.5	1.7	5.8	20
t _{pd}	В	Α	1.8	6.8	2.2	7.4	2.1	7.6	2.1	7.3	ns
	ŌĒ	Α	2.5	8.4	2.4	7.4	2.1	5.2	1.9	4.2	20
t _{en}	OE	В	2.1	9	2.9	9.8	3.2	10	3	9.8	ns
	OF.	Α	2.2	6.9	2.3	6.1	1.3	3.6	1.3	3	
t _{dis}	ŌĒ	В	2.1	7.1	2.3	6.4	1.7	5.15.1	1.6	4.8	ns

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (see Figure 2)

PARAMETER	FROM	FROM TO (OUTPUT)		V _{CCB} = 1.5 V ± 0.1 V		V _{CCB} = 1.8 V ± 0.15 V		V _{CCB} = 2.5 V ± 0.2 V		V _{CCB} = 3.3 V ± 0.3 V	
	(INFOT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Α	В	1.7	6.7	1.8	6	1.7	4.7	1.6	4.3	
t _{pd}	В	A	1.4	5.5	1.8	6	1.8	5.8	1.8	5.5	ns
	ŌĒ	Α	2.6	8.5	2.5	7.5	2.2	5.3	1.9	4.2	
t _{en}	OE	В	1.8	7.6	2.6	7.7	2.6	7.6	2.6	7.4	ns
	ŌĒ	A	2.3	7	2.3	6.1	1.3	3.6	1.3	3	
t _{dis}	OE .	В	1.8	7	2.5	6.3	1.8	4.7	1.7	4.4	ns

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CCA} = 2.5 V \pm 0.2 V (see Figure 2)

PARAMETER	FROM	= =				V _{CCB} = 1.8 V ± 0.15 V		2.5 V 2 V	V _{CCB} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Α	В	1.6	6	1.8	5.6	1.5	4	1.4	3.4	20
t _{pd}	В	Α	1.3	4.6	1.7	4.4	1.5	4	1.4	3.7	ns
	ŌĒ	Α	3.1	8.5	2.5	7.5	2.2	5.3	1.9	4.2	20
t _{en}	OE	В	1.7	5.7	2.2	5.5	2.2	5.3	2.2	5.1	ns
	ŌĒ	Α	2.4	7	3	6.1	1.4	3.6	1.2	3	20
t _{dis}	OE	В	1.2	5.8	1.9	5	1.4	3.6	1.3	3.3	ns

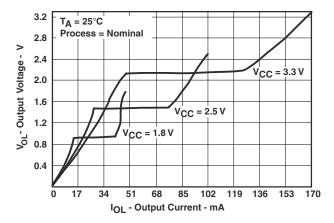
Submit Documentation Feedback

SCES393B-JUNE 2002-REVISED MARCH 2008

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (see Figure 2)

PARAMETER	FROM	TO (OUTBUT)	V _{CCB} = ± 0.1		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
4	Α	В	1.5	5.9	1.7	5.4	1.5	3.7	1.4	3.1	5
t _{pd}	В	Α	1.3	4.5	1.6	3.8	1.5	3.3	1.4	3.1	ns
•	ŌĒ	Α	2.6	8.3	2.5	7.4	2.2	5.2	1.9	4.1	ns
t _{en}	OL	В	1.6	4.9	2	4.5	2	4.3	1.9	4.1	115
4	ŌĒ	Α	2.3	7	3	6	1.3	3.5	1.2	3.5	
t _{dis}	OE .	В	1.3	6.9	2.1	5.5	1.6	3.8	1.5	3.5	ns


OPERATING CHARACTERISTICS

 V_{CCA} and $V_{CCB} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER		TEST CONDITIONS	TYP	UNIT
	Power dissipation capacitance per transceiver,	Outputs enabled		14	
C _{ndA}	A-port input, B-port output	Outputs disabled	0 0 4 40 MHz	7	F
C_{pdA} (V_{CCA})	Power dissipation capacitance per transceiver,	Outputs enabled	$C_L = 0$, $f = 10 \text{ MHz}$	20	pF
B-port input, A-port output		Outputs disabled		7	
	Power dissipation capacitance per transceiver,	Outputs enabled		20	
C _{ndB}	A-port input, B-port output	Outputs disabled	0 0 4 40 MHz	7	F
$C_{pdB} (V_{CCB})$	Power dissipation capacitance per transceiver,	Outputs enabled	$C_L = 0$, $f = 10 \text{ MHz}$	14	pF
	B-port input, A-port output	Outputs disabled		7	

Output Description

The DOCTM circuitry is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOC*TM) *Circuitry Technology and Applications*, literature number SCEA009.

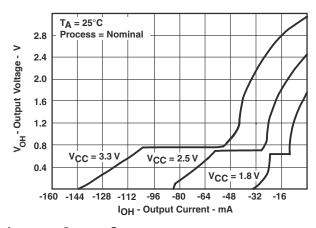


Figure 1. Typical Output Voltage vs Output Current

PARAMETER MEASUREMENT INFORMATION

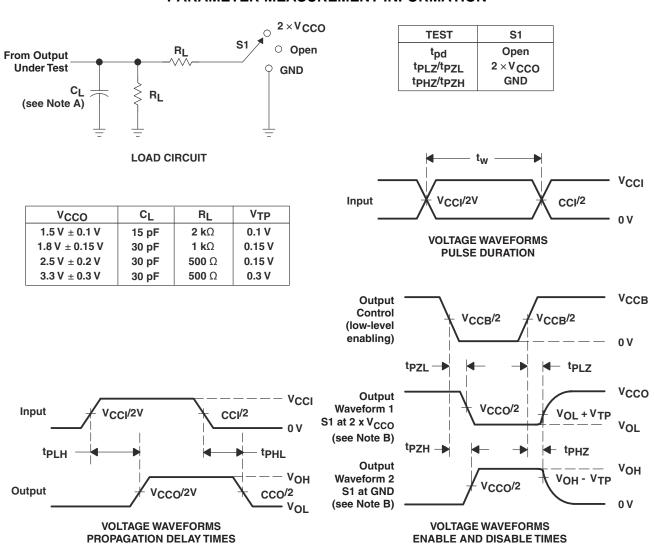


Figure 2. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

17-Mar-2017

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74AVCBH164245GRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AVCBH164245	Samples
74AVCBH164245GRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AVCBH164245	Samples
74AVCBH164245ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	WBH4245	Samples
SN74AVCBH164245GR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AVCBH164245	Samples
SN74AVCBH164245VR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	WBH4245	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

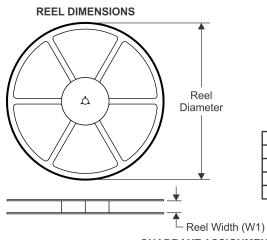
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

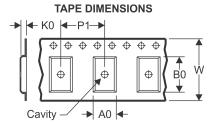
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

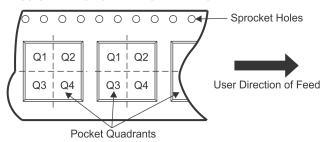
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

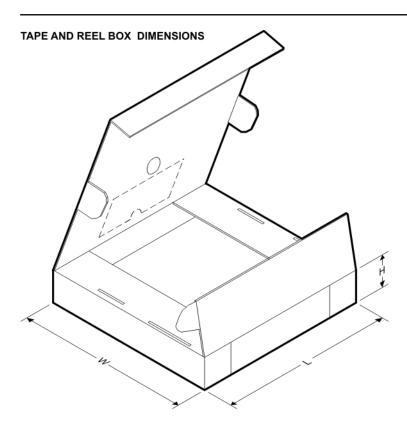
PACKAGE MATERIALS INFORMATION

www.ti.com 11-Mar-2017


TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

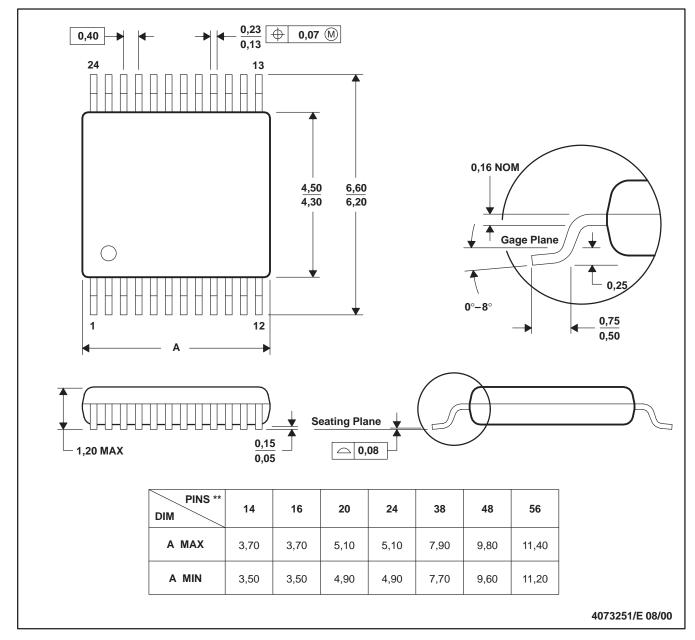


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74AVCBH164245ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
SN74AVCBH164245GR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74AVCBH164245VR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Mar-2017


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74AVCBH164245ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	336.6	336.6	28.6
SN74AVCBH164245GR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74AVCBH164245VR	TVSOP	DGV	48	2000	367.0	367.0	38.0

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

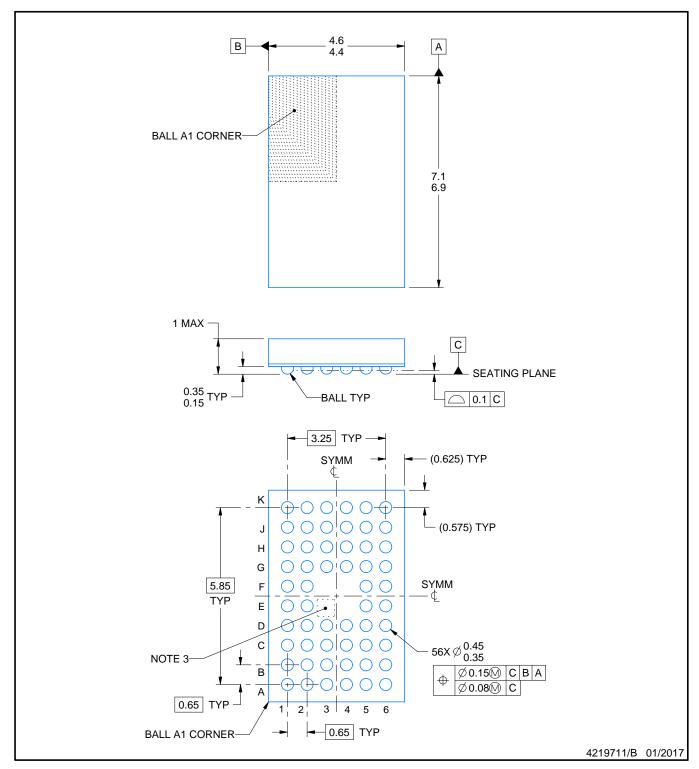
D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

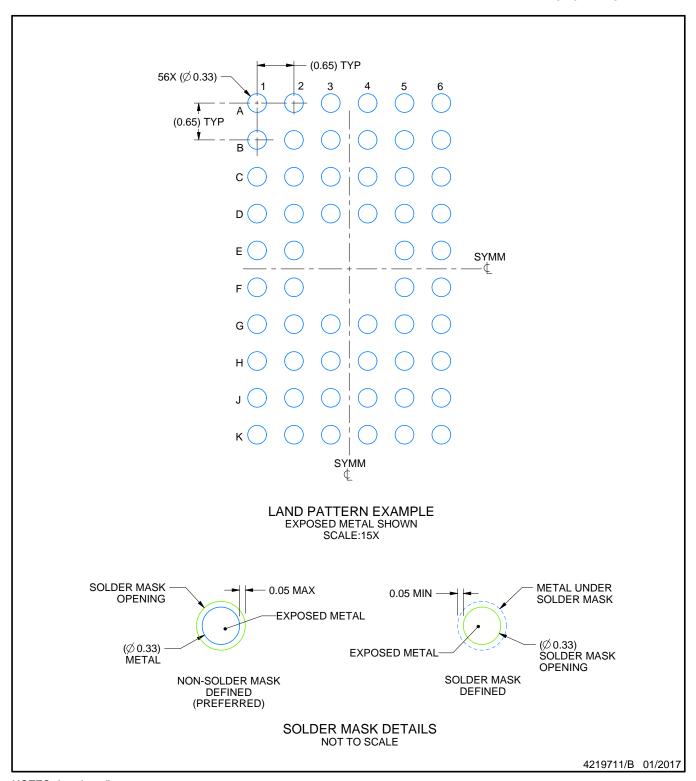
NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

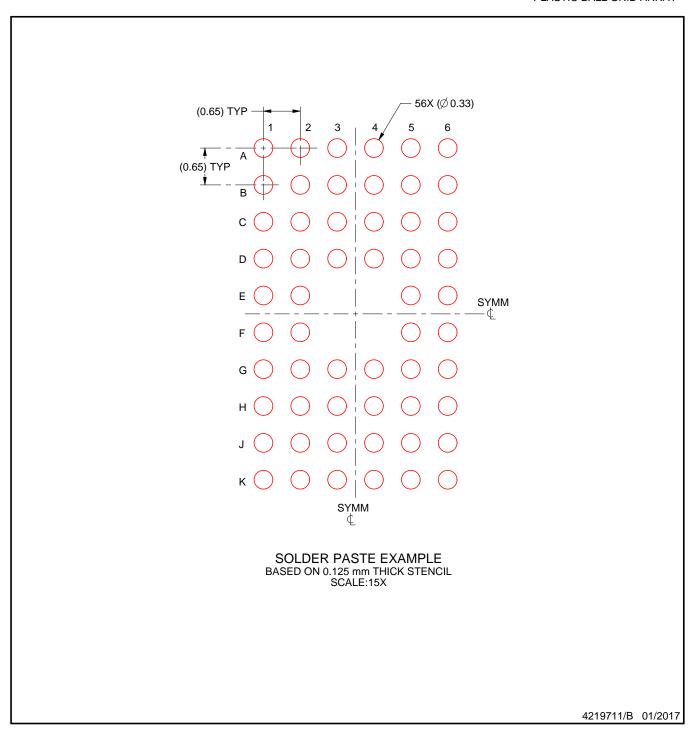
PLASTIC BALL GRID ARRAY


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. No metal in this area, indicates orientation.

PLASTIC BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

PLASTIC BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

