

Sample &

Buy

SCES516J-DECEMBER 2003-REVISED DECEMBER 2014

Support &

Community

20

SN74LVC2T45 Dual-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and 3-State Outputs

Technical

Documents

1 Features

- Available in the Texas Instruments NanoFree™ Package
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.65-V to 5.5-V Power-Supply Range
- V_{CC} Isolation Feature If Either V_{CC} Input Is at GND, Both Ports Are in the High-Impedance State
- DIR Input Circuit Referenced to V_{CCA}
- Low Power Consumption, 10-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- Ioff Supports Partial-Power-Down Mode Operation
- Max Data Rates
 - 420 Mbps (3.3-V to 5-V Translation)
 - 210 Mbps (Translate to 3.3 V)
 - 140 Mbps (Translate to 2.5 V)
 - 75 Mbps (Translate to 1.8 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 4000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Personal Electronic
- Industrial
- Enterprise
- Telecom

3 Description

Tools &

Software

This dual-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

The SN74LVC2T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ} .

The SN74LVC2T45 is designed so that the DIR input circuit is supplied by V_{CCA} . This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are in the high-impedance state. NanoFreeTM package technology is a major breakthrough in IC packaging concepts, using the die as the package.

Device miorination '								
PART NUMBER	PACKAGE	BODY SIZE (NOM)						
	SSOP (8)	2.95 mm x 2.80 mm						
SN74LVC2T45	VSSOP (8)	2.30 mm x 2.00 mm						
	DSBGA (8)	1.89 mm x 0.89 mm						

Device Information⁽¹⁾

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Functional Block Diagram

Table of Contents

8

9

8.1

8.2 8.3

1	Feat	ures 1						
2	Applications 1							
3	Description 1							
4	Revi	sion History 2						
5	Pin (Configuration and Functions						
6	Spee	cifications 4						
	6.1	Absolute Maximum Ratings 4						
	6.2	ESD Ratings 4						
	6.3	Recommended Operating Conditions 4						
	6.4	Thermal Information 5						
	6.5	Electrical Characteristics						
	6.6	Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V} 6$						
	6.7	Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ 7						
	6.8	Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ 7						
	6.9	Switching Characteristics: $V_{CCA} = 5 V \pm 0.5 V$						
	6.10	Operating Characteristics8						
	6.11	Typical Characteristics 9						
7	Para	meter Measurement Information 12						

4 Revision History

Changes from Revision I (March 2007) to Revision J

	12.1 12.2	Trademarks Electrostatic Discharge Caution	19 19
	12.3	Glossary	19
13	Mec	hanical, Packaging, and Orderable	
	Infor	mation	19
	Infor	mation	19

•	Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device
	Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout
	section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information
	section1

EXAS **ISTRUMENTS**

Detailed Description 13

9.1 Application Information..... 14 9.2 Typical Applications 14 10 Power Supply Recommendations 17 10.1 Power-Up Considerations 17 11 Layout...... 17 11.1 Layout Guidelines 17 11.2 Layout Example 18 12 Device and Documentation Support 19

Functional Block Diagram 13

Feature Description..... 13 8.4 Device Functional Modes...... 13 Application and Implementation 14

Page

5 Pin Configuration and Functions

Pin Functions

	PIN	TYPE	DESCRIPTION		
NO.	NAME	TTPE	DESCRIPTION		
1	V _{CCA}	Р	A-port supply voltage. 1.65 V \leq V _{CCA} \leq 5.5 V		
2	A1	I/O	Input/output A1. Referenced to V _{CCA}		
3	A2	I/O	Input/output A2. Referenced to V _{CCA}		
4	GND	G	Ground		
5	DIR	Ι	Direction control signal		
6	B2	I/O	Input/output B2. Referenced to V _{CCB}		
7	B1	I/O	Input/output B1. Referenced to V _{CCB}		
8	V _{CCB}	Р	B-port supply voltage. 1.65 V \leq V _{CCB} \leq 5.5 V		

Pin Functions

PIN		TYPE	DESCRIPTION				
BALL	NAME	NO.	TIPE	DESCRIPTION			
A1	V _{CCA}	1	Р	A-port supply voltage. 1.65 V \leq V _{CCA} \leq 5.5 V			
A2	V _{CCB}	8	Р	B-port supply voltage. 1.65 V \leq V _{CCB} \leq 5.5 V			
B1	A1	2	I/O	Input/output A1. Referenced to V _{CCA}			
B2	B1	7	I/O	Input/output B1. Referenced to V _{CCB}			
C1	A2	3	I/O	Input/output A2. Referenced to V _{CCA}			
C2	B2	6	I/O	Input/output B2. Referenced to V _{CCB}			
D1	GND	4	G	Ground			
D2	DIR	5	I	Direction control signal			

SN74LVC2T45

SCES516J-DECEMBER 2003-REVISED DECEMBER 2014

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CCA} V _{CCB}	Supply voltage range	-0.5	6.5	V	
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾			6.5	V
V	Voltage range applied to any output in the high or	A port	-0.5	V _{CCA} + 0.5	V
vo	low state ^{(2) (3)}	B port	-0.5	V _{CCB} + 0.5	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
T _{stg}	Storage temperature range	-65	150	°C	
	Continuous current through V_{CC} or GND			±100	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(3) The value of V_{CC} is provided in the recommended operating conditions table.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	
	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±1000	V
		Machine model (A115-A)	±200	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾ (2) (3)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V _{CCA}	Supply voltage				1.65	5.5	N/
V _{CCB}	Supply voltage				1.65	5.5	v
V _{IH}					$V_{CCI} \times 0.65$		
	High-level input voltage	Data inputs ⁽⁴⁾	2.3 V to 2.7 V		1.7		V
			3 V to 3.6 V		2		v
			4.5 V to 5.5 V		$V_{CCI} \times 0.7$		
			1.65 V to 1.95 V			V _{CCI} × 0.35	
V _{IL}	Low-level	Data inputs ⁽⁴⁾	2.3 V to 2.7 V			0.7	N/
	input voltage		3 V to 3.6 V			0.8	V
			4.5 V to 5.5 V			$V_{CCI} \times 0.3$	

(1) V_{CCI} is the V_{CC} associated with the input port.

(2) V_{CCO} is the V_{CC} associated with the output port.

(3) All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

(4) For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCI} \times 0.7 \text{ V}$, V_{IL} max = $V_{CCI} \times 0.3 \text{ V}$.

4 Submit Documentation Feedback

Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)^{(1) (2) (3)}

			V _{CCI}	V _{cco}	MIN	MAX	UNIT		
V			1.65 V to 1.95 V		$V_{CCA} \times 0.65$				
	High-level	DIR	2.3 V to 2.7 V		1.7		V		
ЧН	input voltage	(referenced to V_{CCA}) ⁽⁵⁾	3 V to 3.6 V		2		v		
			4.5 V to 5.5 V		$V_{CCA} \times 0.7$				
			1.65 V to 1.95 V			$V_{CCA} \times 0.35$			
V	Low-level	DIR	2.3 V to 2.7 V			0.7	V		
VIL	input voltage	(referenced to V_{CCA}) ⁽⁵⁾	3 V to 3.6 V			0.8	v		
			4.5 V to 5.5 V			$V_{CCA} \times 0.3$			
VI	Input voltage				0	5.5	V		
Vo	Output voltage				0	V _{CCO}	V		
				1.65 V to 1.95 V		-4			
	High lovel output ourro	at .		2.3 V to 2.7 V		-8	m۸		
ЮН	Figh-level output curre	ni (3 V to 3.6 V		-24	ma		
				4.5 V to 5.5 V		-32			
				1.65 V to 1.95 V		4			
	Low lovel output ourror	Low-level output current		2.3 V to 2.7 V		8	mA		
OL				3 V to 3.6 V		24			
				4.5 V to 5.5 V		32			
			1.65 V to 1.95 V			20			
		Data inputa	2.3 V to 2.7 V			20			
Δt/Δv	Input transition	Data inputs	3 V to 3.6 V			10	ns/V		
			4.5 V to 5.5 V			5			
		Control input	1.65 V to 5.5 V			5			
T _A	Operating free-air temp	perature			-40	85	°C		

(5) For V_{CCI} values not specified in the data sheet, V_{IH} min = V_{CCA} × 0.7 V, V_{IL} max = V_{CCA} × 0.3 V.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾ DCT DCU YZP						
$R_{\theta J A}$	Junction-to-ambient thermal resistance	184.0	203.6	105.8			
R _{0JC(top)}	Junction-to-case (top) thermal resistance	114.7	75.9	1.6			
$R_{\theta JB}$	Junction-to-board thermal resistance	96.4	82.3	10.8	°C/W		
Ψ _{JT}	Junction-to-top characterization parameter	40.8	7.2	3.1			
Ψ _{JB}	Junction-to-board characterization parameter	95.4	81.9	10.8			

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SN74LVC2T45

SCES516J-DECEMBER 2003-REVISED DECEMBER 2014

www.ti.com

STRUMENTS

EXAS

6.5 Electrical Characteristics⁽¹⁾⁽²⁾

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		N N	N	T _A = 25°C		С	–40°C to 85°C		
				VCCA	VCCB	MIN	TYP	MAX	MIN	MAX	UNIT
		I _{OH} = −100 μA		1.65 V to 4.5 V	1.65 V to 4.5 V				V _{CCO} - 0.1		
V _{OH}		$I_{OH} = -4 \text{ mA}$		1.65 V	1.65 V				1.2		
		$I_{OH} = -8 \text{ mA}$ $V_{I} =$	= V _{IH}	2.3 V	2.3 V				1.9		V
		I _{OH} = -24 mA		3 V	3 V				2.4		
		I _{OH} = -32 mA		4.5 V	4.5 V				3.8		
		I _{OL} = 100 μA		1.65 V to 4.5 V	1.65 V to 4.5 V					0.1	
		$I_{OL} = 4 \text{ mA}$		1.65 V	1.65 V					0.45	
V _{OL}		I _{OL} = 8 mA V _I =	= V _{IL}	2.3 V	2.3 V					0.3	V
		I _{OL} = 24 mA		3 V	3 V					0.55	
		I _{OL} = 32 mA		4.5 V	4.5 V					0.55	
I _I	DIR	$V_I = V_{CCA}$ or GND		1.65 V to 5.5 V	1.65 V to 5.5 V			±1		<u>+</u> 2	μA
	A port	$V_{\rm I}$ or $V_{\rm O}$ = 0 to 5.5 V		0 V	0 to 5.5 V			±1		±2	
loff	B port			0 to 5.5 V	0 V			±1		±2	μΑ
I _{OZ}	A or B port	$V_0 = V_{CCO}$ or GND		1.65 V to 5.5 V	1.65 V to 5.5 V			±1		±2	μA
		$V_{I} = V_{CCI} \text{ or } GND, I_{O} = 0$		1.65 V to 5.5 V	1.65 V to 5.5 V					3	
I _{CCA}				5 V	0 V					2	μA
				0 V	5 V					-2	
		$V_{I} = V_{CCI}$ or GND, $I_{O} = 0$		1.65 V to 5.5 V	1.65 V to 5.5 V					3	
I _{CCB}				5 V	0 V					-2	μA
				0 V	5 V					2	
I _{CCA} + (see Ta	I _{CCB} able 3)	$V_{I} = V_{CCI} \text{ or } GND, I_{O} =$	= 0	1.65 V to 5.5 V	1.65 V to 5.5 V					4	μA
A1	A port	One A port at $V_{CCA} = 0$ DIR at V_{CCA} , B port = open).6 V,							50	
ΔI _{CCA}	DIR	DIR at $V_{CCA} - 0.6 V$, B port = open, A port at V_{CCA} or GND		5 V 10 5.5 V	5 V 10 5.5 V					50	μΑ
ΔI_{CCB}	B port	One B port at $V_{CCB} - 0$ DIR at GND, A port = c	.6 V, pen	3 V to 5.5 V	3 V to 5.5 V					50	μA
CI	DIR	$V_I = V_{CCA} \text{ or } GND$		3.3 V	3.3 V		2.5				pF
C _{io}	A or B port	$V_{O} = V_{CCA/B} \text{ or } GND$		3.3 V	3.3 V		6				pF

 $\begin{array}{ll} \mbox{(1)} & V_{CCO} \mbox{ is the } V_{CC} \mbox{ associated with the output port.} \\ \mbox{(2)} & V_{CCI} \mbox{ is the } V_{CC} \mbox{ associated with the input port.} \end{array}$

6.6 Switching Characteristics: $V_{CCA} = 1.8 V \pm 0.15 V$

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted) (see Figure 17)

				- CCA					(,
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	٨	Р	3	17.7	2.2	10.3	1.7	8.3	1.4	7.2	
t _{PHL}	A	D	2.8	14.3	2.2	8.5	1.8	7.1	1.7	7	115
t _{PLH}	Р	А	3	17.7	2.3	16	2.1	15.5	1.9	15.1	20
t _{PHL}	В		2.8	14.3	2.1	12.9	2	12.6	1.8	12.2	ns
t _{PHZ}	DIR	٨	10.6	30.9	10.3	30.5	10.5	30.5	10.7	29.3	20
t _{PLZ}	DIR	A	7.3	19.7	7.5	19.6	7.5	19.5	7	19.4	ns

Switching Characteristics: V_{CCA} = 1.8 V ± 0.15 V (continued)

	oa oporaanig ni	oo an tomporat	ale lange,	·CCA							
PARAMETER	FROM	TO	V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT
	(INPUT)	(001901)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PHZ}	חוס	Р	10	27.9	8.4	14.9	6.5	11.3	4.1	8.6	50
t _{PLZ}	DIR	В	6.5	19.5	7.2	12.6	4.3	9.7	2.1	7.1	115
t _{PZH} ⁽¹⁾	DID	А		37.2		28.6		25.2		22.2	
t _{PZL} ⁽¹⁾	DIR			42.2		27.8		23.9		20.8	ns
t _{PZH} ⁽¹⁾	DID	В		37.4		29.9		27.8		26.6	ns
t _{P71} ⁽¹⁾	DIR			45.2		39		37.6		36.3	

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted) (see Figure 17)

(1) The enable time is a calculated value, derived using the formula shown in the *enable times* section.

6.7 Switching Characteristics: $V_{CCA} = 2.5 V \pm 0.2 V$

over recommended operating free-air temperature range, V_{CCA} = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 17)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT
	(INPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	٨	D	2.3	16	1.5	8.5	1.3	6.4	1.1	5.1	20
t _{PHL}	A	В	2.1	12.9	1.4	7.5	1.3	5.4	0.9	4.6	115
t _{PLH}	Б	•	2.2	10.3	1.5	8.5	1.4	8	1	7.5	20
t _{PHL}	В	A	2.2	8.5	1.4	7.5	1.3	7	0.9	6.2	115
t _{PHZ}	סוס	•	6.6	17.1	7.1	16.8	6.8	16.8	5.2	16.5	20
t _{PLZ}	DIR	A	5.3	12.6	5.2	12.5	4.9	12.3	4.8	12.3	115
t _{PHZ}	חוס	Р	10.7	27.9	8.1	13.9	5.8	10.5	3.5	7.6	ns
t _{PLZ}	DIR		7.8	18.9	6.2	11.2	3.6	8.9	1.4	6.2	
t _{PZH} ⁽¹⁾	חוס	•		29.2		19.7		16.9		13.7	20
t _{PZL} ⁽¹⁾	DIR	A		36.4		21.4		17.5		13.8	ris
t _{PZH} ⁽¹⁾	חוס	Р		28.6		21		18.7		17.4	
t _{PZL} ⁽¹⁾		В		30		24.3		22.2		21.1	ns

(1) The enable time is a calculated value, derived using the formula shown in the enable times section.

6.8 Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 17)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT
	(INFOT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	•	_	2.1	15.5	1.4	8	0.7	5.6	0.7	4.4	20
t _{PHL}	A	Б	2	12.6	1.3	7	0.8	5	0.7	4	ns
t _{PLH}	Р	٥	1.7	8.3	1.3	6.4	0.7	5.8	0.6	5.4	20
t _{PHL}	В	A	1.8	7.1	1.3	5.4	0.8	5	0.7	4.5	115
t _{PHZ}	חוס	A	5	10.9	5.1	10.8	5	10.8	5	10.4	20
t _{PLZ}	DIR		3.4	8.4	3.7	8.4	3.9	8.1	3.3	7.8	ns
t _{PHZ}	חוס	Р	11.2	27.3	8	13.7	5.8	10.4	2.9	7.4	20
t _{PLZ}	DIR	В	9.4	17.7	5.6	11.3	4.3	8.3	1	5.6	ns
t _{PZH} ⁽¹⁾	חוס	٥		26		17.7		14.1		11	20
t _{PZL} ⁽¹⁾	DIR	A		34.4		19.1		15.4		11.9	ns

(1) The enable time is a calculated value, derived using the formula shown in the *enable times* section.

SCES516J-DECEMBER 2003-REVISED DECEMBER 2014

www.ti.com

Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (continued)

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 17)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V	V _{CCB} = 2.5 V ±0.2 V	V _{CCB} = 3.3 V ±0.3 V	V _{CCB} = 5 V ±0.5 V	UNIT
	(INPOT)		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
t _{PZH} ⁽¹⁾	חוס	Р	23.9	16.4	13.9	12.2	50
t _{PZL} ⁽¹⁾	DIR	В	23.5	17.8	15.8	14.4	ns

6.9 Switching Characteristics: $V_{CCA} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, $V_{CCA} = 5 V \pm 0.5 V$ (unless otherwise noted) (see Figure 17)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	^	D	1.9	15.1	1	7.5	0.6	5.4	0.5	3.9	20
t _{PHL}	A	В	1.8	12.2	0.9	6.2	0.7	4.5	0.5	3.5	115
t _{PLH}	Р	•	1.4	7.2	1	5.1	0.7	4.4	0.5	3.9	20
t _{PHL}	В	A	1.7	7	0.9	4.6	0.7	4	0.5	3.5	ns
t _{PHZ}	פוס	^	2.9	8.2	2.9	7.9	2.8	7.9	2.2	7.8	20
t _{PLZ}	DIK	A	1.4	6.9	1.3	6.7	0.7	6.7	0.7	6.6	115
t _{PHZ}	סוס	Р	11.2	26.1	7.2	13.9	5.8	10.1	1.3	7.3	20
t _{PLZ}	DIR	D	8.4	16.9	5	11	4	7.7	1	5.6	ns
t _{PZH} ⁽¹⁾	חוס	•		24.1		16.1		12.1		9.5	20
t _{PZL} ⁽¹⁾	DIR	A		33.1		18.5		14.1		10.8	ns
t _{PZH} ⁽¹⁾		Р		22		14.2		12.1		10.5	
t _{PZL} ⁽¹⁾		В		20.4		14.1		12.4		11.3	ns

(1) The enable time is a calculated value, derived using the formula shown in the *Enable Times* section.

6.10 Operating Characteristics

 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CCA} = V _{CCB} = 1.8 V	V _{CCA} = V _{CCB} = 2.5 V	V _{CCA} = V _{CCB} = 3.3 V	V _{CCA} = V _{CCB} = 5 V	UNIT	
			TYP	TYP	TYP	TYP		
C (1)	A-port input, B-port output	$C_L = 0 \text{ pF},$	3	4	4	4	۲ ۲	
C _{pdA} (1)	B-port input, A-port output	$t_r = t_f = 1 \text{ ns}$	18	19	20	21	р	
C (1)	A-port input, B-port output	$C_L = 0 \text{ pF},$	18	19	20	21	~ Г	
⊂ _{pdB} ()	B-port input, A-port output	$t_r = t_f = 1 \text{ ns}$	3	4	4	4	μr	

(1) Power dissipation capacitance per transceiver

6.11 Typical Characteristics

Figure 2. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}$ C, $V_{CCA} = 1.8$ V

Figure 4. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance T_A = 25°C, V_{CCA} = 1.8 V

SN74LVC2T45

SCES516J-DECEMBER 2003-REVISED DECEMBER 2014

www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

7 Parameter Measurement Information

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , dv/dt \geq 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.
- J. All parameters and waveforms are not applicable to all devices.

Figure 17. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SN74LVC2T45 is dual-bit, dual-supply noninverting voltage level translation. Pin Ax and direction control pin are support by V_{CCA} and pin Bx are support by V_{CCB} . The A port is able to accept I/O voltages ranging from 1.65 V to 5.5 V, while the B port can accept I/O voltages from 1.65 V to 5.5 V. The high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A.

8.2 Functional Block Diagram

Figure 18. Logic Diagram (Positive Logic)

8.3 Feature Description

8.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.65-V to 5.5-V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage between 1.65 V and 5.5 V making the device suitable for translating between any of the voltage nodes (1.8-V, 2.5-V, 3.3-V and 5-V).

8.3.2 Support High-Speed Translation

SN74LVC2T45 can support high data rate application. The translated signal data rate can be up to 420 Mbps when signal is translated from 3.3 V to 5 V.

8.3.3 I_{off} Supports Partial-Power-Down Mode Operation

I_{off} will prevent backflow current by disabling I/O output circuits when device is in partial-power-down mode.

8.4 Device Functional Modes

	· · · · · · · · · · · · · · · · · · ·
INPUT DIR	OPERATION
L	B data to A bus
Н	A data to B bus

 Table 1. Function Table⁽¹⁾ (Each Transceiver)

(1) Input circuits of the data I/Os always are active.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC2T45 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The max data rate can be up to 420 Mbps when device translate signal from 3.3 V to 5 V.

9.2 Typical Applications

9.2.1 Unidirectional Logic Level-Shifting Application

The following shows an example of the SN74LVC2T45 being used in a unidirectional logic level-shifting application.

SYSTEM-2

PIN	NAME	FUNCTION	DESCRIPTION
1	V _{CCA}	V _{CC1}	SYSTEM-1 supply voltage (1.65 V to 5.5 V)
2	A1	OUT1	Output level depends on V _{CC1} voltage.
3	A2	OUT2	Output level depends on V _{CC1} voltage.
4	GND	GND	Device GND
5	DIR	DIR	GND (low level) determines B-port to A-port direction.
6	B2	IN2	Input threshold value depends on V _{CC2} voltage.
7	B1	IN1	Input threshold value depends on V _{CC2} voltage.
8	V _{CCB}	V _{CC2}	SYSTEM-2 supply voltage (1.65 V to 5.5 V)

Figure 19. Unidirectional Logic Level-Shifting Application

9.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 2.

Table 2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	1.65 V to 5.5 V
Output voltage range	1.65 V to 5.5 V

9.2.1.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74LVC2T45 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74LVC2T45 device is driving to determine the output voltage range.

9.2.1.3 Application Curve

SN74LVC2T45

SCES516J-DECEMBER 2003-REVISED DECEMBER 2014

9.2.2 Bidirectional Logic Level-Shifting Application

Figure 20 shows the SN74LVC2T45 being used in a bidirectional logic level-shifting application. Because the SN74LVC2T45 does not have an output-enable (OE) pin, the system designer should take precautions to avoid bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.

SYSTEM-1

SYSTEM-2

The following table shows data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-2 to SYSTEM-1.

STATE	DIR CTRL	I/O-1	I/O-2	DESCRIPTION
1	Н	Out	In	SYSTEM-1 data to SYSTEM-2
2	н	Hi-Z	Hi-Z	SYSTEM-2 is getting ready to send data to SYSTEM-1. I/O-1 and I/O-2 are disabled. The bus- line state depends on pullup or pulldown. ⁽¹⁾
3	L	Hi-Z	Hi-Z	DIR bit is flipped. I/O-1 and I/O-2 still are disabled. The bus-line state depends on pullup or pulldown. ⁽¹⁾
4	L	In	Out	SYSTEM-2 data to SYSTEM-1

(1) SYSTEM-1 and SYSTEM-2 must use the same conditions, i.e., both pullup or both pulldown.

Figure 20. Bidirectional Logic Level-Shifting Application

9.2.2.1 Design Requirements

Please refer to Unidirectional Logic Level-Shifting Application.

9.2.2.2 Detailed Design Procedure

9.2.2.2.1 Enable Times

Calculate the enable times for the SN74LVC2T45 using the following formulas:

- t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)
- t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A)
- t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)
- t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74LVC2T45 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

9.2.2.3 Application Curve

10 Power Supply Recommendations

10.1 Power-Up Considerations

A proper power-up sequence always should be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies. To guard against such power-up problems, take the following precautions:

- 1. Connect ground before any supply voltage is applied.
- 2. Power up V_{CCA} .
- 3. V_{CCB} can be ramped up along with or after V_{CCA} .

V	V _{CCA}								
V CCB	0 V	1.8 V	2.5 V	3.3 V	5 V	UNIT			
0 V	0	<1	<1	<1	<1				
1.8 V	<1	<2	<2	<2	2				
2.5 V	<1	<2	<2	<2	<2	μA			
3.3 V	<1	<2	<2	<2	<2				
5 V	<1	2	<2	<2	<2				

Table 3. Typical Total Static Power Consumption (I_{CCA} + I_{CCB})

11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended.

- Bypass capacitors should be used on power supplies.
- Short trace lengths should be used to avoid excessive loading.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements

SN74LVC2T45

SCES516J-DECEMBER 2003-REVISED DECEMBER 2014

www.ti.com

NSTRUMENTS

ÈXAS

11.2 Layout Example

12 Device and Documentation Support

12.1 Trademarks

NanoFree is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

25-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LVC2T45DCTR	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2 Z	Samples
SN74LVC2T45DCTRE4	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2 Z	Samples
SN74LVC2T45DCTT	ACTIVE	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2 Z	Samples
SN74LVC2T45DCTTG4	ACTIVE	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2 Z	Samples
SN74LVC2T45DCUR	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	(CT2Q ~ CT2R ~ T2) CZ	Samples
SN74LVC2T45DCURE4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2R	Samples
SN74LVC2T45DCURG4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2R	Samples
SN74LVC2T45DCUT	ACTIVE	VSSOP	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(CT2Q ~ CT2R ~ T2) CZ	Samples
SN74LVC2T45DCUTE4	ACTIVE	VSSOP	DCU	8		TBD	Call TI	Call TI	-40 to 85		Samples
SN74LVC2T45DCUTG4	ACTIVE	VSSOP	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2R	Samples
SN74LVC2T45YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(TB ~ TB7 ~ TBN)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

PACKAGE OPTION ADDENDUM

25-Oct-2016

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC2T45 :

Automotive: SN74LVC2T45-Q1

• Enhanced Product: SN74LVC2T45-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC2T45DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC2T45DCTT	SM8	DCT	8	250	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC2T45DCUR	VSSOP	DCU	8	3000	180.0	9.0	2.05	3.3	1.0	4.0	8.0	Q3
SN74LVC2T45DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2T45DCUTG4	VSSOP	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	2.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

23-Nov-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC2T45DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
SN74LVC2T45DCTT	SM8	DCT	8	250	182.0	182.0	20.0
SN74LVC2T45DCUR	VSSOP	DCU	8	3000	182.0	182.0	20.0
SN74LVC2T45DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC2T45DCUTG4	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	182.0	182.0	20.0

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

D. Falls within JEDEC MO-187 variation CA.

- NOTES: A. All linear dimensions are in millimeters. В. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

MPDS049B - MAY 1999 - REVISED OCTOBER 2002

DCT (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion

D. Falls within JEDEC MO-187 variation DA.

DCT (R-PDSO-G8) PLASTIC SMALL OUTLINE Example Board Layout Example Stencil Design (Note C,E) (Note D) - 6x0,65 - 6x0,65 8x0,25-8x1,55 3,40 3,40 Non Solder Mask Defined Pad Example Pad Geometry -0,30 (Note C) 1,60 Example -0,07 Non-solder Mask Opening All Around (Note E) 4212201/A 10/11

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

YZP (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

- A. All linear dimensions are in millimeters. Dimension B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated