

10E

1Q1 2

1Q2 3

1Q3 5

1Q4 🛛 6

V_{CC} 7

1Q5 8

1Q6 🛛 9

GND 10

2Q1 13

2Q2 114

2Q3 16

2Q4 **1**17

2Q5 19

2Q6 **1**20

GND 21

2Q8 **1**23

20E 24

2Q7 [22

V_{cc} L 18

GND [

11 1Q8 **[**] 12

15

1Q7 🛛

4

GND [

SCBS262M-JULY 1993-REVISED NOVEMBER 2006

48 1CLK

47 1D1

46 1D2

45 GND

44 1D3

43 🛛 1D4

42 🛛 V_{CC}

41 1D5

40 1D6

39 GND

38] 1D7

36 2D1

35 2D2

34 GND

33 2D3

32 2D4

31 V_{CC}

30 2D5

29 2D6

28 GND

26 2D8

25 25 2CLK

27 2D7

37 0 1D8

SN54LVTH162374... WD PACKAGE

SN74LVTH162374... DGG OR DL PACKAGE

(TOP VIEW)

FEATURES

- Members of the Texas Instruments Widebus™ Family
- Output Ports Have Equivalent 22- Ω Series • **Resistors, So No External Resistors Are** Required
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Distributed V_{CC} and GND Pins Minimize **High-Speed Switching Noise**
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per **JESD 17**
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

DESCRIPTION/ORDERING INFORMATION

ORDERING INFORMATION

T _A	PACKAG	E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	FBGA – GRD	Deal of 1000	74LVTH162374GRDR	11.0074		
	FBGA – ZRD (Pb-free)	Reel of 1000	74LVTH162374ZRDR	- LL2374		
		Tube of OF	SN74LVTH162374DL			
	SSOP – DL	Tube of 25	SN74LVTH162374DLG4	1.)/TU400074		
4000 to 0500	550P - DL	Deal of 4000	74LVTH16374DLRG4	– LVTH162374		
–40°C to 85°C		Reel of 1000	SN74LVTH16374DLR			
	TOCOD DOC	Deal of 2000	SN74LVTH162374DGGR	1)/TU400074		
	TSSOP – DGG	Reel of 2000	74LVTH162374DGGRG4	– LVTH162374		
	VFBGA – GQL	Deal of 1000	SN74LVTH162374GQLR	11.0074		
	VFBGA – ZQL (Pb-free)	Reel of 1000	74LVTH162374ZQLR	- LL2374		
–55°C to 125°C	CFP – WD	Tube	SNJ54LVTH162374WD	SNJ54LVTH162374WD		

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

TEXAS INSTRUMENTS www.ti.com

SCBS262M-JULY 1993-REVISED NOVEMBER 2006

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The 'LVTH162374 devices are 16-bit edge-triggered D-type flip-flops with 3-state outputs designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK), the Q outputs of the flip-flop take on the logic levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA, include equivalent $22-\Omega$ series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

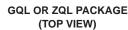
These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

SCBS262M-JULY 1993-REVISED NOVEMBER 2006

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)

	1	2	3	4	5	6
Α	1 0E	NC	NC	NC	NC	1CLK
В	1Q2	1Q1	GND GND		1D1	1D2
С	1Q4	1Q3	V _{CC}	V _{CC}	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
Е	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
н	2Q5	2Q6	V _{CC}	V _{CC}	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
K	2 <mark>0E</mark>	NC	NC	NC	NC	2CLK

(1) NC – No internal connection

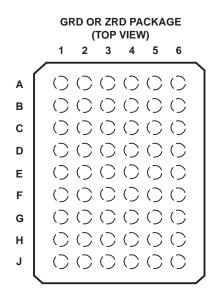

TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)

	1	2	3	4	5	6
Α	1Q1	NC	1 0E	1CLK	NC	1D1
В	1Q3	1Q2	NC	NC	1D2	1D3
С	1Q5	1Q4	V _{CC}	V _{CC}	1D4	1D5
D	1Q7	1Q6	GND	GND	1D6	1D7
Е	2Q1	1Q8	GND	GND	1D8	2D1
F	2Q3	2Q2	GND	GND	2D2	2D3
G	2Q5	2Q4	V _{CC}	V _{CC}	2D4	2D5
Н	2Q7	2Q6	NC	NC	2D6	2D7
J	2Q8	NC	2 <mark>0E</mark>	2CLK	NC	2D8

(1) NC - No internal connection

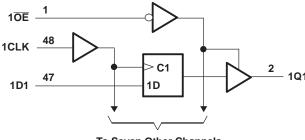
FUNCTION TABLE (EACH FLIP-FLOP)

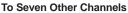
INPUTS	OUTPUT	
CLK	D	Q
\uparrow	Н	Н
\uparrow	L	L
H or L	Х	Q ₀
Х	Х	Z
	CLK ↑ ↑ H or L	CLK D ↑ H ↑ L H or L X

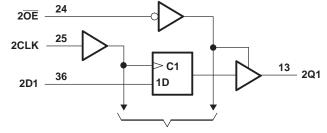


IEXAS TRUMENTS

www.ti.com


	_	1	2	3	4	5	6
Α)	()	()		()	()
В)	О	()	()	()	()
С		Э	()	()	()	()	()
D)	()	()	()	()	()


D	0000000
E	00 00
F	00 00
G	0000000
н	0000000
J	0000000
ĸ	0000000



SCBS262M-JULY 1993-REVISED NOVEMBER 2006

LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

Pin numbers shown are for the DGG, DL, and WD packages.

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT		
V _{CC}	Supply voltage range		-0.5	4.6	V		
VI	Input voltage range ⁽²⁾		-0.5	7	V		
Vo	Voltage range applied to any output in the h	igh-impedance or power-off state ⁽²⁾	-0.5	7	V		
Vo	Voltage range applied to any output in the h	oltage range applied to any output in the high state ⁽²⁾					
I _O	Current into any output in the low state	· ·					
I _O	Current into any output in the high state ⁽³⁾		30	mA			
I _{IK}	Input clamp current	V ₁ < 0		-50	mA		
I _{OK}	Output clamp current	V _O < 0		-50	mA		
		DGG package		70			
0	Deckage thermal impedance ⁽⁴⁾	DL package		63	°C/W		
θ_{JA}	Package thermal impedance ⁽⁴⁾	GQL/ZQL package		42	-C/W		
		GRD/ZRD package		36			
T _{stg}	Storage temperature range		-65	150	°C		

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(3) This current flows only when the output is in the high state and $V_0 > V_{CC}$.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			SN54LVTH	162374	SN74LVTH1	62374	
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage		2		2		V
VIL	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-12		-12	mA
I _{OL}	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

 All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS262M-JULY 1993-REVISED NOVEMBER 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

		TEOT	CONDITIONS	SN54LVTH1	62374	SN74LVT	1			
1	PARAMETER	IESI	CONDITIONS	MIN TYP ⁽¹⁾	MAX	ΜΙΝ ΤΥ	P ⁽¹⁾ M/	XX ا	UNIT	
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA		-1.2		-1	.2	V	
V _{OH}		V _{CC} = 3 V,	I _{OH} = -12 mA	2		2			V	
V _{OL}		V _{CC} = 3 V,	I _{OL} = 12 mA		0.8		().8	V	
		V _{CC} = 0 or 3.6 V,	V _I = 5.5 V		10			10		
	Control inputs	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND		±1			±1		
II.	Data insuta	N 26M	$V_{I} = V_{CC}$		1			1	μA	
	Data inputs	V _{CC} = 3.6 V	V _I = 0	-5			-5			
I _{off}		V _{CC} = 0,	V_{I} or V_{O} = 0 to 4.5 V				±1	00	μA	
		V 2.V	V _I = 0.8 V	75		75				
La in	(bold) Data inputs	$V_{CC} = 3 V$	V ₁ = 2 V	-75		-75			μA	
I _{I(hold)}		V _{CC} = 3.6 V, ⁽²⁾	$V_{I} = 0$ to 3.6 V				5 –7	00 50		
I _{OZH}		V _{CC} = 3.6 V,	$V_0 = 3 V$		5			5	μA	
I _{OZL}		V _{CC} = 3.6 V,	V _O = 0.5 V		-5			-5	μA	
I _{OZPU}		$\frac{V_{CC}}{OE}$ = 0 to 1.5 V, V _O OE = don't care	= 0.5 V to 3 V,		±100 ⁽³⁾		±1	00	μΑ	
I _{OZPD}		V_{CC} = 1.5 V to 0, V _O OE = don't care	= 0.5 V to 3 V,		±100 ⁽³⁾		±1	00	μΑ	
		V _{CC} = 3.6 V,	Outputs high		0.19		0.	19		
I _{CC}		$I_{0} = 0,$	Outputs low		5			5	mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled		0.19		0.	19		
$\Delta I_{CC}^{(4)}$	1	V_{CC} = 3 V to 3.6 V, C Other inputs at V _{CC} c	Dne input at V _{CC} – 0.6 V, or GND		0.2		().2	mA	
Ci		V _I = 3 V or 0		3			3		pF	
Co		V _O = 3 V or 0		9			9		pF	

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

(2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

(3) On products compliant to MIL-PRF-38535, this parameter is not production tested.

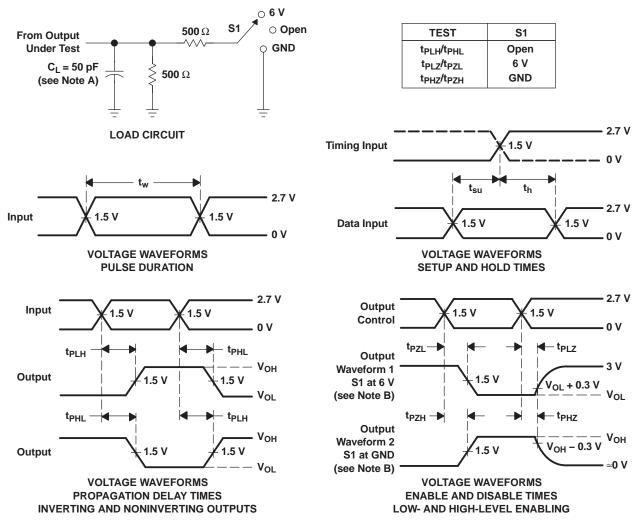
(4) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			SN54LVTH162374				S				
			V_{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		$V_{CC} = 2.7 V$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			160		160		160		160	MHz
tw	Pulse duration, CLK high or low		3		3.3		3		3		ns
t _{su}	Setup time, data before $CLK\uparrow$	High or low	2.8		3.2		1.8		2		ns
t _h	Hold time, data after CLK [↑]	High or low	1.2		0.5		0.8		0.1		ns

SCBS262M-JULY 1993-REVISED NOVEMBER 2006


Switching Characteristics

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN	SN54LVTH162374				SN74LVTH162374					
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V_{CC} = 3.3 V ± 0.3 V		$V_{CC} = 2.7 V$		V _{CC} = 3.3 V ± 0.3 V			V _{CC} = 2.7 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	TYP ⁽¹⁾	MAX	MIN	MAX		
f _{max}			160		160		160			160		MHz	
t _{PLH}	CLK	Q	1.4	6.6		7.4	2	3.4	5.3		6.2	ns	
t _{PHL}	ULK	Q	1.4	5.8		6	2.2	3.3	4.9		5.1	115	
t _{PZH}	OE	0	1	6.6		7.4	1.8	3.5	5.6		6.9		
t _{PZL}	UE	Q	1.4	6		6.8	1.8	3.5	4.9		6	ns	
t _{PHZ}	OE	0	1	6.6		7.4	2.4	4.2	5.4		5.7		
t _{PLZ}	UE	Q	1.4	6		6	2	3.8	5		5.1	ns	
t _{sk(LH)}									0.5			20	
t _{sk(HL)}									0.5			ns	

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25^{\circ}C.

SCBS262M-JULY 1993-REVISED NOVEMBER 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
5962-9854201QXA	(1) ACTIVE	CFP	WD	48	1	(2) TBD	(6) A42	(3) N / A for Pkg Type	-55 to 125	(4/5) 5962-9854201QX A SNJ54LVTH16237 4WD	Samples
5962-9854201VXA	ACTIVE	CFP	WD	48	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9854201VX A SNV54LVTH16237 4WD	Samples
74LVTH162374DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH162374	Samples
74LVTH162374ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	LL2374	Samples
74LVTH162374ZRDR	ACTIVE	BGA MICROSTAR JUNIOR	ZRD	54	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	LL2374	Samples
SN74LVTH162374DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH162374	Samples
SN74LVTH162374DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH162374	Samples
SN74LVTH162374DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH162374	Samples
SNJ54LVTH162374WD	ACTIVE	CFP	WD	48	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9854201QX A SNJ54LVTH16237 4WD	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

www.ti.com

PACKAGE OPTION ADDENDUM

17-Mar-2017

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LVTH162374, SN54LVTH162374-SP, SN74LVTH162374 :

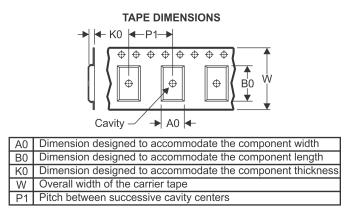
- Catalog: SN74LVTH162374, SN54LVTH162374
- Military: SN54LVTH162374
- Space: SN54LVTH162374-SP

NOTE: Qualified Version Definitions:

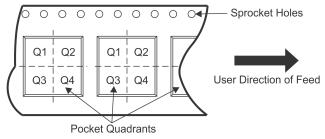
- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

17-Mar-2017

• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

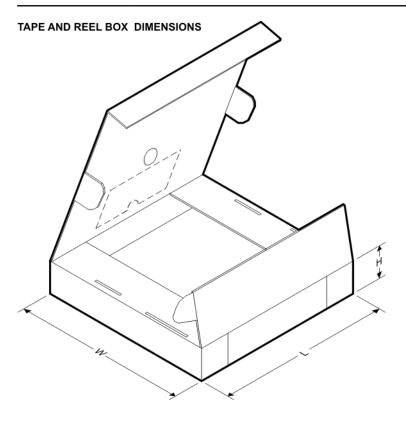

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74LVTH162374ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
74LVTH162374ZRDR	BGA MI CROSTA R JUNI OR	ZRD	54	1000	330.0	16.4	5.8	8.3	1.55	8.0	16.0	Q1
SN74LVTH162374DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74LVTH162374DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

TEXAS INSTRUMENTS

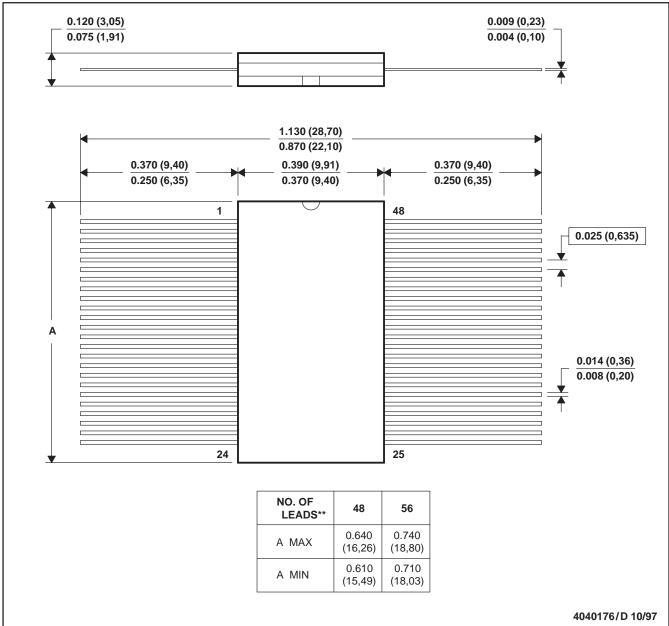
www.ti.com

PACKAGE MATERIALS INFORMATION

11-Mar-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74LVTH162374ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	336.6	336.6	28.6
74LVTH162374ZRDR	BGA MICROSTAR JUNIOR	ZRD	54	1000	336.6	336.6	28.6
SN74LVTH162374DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74LVTH162374DLR	SSOP	DL	48	1000	367.0	367.0	55.0

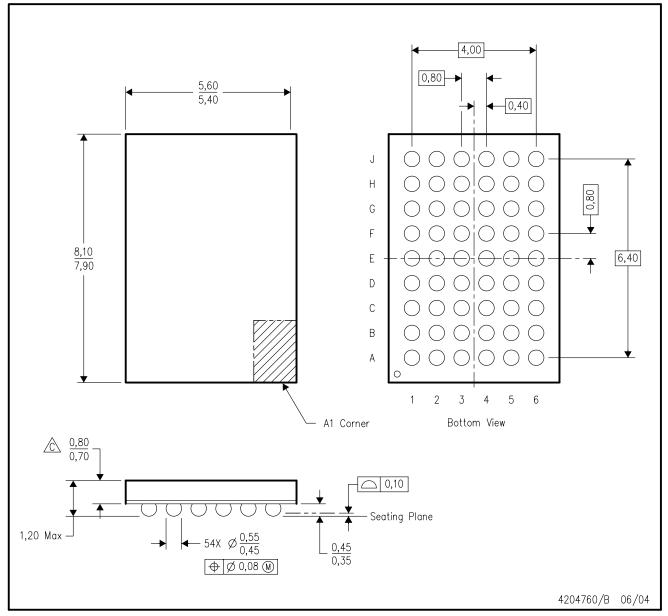

MECHANICAL DATA

MCFP010B - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL FLATPACK

WD (R-GDFP-F**)

48 LEADS SHOWN



- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only
 - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 - GDFP1-F56 and JEDEC MO-146AB

ZRD (R-PBGA-N54)

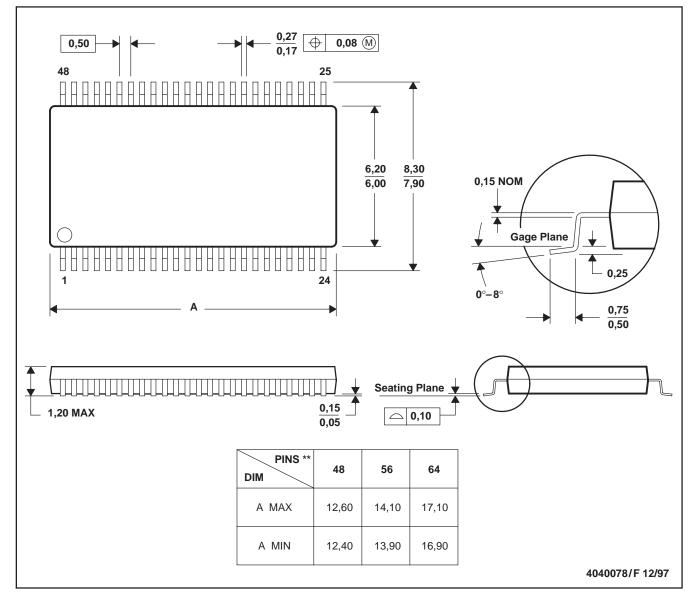
PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Falls within JEDEC MO-205 variation DD.

D. This package is lead-free. Refer to the 54 GRD package (drawing 4204759) for tin-lead (SnPb).


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

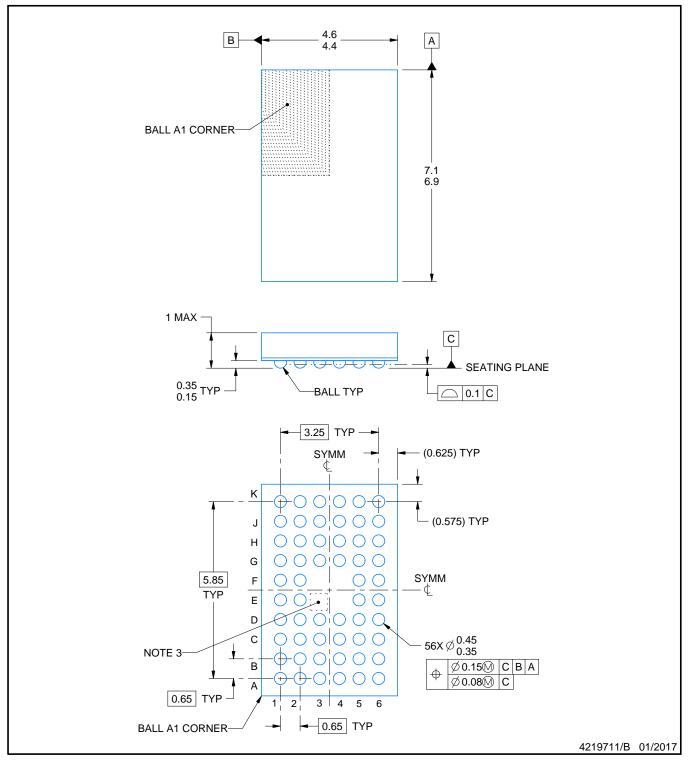
DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153


ZQL0056A

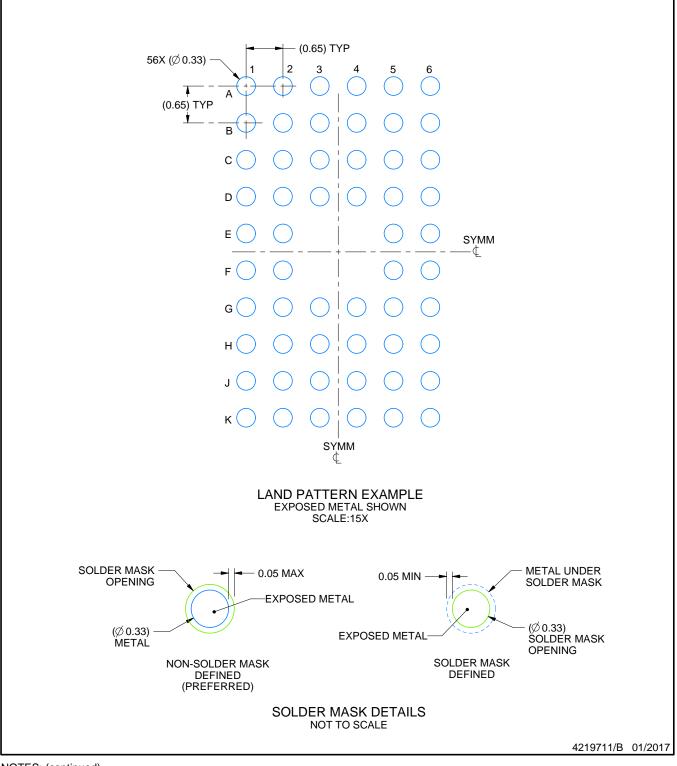
PACKAGE OUTLINE

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. No metal in this area, indicates orientation.



ZQL0056A

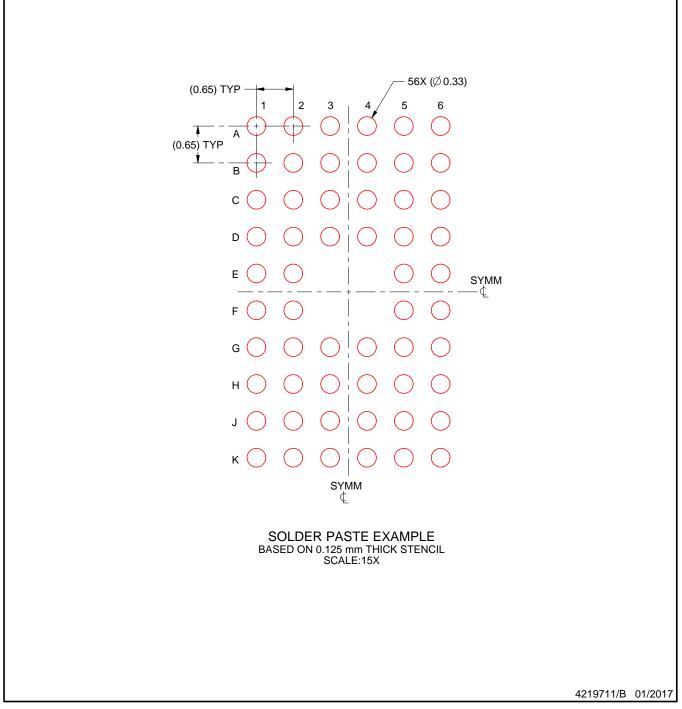
EXAMPLE BOARD LAYOUT

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

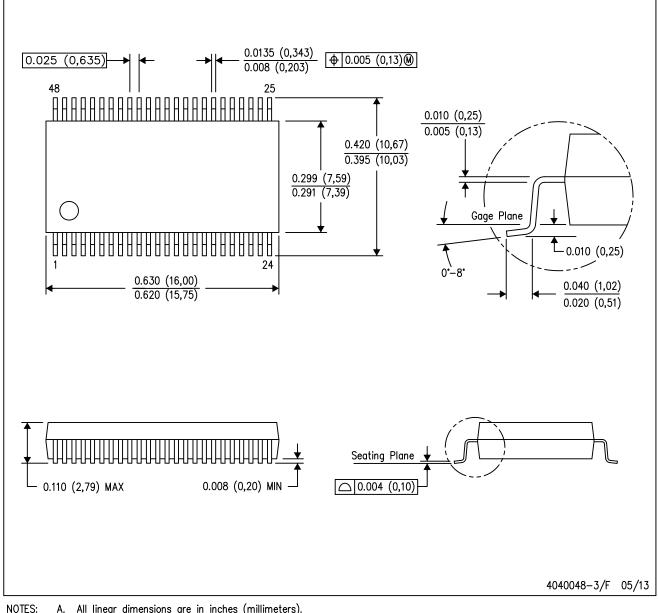


ZQL0056A

EXAMPLE STENCIL DESIGN

JRBGA - 1 mm max height

PLASTIC BALL GRID ARRAY


NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

